

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

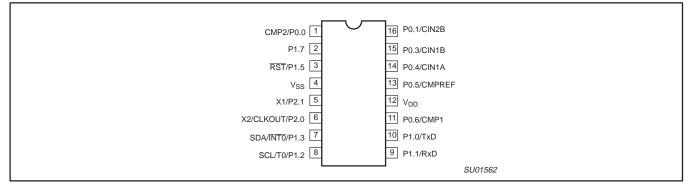
Details

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87lpc761bdh-112

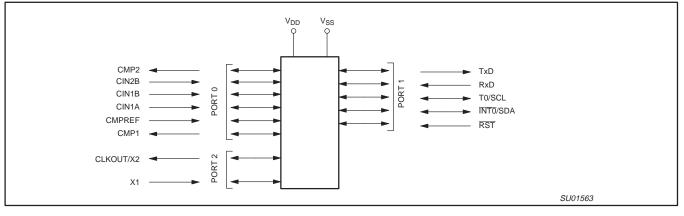
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

UART		•	•	•	•	•	
02 Mar ()7	,					


2002	Mar (
------	-------

P87LPC761


GENERAL DESCRIPTION	1
FEATURES	1
	1
PIN CONFIGURATION, 16-PIN DIP AND TSSOP PACKAGES	2
LOGIC SYMBOL	2
BLOCK DIAGRAM	3
PIN DESCRIPTIONS	5
SPECIAL FUNCTION REGISTERS	6
FUNCTIONAL DESCRIPTION	9
Enhanced CPU	9
Analog Functions	9
Analog Comparators	9
Comparator Configuration	9
Internal Reference Voltage	11
Comparator Interrupt	11
Comparators and Power Reduction Modes	11
Comparator Configuration Example	11
I ² C Serial Interface	12
I ² C Interrupts	12
Reading I2CON	12
Checking ATN and DRDY	14
Writing I2CON	14
Regarding Transmit Active	14
Regarding Software Response Time	15
Interrupts	16
External Interrupt Inputs	17
I/O Ports	18
Quasi-Bidirectional Output Configuration	18
Open Drain Output Configuration	19
Push-Pull Output Configuration	19
Keyboard Interrupt (KBI)	20
Oscillator	22
Low Frequency Oscillator Option	22
Medium Frequency Oscillator Option	22
High Frequency Oscillator Option	22
On-Chip RC Oscillator Option	22
External Clock Input Option	22
	22
CPU Clock Modification: CLKR and DIVM	24
Power Monitoring Functions	24
Brownout Detection	24
Power On Detection	25
Power Reduction Modes	25
Idle Mode	25
Power Down Mode	25
Low Voltage EPROM Operation	27
Reset	27
Timer/Counters	28
Mode 0	29
Mode 1	30
Mode 2	30
Mode 3	30
Timer Overflow Toggle Output	32
UART	32

P87LPC761

PIN CONFIGURATION, 16-PIN DIP AND TSSOP PACKAGES

LOGIC SYMBOL

P87LPC761

PIN DESCRIPTIONS

MNEMONIC	PIN NO.	TYPE			NAME AND FUNCTION
P0.0–P0.1 P0.3–P0.6	1, 11, 13–16	I/O	the quasi-bid by the PRHI depends upo	irectional mo bit in the UCI n the port co	O port with a user-configurable output type. Port 0 latches are configured in de and have either ones or zeros written to them during reset, as determined FG1 configuration byte. The operation of port 0 pins as inputs and outputs nfiguration selected. Each port pin is configured independently. Refer to the irration and the DC Electrical Characteristics for details.
			,		ature operates with port 0 pins.
			Port 0 also pr	ovides vario	us special functions as described below.
	1	0	P0.0	CMP2	Comparator 2 output.
	16	I	P0.1	CIN2B	Comparator 2 positive input B.
	15	I	P0.3	CIN1B	Comparator 1 positive input B.
	14	I	P0.4	CIN1A	Comparator 1 positive input A.
	13	I	P0.5	CMPREF	Comparator reference (negative) input.
	11	0	P0.6	CMP1	Comparator 1 output.
P1.0–P1.3 P1.5–P1.7	2–3, 7–10	I/O	below. Port 1 written to the operation of t selected. Eac port configura	latches are of m during reso he configura th of the conf ation and the	O port with a user-configurable output type, except for three pins as noted configured in the quasi-bidirectional mode and have either ones or zeros et, as determined by the PRHI bit in the UCFG1 configuration byte. The ble port 1 pins as inputs and outputs depends upon the port configuration igurable port pins are programmed independently. Refer to the section on I/O DC Electrical Characteristics for details.
			Port 1 also pr	ovides vario	us special functions as described below.
	10	0	P1.0	TxD	Transmitter output for the serial port.
	9	I	P1.1	RxD	Receiver input for the serial port.
	8	I/O	P1.2	Т0	Timer/counter 0 external count input or overflow output.
		I/O		SCL	I ² C serial clock input/output. When configured as an output, P1.2 is open drain, in order to conform to I ² C specifications.
	7	I	P1.3	INT0	External interrupt 0 input.
		I/O		SDA	I ² C serial data input/output. When configured as an output, P1.3 is open drain, in order to conform to I ² C specifications.
	3	I	P1.5	RST	External Reset input (if selected via EPROM configuration). A low on this pin resets the microcontroller, causing I/O ports and peripherals to take on their default states, and the processor begins execution at address 0. When used as a port pin, P1.5 is a Schmitt trigger input only.
P2.0–P2.1	5, 6	I/O	quasi-bidirect the PRHI bit i depends upo	tional mode a n the UCFG n the port co) port with a user-configurable output type. Port 2 latches are configured in the and have either ones or zeros written to them during reset, as determined by 1 configuration byte. The operation of port 2 pins as inputs and outputs nfiguration selected. Each port pin is configured independently. Refer to the irration and the DC Electrical Characteristics for details.
			Port 2 also pr	ovides vario	us special functions as described below.
	6	0	P2.0	X2	Output from the oscillator amplifier (when a crystal oscillator option is selected via the EPROM configuration).
				CLKOUT	CPU clock divided by 6 clock output when enabled via SFR bit and in conjunction with internal RC oscillator or external clock input.
	5	I	P2.1	X1	Input to the oscillator circuit and internal clock generator circuits (when selected via the EPROM configuration).
V _{SS}	4	I	Ground: 0V	reference.	
V _{DD}	12	I	Power Supp Power Down		e power supply voltage for normal operation as well as Idle and

P87LPC761

Low power, low price, low pin count (16 pin) microcontroller with 2 kbyte OTP

Name	Description	SFR	SFR Bit Functions and Addresses									
			M	SB					L9	SB	Value	
KBI#	Keyboard Interrupt	86h									00h	
			87	86	85	84	83	82	81	80		
P0*	Port 0	80h	-	CMP1	CMPREF	CIN1A	CIN1B	-	CIN2B	CMP2	Note 2	
			97	96	95	94	93	92	91	90		
P1*	Port 1	90h	(P1.7)	-	RST	-	INTO	T0	RxD	TxD	Note 2	
			A7	A6	A5	A4	A3	A2	A1	A0		
P2*	Port 2	A0h	-	-	-	-	-	-	X1	X2	Note 2	
P0M1#	Port 0 output mode 1	84h	-	(P0M1.6)	(P0M1.5)	(P0M1.4)	(P0M1.3)	-	(P0M1.1)	(P0M1.0)	00h	
P0M2#	Port 0 output mode 2	85h	-	(P0M2.6)	(P0M2.5)	(P0M2.4)	(P0M2.3)	-	(P0M2.1)	(P0M2.0)	00H	
P1M1#	Port 1 output mode 1	91h	(P1M1.7)	-	-	-	-	-	(P1M1.1)	(P1M1.0)	00h ¹	
P1M2#	Port 1 output mode 2	92h	(P1M2.7)	-	-	-	-	-	(P1M2.1)	(P1M2.0)	00h ¹	
P2M1#	Port 2 output mode 1	A4h	P2S	P1S	P0S	ENCLK	-	TOOE	(P2M1.1)	(P2M1.0)	00h	
P2M2#	Port 2 output mode 2	A5h	-	-	-	-	-	_	(P2M2.1)	(P2M2.0)	00h ¹	
PCON	Power control register	87h	SMOD1	SMOD0	BOF	POF	GF1	GF0	PD	IDL	Note 3	
			D7	D6	D5	D4	D3	D2	D1	D0	1	
PSW*	Program status word	D0h	CY	AC	F0	RS1	RS0	OV	F1	Р	00h	
PT0AD#	Port 0 digital input disable	F6h									00h	
			9F	9E	9D	9C	9B	9A	99	98		
SCON*	Serial port control	98h	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00h	
SBUF	Serial port data buffer register	99h									xxh	
SADDR#	Serial port address register	A9h									00h	
SADEN#	Serial port address enable	B9h									00h	
SP	Stack pointer	81h									07h	
			8F	8E	8D	8C	8B	8A	89	88		
TCON*	Timer 0 and 1 control	88h	TF1	TR1	TF0	TR0	-	_	IE0	IT0	00h	
TH0	Timer 0 high byte	8Ch				•					00h	
TH1	Timer 1 high byte	8Dh									00h	
TL0	Timer 0 low byte	8Ah									00h	
TL1	Timer 1 low byte	8Bh									00h	

P87LPC761

Internal Reference Voltage

An internal reference voltage generator may supply a default reference when a single comparator input pin is used. The value of the internal reference voltage, referred to as V_{ref} , is 1.23 V ±10%.

Comparator Interrupt

Each comparator has an interrupt flag CMFn contained in its configuration register. This flag is set whenever the comparator output changes state. The flag may be polled by software or may be used to generate an interrupt. The interrupt will be generated when the corresponding enable bit ECn in the IEN1 register is set and the interrupt system is enabled via the EA bit in the IEN0 register.

Comparators and Power Reduction Modes

Either or both comparators may remain enabled when Power Down or Idle mode is activated. The comparators will continue to function in the power reduction mode. If a comparator interrupt is enabled, a change of the comparator output state will generate an interrupt and wake up the processor. If the comparator output to a pin is enabled, the pin should be configured in the push-pull mode in order to obtain fast switching times while in power down mode. The reason is that with the oscillator stopped, the temporary strong pull-up that normally occurs during switching on a quasi-bidirectional port pin does not take place.

Comparators consume power in Power Down and Idle modes, as well as in the normal operating mode. This fact should be taken into account when system power consumption is an issue.

Comparator Configuration Example

The code shown in Figure 5 is an example of initializing one comparator. Comparator 1 is configured to use the CIN1A and CMPREF inputs, outputs the comparator result to the CMP1 pin, and generates an interrupt when the comparator output changes.

The interrupt routine used for the comparator must clear the interrupt flag (CMF1 in this case) before returning.

CmpInit: mov	PT0AD,#30h	; Disable digital inputs on pins that are used
1110 V	PIOAD, #3011	; for analog functions: CIN1A, CMPREF.
anl	POM2,#0cfh	; Disable digital outputs on pins that are used
orl	P0M1,#30h	; for analog functions: CIN1A, CMPREF.
mov	CMP1,#24h	; Turn on comparator 1 and set up for:
		; - Positive input on CIN1A.
		; - Negative input from CMPREF pin.
		; - Output to CMP1 pin enabled.
call	delay10us	; The comparator has to start up for at
		; least 10 microseconds before use.
anl	CMP1,#0feh	; Clear comparator 1 interrupt flag.
setb	EC1	; Enable the comparator 1 interrupt. The
		; priority is left at the current value.
setb	EA	; Enable the interrupt system (if needed).
ret		; Return to caller.
		SU01189

Figure 5.

P87LPC761

I²C Serial Interface

The I^2C bus uses two wires (SDA and SCL) to transfer information between devices connected to the bus. The main features of the bus are:

- Bidirectional data transfer between masters and slaves.
- Serial addressing of slaves (no added wiring).
- Acknowledgment after each transferred byte.
- Multimaster bus.
- Arbitration between simultaneously transmitting masters without corruption of serial data on bus.

The I²C subsystem includes hardware to simplify the software required to drive the I²C bus. The hardware is a single bit interface which in addition to including the necessary arbitration and framing error checks, includes clock stretching and a bus timeout timer. The interface is synchronized to software either through polled loops or interrupts.

Refer to the application note AN422, entitled "Using the 8XC751 Microcontroller as an I²C Bus Master" for additional discussion of the 8xC76x I²C interface and sample driver routines.

The P87LPC761 I^2C implementation duplicates that of the 87C751 and 87C752 except for the following details:

- The interrupt vector addresses for both the I²C interrupt and the Timer I interrupt.
- The I²C SFR addresses (I2CON, I2CFG, I2DAT).
- The location of the I²C interrupt enable bit and the name of the SFR it is located within (EI2 is Bit 0 in IEN1).
- The location of the Timer I interrupt enable bit and the name of the SFR it is located within (ETI is Bit 7 in IEN1).
- The I²C and Timer I interrupts have a settable priority.

Timer I is used to both control the timing of the l^2C bus and also to detect a "bus locked" condition, by causing an interrupt when nothing happens on the l^2C bus for an inordinately long period of time while a transmission is in progress. If this interrupt occurs, the program has the opportunity to attempt to correct the fault and resume l^2C operation.

Six time spans are important in I²C operation and are insured by timer I:

- The MINIMUM HIGH time for SCL when this device is the master.
- The MINIMUM LOW time for SCL when this device is a master. This is not very important for a single-bit hardware interface like this one, because the SCL low time is stretched until the software responds to the I²C flags. The software response time normally meets or exceeds the MIN LO time. In cases where the software responds within MIN HI + MIN LO) time, timer I will ensure that the minimum time is met.
- The MINIMUM SCL HIGH TO SDA HIGH time in a stop condition.
- The MINIMUM SDA HIGH TO SDA LOW time between I²C stop and start conditions (4.7ms, see I²C specification).
- The MINIMUM SDA LOW TO SCL LOW time in a start condition.
- The MAXIMUM SCL CHANGE time while an I²C frame is in progress. A frame is in progress between a start condition and the following stop condition. This time span serves to detect a lack of

software response on this device as well as external I²C problems. SCL "stuck low" indicates a faulty master or slave. SCL "stuck high" may mean a faulty device, or that noise induced onto the I²C bus caused all masters to withdraw from I²C arbitration.

The first five of these times are 4.7ms (see I^2C specification) and are covered by the low order three bits of timer I. Timer I is clocked by the P87LPC761 CPU clock. Timer I can be pre-loaded with one of four values to optimize timing for different oscillator frequencies. At lower frequencies, software response time is increased and will degrade maximum performance of the I^2C bus. See special function register I2CFG description for prescale values (CT0, CT1).

The MAXIMUM SCL CHANGE time is important, but its exact span is not critical. The complete 10 bits of timer I are used to count out the maximum time. When I²C operation is enabled, this counter is cleared by transitions on the SCL pin. The timer does not run between I²C frames (i.e., whenever reset or stop occurred more recently than the last start). When this counter is running, it will carry out after 1020 to 1023 machine cycles have elapsed since a change on SCL. A carry out causes a hardware reset of the I²C interface and generates an interrupt if the Timer I interrupt is enabled. In cases where the bus hang-up is due to a lack of software response by this device, the reset releases SCL and allows I²C operation among other devices to continue.

Timer I is enabled to run, and will reset the I²C interface upon overflow, if the TIRUN bit in the I2CFG register is set. The Timer I interrupt may be enabled via the ETI bit in IEN1, and its priority set by the PTIH and PTI bits in the IP1H and IP1 registers respectively.

I²C Interrupts

If I²C interrupts are enabled (EA and EI2 are both set to 1), an I²C interrupt will occur whenever the ATN flag is set by a start, stop, arbitration loss, or data ready condition (refer to the description of ATN following). In practice, it is not efficient to operate the I²C interface in this fashion because the I²C interrupt service routine would somehow have to distinguish between hundreds of possible conditions. Also, since I²C can operate at a fairly high rate, the software may execute faster if the code simply waits for the I²C interface.

Typically, the I²C interrupt should only be used to indicate a start condition at an idle slave device, or a stop condition at an idle master device (if it is waiting to use the I²C bus). This is accomplished by enabling the I²C interrupt only during the aforementioned conditions.

Reading I2CON

- RDAT The data from SDA is captured into "Receive DATa" whenever a rising edge occurs on SCL. RDAT is also available (with seven low-order zeros) in the I2DAT register. The difference between reading it here and there is that reading I2DAT clears DRDY, allowing the I²C to proceed on to another bit. Typically, the first seven bits of a received byte are read from I2DAT, while the 8th is read here. Then I2DAT can be written to send the Acknowledge bit and clear DRDY.
- ATN "ATteNtion" is 1 when one or more of DRDY, ARL, STR, or STP is 1. Thus, ATN comprises a single bit that can be tested to release the I²C service routine from a "wait loop."
- DRDY "Data ReaDY" (and thus ATN) is set when a rising edge occurs on SCL, except at idle slave. DRDY is cleared by writing CDR = 1, or by writing or reading the I2DAT register. The following low period on SCL is stretched until the program responds by clearing DRDY.

P87LPC761

Checking ATN and DRDY

When a program detects ATN = 1, it should next check DRDY. If DRDY = 1, then if it receives the last bit, it should capture the data from RDAT (in I2DAT or I2CON). Next, if the next bit is to be sent, it should be written to I2DAT. One way or another, it should clear DRDY and then return to monitoring ATN. Note that if any of ARL, STR, or STP is set, clearing DRDY will not release SCL to high, so that the I²C will not go on to the next bit. If a program detects ATN = 1, and DRDY = 0, it should go on to examine ARL, STR, and STP.

ARL "Arbitration Loss" is 1 when transmit Active was set, but this device lost arbitration to another transmitter. Transmit Active is cleared when ARL is 1. There are four separate cases in which ARL is set.

1. If the program sent a 1 or repeated start, but another device sent a 0, or a stop, so that SDA is 0 at the rising edge of SCL. (If the other device sent a stop, the setting of ARL will be followed shortly by STP being set.)

2. If the program sent a 1, but another device sent a repeated start, and it drove SDA low before SCL could be driven low. (This type of ARL is always accompanied by STR = 1.)

3. In master mode, if the program sent a repeated start, but another device sent a 1, and it drove SCL low before this device could drive SDA low.

4. In master mode, if the program sent stop, but it could not be sent because another device sent a 0.

- STR "STaRt" is set to a 1 when an I²C start condition is detected at a non-idle slave or at a master. (STR is not set when an idle slave becomes active due to a start bit; the slave has nothing useful to do until the rising edge of SCL sets DRDY.)
- STP "SToP" is set to 1 when an I²C stop condition is detected at a non-idle slave or at a master. (STP is not set for a stop condition at an idle slave.)
- MASTER "MASTER" is 1 if this device is currently a master on the I²C. MASTER is set when MASTRQ is 1 and the bus is not busy (i.e., if a start bit hasn't been received since reset or a "Timer I" time-out, or if a stop has been received since the last start). MASTER is cleared when ARL is set, or after the software writes MASTRQ = 0 and then XSTP = 1.

Writing I2CON

Typically, for each bit in an I^2C message, a service routine waits for ATN = 1. Based on DRDY, ARL, STR, and STP, and on the current bit position in the message, it may then write I2CON with one or more of the following bits, or it may read or write the I2DAT register.

CXA Writing a 1 to "Clear Xmit Active" clears the Transmit Active state. (Reading the I2DAT register also does this.)

Regarding Transmit Active

Transmit Active is set by writing the I2DAT register, or by writing I2CON with XSTR = 1 or XSTP = 1. The I²C interface will only drive the SDA line low when Transmit Active is set, and the ARL bit will only be set to 1 when Transmit Active is set. Transmit Active is cleared by reading the I2DAT register, or by writing I2CON with CXA = 1. Transmit Active is automatically cleared when ARL is 1.

- IDLE Writing 1 to "IDLE" causes a slave's I²C hardware to ignore the I²C until the next start condition (but if MASTRQ is 1, then a stop condition will cause this device to become a master).
- CDR Writing a 1 to "Clear Data Ready" clears DRDY. (Reading or writing the I2DAT register also does this.)
- CARL Writing a 1 to "Clear Arbitration Loss" clears the ARL bit.
- CSTR Writing a 1 to "Clear STaRt" clears the STR bit.
- CSTP Writing a 1 to "Clear SToP" clears the STP bit. Note that if one or more of DRDY, ARL, STR, or STP is 1, the low time of SCL is stretched until the service routine responds by clearing them.
- XSTR Writing 1s to "Xmit repeated STaRt" and CDR tells the I²C hardware to send a repeated start condition. This should only be at a master. Note that XSTR need not and should not be used to send an "initial" (non-repeated) start; it is sent automatically by the I²C hardware. Writing XSTR = 1 includes the effect of writing I2DAT with XDAT = 1; it sets Transmit Active and releases SDA to high during the SCL low time. After SCL goes high, the I²C hardware waits for the suitable minimum time and then drives SDA low to make the start condition.
- XSTP Writing 1s to "Xmit SToP" and CDR tells the I²C hardware to send a stop condition. This should only be done at a master. If there are no more messages to initiate, the service routine should clear the MASTRQ bit in I2CFG to 0 before writing XSTP with 1. Writing XSTP = 1 includes the effect of writing I2DAT with XDAT = 0; it sets Transmit Active and drives SDA low during the SCL low time. After SCL goes high, the I²C hardware waits for the suitable minimum time and then releases SDA to high to make the stop condition.

P87LPC761

Table 1. Interaction of TIRUN with SLAVEN, MASTRQ, and MASTER

	SLAVEN, MASTRQ, MASTER	TIRUN	OPERATING MODE
	All 0	0	The I ² C interface is disabled. Timer I is cleared and does not run. This is the state assumed after a reset. If an I ² C application wants to ignore the I ² C at certain times, it should write SLAVEN, MASTRQ, and TIRUN all to zero.
ſ	All 0	1	The I ² C interface is disabled.
	Any or all 1	0	The I ² C interface is enabled. The 3 low-order bits of Timer I run for min-time generation, but the hi-order bits do not, so that there is no checking for I ² C being "hung." This configuration can be used for very slow I ² C operation.
	Any or all 1	1	The I^2C interface is enabled. Timer I runs during frames on the I^2C , and is cleared by transitions on SCL, and by Start and Stop conditions. This is the normal state for I^2C operation.

Table 2. CT1, CT0 Values

CT1, CT0	Min Time Count (Machine Cycles)	CPU Clock Max (for 100 kHz I ² C)	Timeout Period (Machine Cycles)
1 0	7	8.4 MHz	1023
0 1	6	7.2 MHz	1022
0 0	5	6.0 MHz	1021
11	4	4.8 MHz	1020

Interrupts

The P87LPC761 uses a four priority level interrupt structure. This allows great flexibility in controlling the handling of the P87LPC761's many interrupt sources. The P87LPC761 supports up to 11 interrupt sources.

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in registers IEN0 or IEN1. The IEN0 register also contains a global disable bit, EA, which disables all interrupts at once.

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing bits in the IPO, IPOH, IP1, and IP1H registers. An interrupt service routine in progress can be

interrupted by a higher priority interrupt, but not by another interrupt of the same or lower priority. The highest priority interrupt service cannot be interrupted by any other interrupt source. So, if two requests of different priority levels are received simultaneously, the request of higher priority level is serviced.

If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. This is called the arbitration ranking. Note that the arbitration ranking is only used to resolve simultaneous requests of the same priority level.

Table 3 summarizes the interrupt sources, flag bits, vector addresses, enable bits, priority bits, arbitration ranking, and whether each interrupt may wake up the CPU from Power Down mode.

Table 3. Summary of Interrupts

Description	Interrupt Flag Bit(s)	Vector Address	Interrupt Enable Bit(s)	Interrupt Priority	Arbitration Ranking	Power Down Wakeup
External Interrupt 0	IE0	0003h	EX0 (IEN0.0)	IP0H.0, IP0.0	1 (highest)	Yes
Timer 0 Interrupt	TF0	000Bh	ET0 (IEN0.1)	IP0H.1, IP0.1	4	No
Timer 1 Interrupt	TF1	001Bh	ET1 (IEN0.3)	IP0H.3, IP0.3	8	No
Serial Port Tx and Rx	TI & RI	0023h	ES (IEN0.4)	IP0H.4, IP0.4	10	No
Brownout Detect	BOF	002Bh	EBO (IEN0.5)	IP0H.5, IP0.5	2	Yes
I ² C Interrupt	ATN	0033h	El2 (IEN1.0)	IP1H.0, IP1.0	5	No
KBI Interrupt	KBF	003Bh	EKB (IEN1.1)	IP1H.1, IP1.1	6	Yes
Comparator 2 interrupt	CMF2	0043h	EC2 (IEN1.2)	IP1H.2, IP1.2	9	Yes
Watchdog Timer	WDOVF	0053h	EWD (IEN0.6)	IP0H.6, IP0.6	3	Yes
Comparator 1 interrupt	CMF1	0063h	EC1 (IEN1.5)	IP1H.5, IP1.5	7	Yes
Timer I interrupt	-	0073h	ETI (IEN1.7)	IP1H.7, IP1.7	11 (lowest)	No

P87LPC761

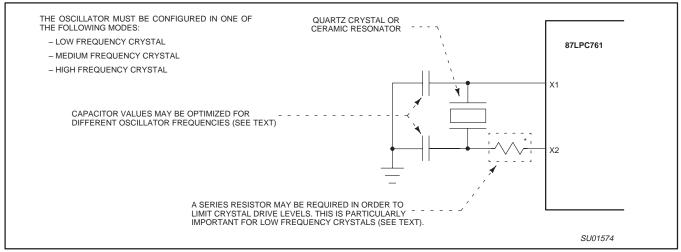


Figure 16. Using the Crystal Oscillator

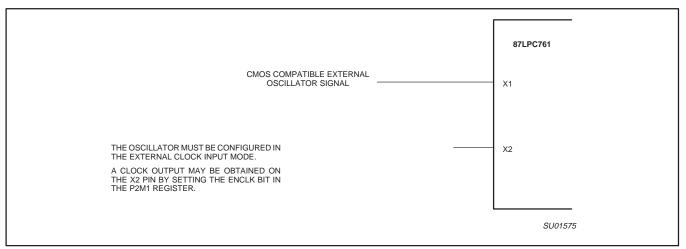


Figure 17. Using an External Clock Input

P87LPC761

Low power, low price, low pin count (16 pin) microcontroller with 2 kbyte OTP

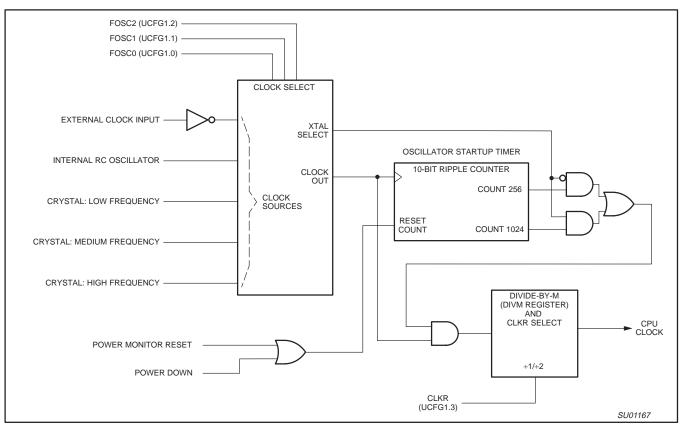


Figure 18. Block Diagram of Oscillator Control

CPU Clock Modification: CLKR and DIVM

For backward compatibility, the CLKR configuration bit allows setting the P87LPC761 instruction and peripheral timing to match standard 80C51 timing by dividing the CPU clock by two. Default timing for the P87LPC761 is 6 CPU clocks per machine cycle while standard 80C51 timing is 12 clocks per machine cycle. This division also applies to peripheral timing, allowing 80C51 code that is oscillator frequency and/or timer rate dependent. The CLKR bit is located in the EPROM configuration register UCFG1, described under EPROM Characteristics

In addition to this, the CPU clock may be divided down from the oscillator rate by a programmable divider, under program control. This function is controlled by the DIVM register. If the DIVM register is set to zero (the default value), the CPU will be clocked by either the unmodified oscillator rate, or that rate divided by two, as determined by the previously described CLKR function.

When the DIVM register is set to some value N (between 1 and 255), the CPU clock is divided by 2 * (N + 1). Clock division values from 4 through 512 are thus possible. This feature makes it possible to temporarily run the CPU at a lower rate, reducing power consumption, in a manner similar to Idle mode. By dividing the clock, the CPU can retain the ability to respond to events other than those that can cause interrupts (i.e. events that allow exiting the Idle mode) by executing its normal program at a lower rate. This can allow bypassing the oscillator startup time in cases where Power Down mode would otherwise be used. The value of DIVM may be changed by the program at any time without interrupting code execution.

Power Monitoring Functions

The P87LPC761 incorporates power monitoring functions designed to prevent incorrect operation during initial power up and power loss or reduction during operation. This is accomplished with two hardware functions: Power-On Detect and Brownout Detect.

Brownout Detection

The Brownout Detect function allows preventing the processor from failing in an unpredictable manner if the power supply voltage drops below a certain level. The default operation is for a brownout detection to cause a processor reset, however it may alternatively be configured to generate an interrupt by setting the BOI bit in the AUXR1 register (AUXR1.5).

The P87LPC761 allows selection of two Brownout levels: 2.5 V or 3.8 V. When V_{DD} drops below the selected voltage, the brownout detector triggers and remains active until V_{DD} is returns to a level above the Brownout Detect voltage. When Brownout Detect causes a processor reset, that reset remains active as long as V_{DD} remains below the Brownout Detect voltage. When Brownout Detect generates an interrupt, that interrupt occurs once as V_{DD} crosses from above to below the Brownout Detect voltage. For the interrupt to be processed, the interrupt system and the BOI interrupt must both be enabled (via the EA and EBO bits in IEN0).

When Brownout Detect is activated, the BOF flag in the PCON register is set so that the cause of processor reset may be determined by software. This flag will remain set until cleared by software.

P87LPC761

Timer/Counters

The P87LPC761 has two general purpose counter/timers which are upward compatible with the standard 80C51 Timer 0 and Timer 1. Both can be configured to operate as timers or can be configured to be an event counter (see Figure 22). An option to automatically toggle the T0 pin upon timer overflow has been added.

In the "Timer" function, the register is incremented every machine cycle. Thus, one can think of it as counting machine cycles. Since a machine cycle consists of 6 CPU clock periods, the count rate is 1/6 of the CPU clock frequency. Refer to the section Enhanced CPU for a description of the CPU clock.

In the "Counter" function of Timer 0, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0. In this function, the external input is sampled once during every machine cycle. When the samples of the pin state show a

high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (12 CPU clocks) to recognize a 1-to-0 transition, the maximum count rate is 1/6 of the CPU clock frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

The "Timer" or "Counter" function of Timer 0 is selected by control bit C/T in the Special Function Register TMOD. In addition to the "Timer" or "Counter" selection, Timer 0 and Timer 1 have four operating modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0, 1, and 2 are the same for both Timers/Counters. Mode 3 is different. The four operating modes are described in the following text.

TMOD Addres	s: 89h								Reset Value: 00h
Not Bit	Addressable								
	7	6	5	4	3	2	1	0	
	-	-	M1	MO	GATE	C/T	M1	MO	
									, ,
			Т	1		т	0		
BIT	SYMBOL	FUNCTION							
TMOD.7, 6	-	Reserved. Mu	st be writte	en with ze	ros only.				
TMOD.5, 4	M1, M0	Mode Select for	or Timer 1	(see table	e below).				
TMOD.3	GATE								he INTO pin is high and control bit is set.
TMOD.2	C/T	Timer or Coun Set for Counte					er operatio	on (input fr	om internal system clock.)
TMOD.1, 0	M1, M0	Mode Select for	or Timer 0	(see table	e below).				
	<u>M1, M0</u>	Timer Mode							
	0 0	8048 Timer "T	Ln" serves	s as 5-bit p	orescaler.				
	0 1	16-bit Timer/C	ounter "Th	In" and "T	Ln" are ca	scaded; t	here is no	prescaler.	
	10	8-bit auto-reloa	ad Timer/0	Counter. T	Hn holds a	a value wł	nich is load	led into TL	n when it overflows.
	11		r 0 contro	l bits. TH0	is an 8-bi				ounter controlled by the imer 1 control bits (see SU01542

Figure 22. Timer/Counter Mode Control Register (TMOD)

Serial Port Control Register (SCON)

The serial port control and status register is the Special Function Register SCON, shown in Figure 31. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).

The Framing Error bit (FE) allows detection of missing stop bits in the received data stream. The FE bit shares the bit position SCON.7

with the SM0 bit. Which bit appears in SCON at any particular time is determined by the SMOD0 bit in the PCON register. If SMOD0 = 0, SCON.7 is the SM0 bit. If SMOD0 = 1, SCON.7 is the FE bit. Once set, the FE bit remains set until it is cleared by software. This allows detection of framing errors for a group of characters without the need for monitoring it for every character individually.

	ss: 98h dressable								Reset Value: 00h
	7	6	5	4	3	2	1	0	
	SM0/	FE SM1	SM2	REN	TB8	RB8	TI	RI	
BIT	SYMBOL	FUNCTION							
SCON.7	FE		ftware. The						t is detected. Must be is bit to be accessible.
SCON.7	SM0	With SM1, de to be accessil				SMOD0 I	oit in the P	CON regis	ster must be 0 for this bit
SCON. 6	SM1	With SM0, de	fines the s	erial port n	node (see	table belo	ow).		
	<u>SM0, SM1</u>	UART Mode		Baud	Rate				
	0 0	0: shift registe	er	CPU	clock/6				
	0 1	1: 8-bit UART		Varia	ble (see te	ext)			
	10	2: 9-bit UART		CPU	clock/32 d	or CPU clo	ck/16		
	11	3: 9-bit UART		Varia	ole (see te	ext)			
SCON.5	SM2		vill not be a	activated if	the recei	ved 9th da	ta bit (RB8	3) is 0. In N	lode 2 or 3, if SM2 is set Mode 1, if SM2=1 then RI Jould be 0.
SCON.4	REN	Enables seria	l reception	. Set by so	oftware to	enable ree	ception. Cl	ear by sof	tware to disable receptior
SCON.3	TB8	The 9th data	oit that will	be transm	itted in M	odes 2 an	d 3. Set or	clear by s	oftware as desired.
SCON.2	RB8	In Modes 2 ar was received.				s received	I. In Mode	1, it SM2=	0, RB8 is the stop bit that
SCON.1	ΤI								de 0, or at the beginning red by software.
SCON.0	RI								de 0, or halfway through 12). Must be cleared by
		sonware.							SU0115

Figure 31. Serial Port Control Register (SCON)

P87LPC761

Timer Count	Baud Rate								
	2400	4800	9600	19.2 k	38.4 k	57.6 k	115.2 k		
-1	0.2304	0.4608	0.9216	* 1.8432	* 3.6864	5.5296	* 11.0592		
-2	0.4608	0.9216	* 1.8432	* 3.6864	* 7.3728	* 11.0592	-		
-3	0.6912	1.3824	2.7648	5.5296	* 11.0592	16.5888	-		
-4	0.9216	* 1.8432	* 3.6864	* 7.3728	* 14.7456	_	-		
-5	1.1520	2.3040	4.6080	9.2160	* 18.4320	-	-		
-6	1.3824	2.7648	5.5296	* 11.0592	-	-	-		
-7	1.6128	3.2256	6.4512	12.9024	-	-	-		
-8	* 1.8432	* 3.6864	* 7.3728	* 14.7456	-	_	-		
-9	2.0736	4.1472	8.2944	16.5888	-	-	-		
-10	2.3040	4.6080	9.2160	* 18.4320	-	-	-		
-11	2.5344	5.0688	10.1376	-	-	-	-		
-12	2.7648	5.5296	* 11.0592	-	-	-	-		
-13	2.9952	5.9904	11.9808	-	-	-	-		
-14	3.2256	6.4512	12.9024	-	-	-	-		
-15	3.4560	6.9120	13.8240	-	-	_	-		
-16	* 3.6864	* 7.3728	* 14.7456	-	-	-	-		
-17	3.9168	7.8336	15.6672	-	-	-	-		
-18	4.1472	8.2944	16.5888	-	-	-	-		
-19	4.3776	8.7552	17.5104	-	-	-	-		
-20	4.6080	9.2160	* 18.4320	-	-	-	-		
-21	4.8384	9.6768	19.3536	-	_	_	_		

Table 10. Baud Rates, Timer Values, and CPU Clock Frequencies for SMOD1 = 1

NOTES TO TABLES 9 AND 10:

1. Tables 9 and 10 apply to UART modes 1 and 3 (variable rate modes), and show CPU clock rates in MHz for standard baud rates from 2400 to 115.2k baud.

Table 9 shows timer settings and CPU clock rates with the SMOD1 bit in the PCON register = 0 (the default after reset), while Table 10 reflects the SMOD1 bit = 1.

3. The tables show all potential CPU clock frequencies up to 20 MHz that may be used for baud rates from 9600 baud to 115.2 k baud. Other CPU clock frequencies that would give only lower baud rates are not shown.

4. Table entries marked with an asterisk (*) indicate standard crystal and ceramic resonator frequencies that may be obtained from many sources without special ordering.

P87LPC761

More About UART Mode 0

Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at 1/6 the CPU clock frequency. Figure 32 shows a simplified functional diagram of the serial port in Mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF" and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P1.1 and also enable SHIFT CLOCK to the alternate output function line of P1.0. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1, and S2. At S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift are shifted to the right one position.

As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control block to do one last shift and then deactivate SEND and set T1. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF." Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 1111110 t o the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enable SHIFT CLOCK to the alternate output function line of P1.0. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are shifted to the left one position. The value that comes in from the right is the value that was sampled at the P1.1 pin at S5P2 of the same machine cycle.

As data bits come in from the right, 1s shift out to the left. When the 0 that was initially loaded into the rightmost position arrives at the leftmost position in the shift register, it flags the RX Control block to do one last shift and load SBUF. At S1P1 of the 10th machine cycle after the write to SCON that cleared RI, RECEIVE is cleared as RI is set.

More About UART Mode 1

Ten bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in SCON. In the P87LPC761 the baud rate is determined by the Timer 1 overflow rate. Figure 33 shows a simplified functional diagram of the serial port in Mode 1, and associated timings for transmit receive.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads a 1 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission actually commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. (Thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal.)

The transmission begins with activation of SEND which puts the start bit at TxD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TxD. The first shift pulse occurs one bit time after that.

As data bits shift out to the right, zeros are clocked in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 10th divide-by-16 rollover after "write to SBUF."

Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose RxD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written into the input shift register. Resetting the divide-by-16 counter aligns its rollovers with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into 16ths. At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of RxD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in mode 1 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated.: 1. R1 = 0, and 2. Either SM2 = 0, or the received stop bit = 1.

If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met, the stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated. At this time, whether the above conditions are met or not, the unit goes back to looking for a 1-to-0 transition in RxD.

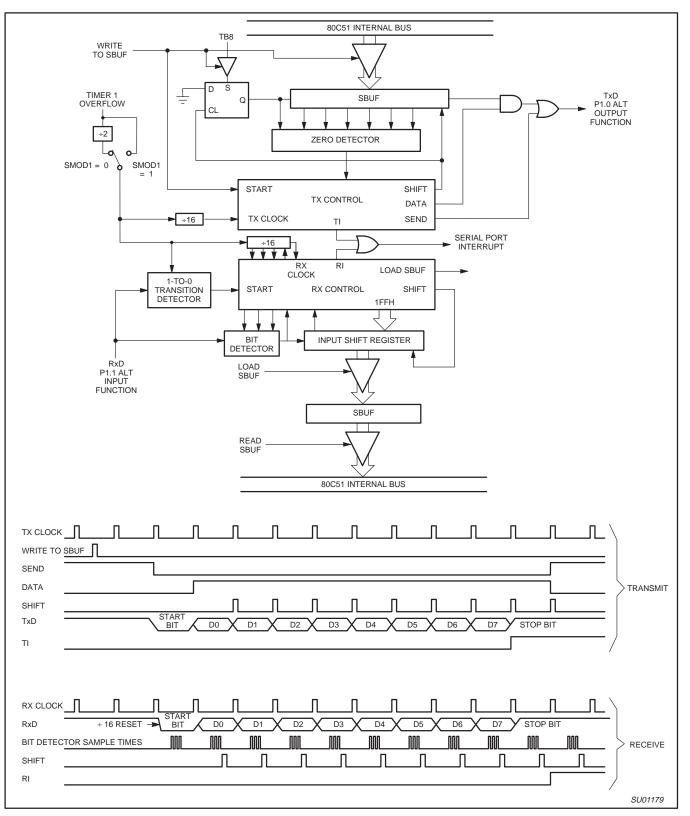


Figure 33. Serial Port Mode 1

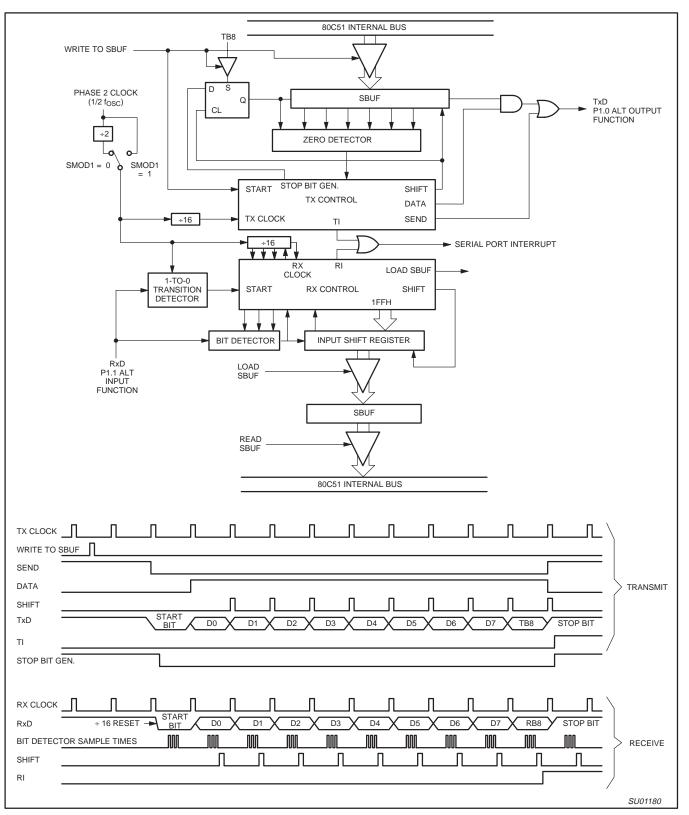


Figure 34. Serial Port Mode 2

P87LPC761

EPROM Characteristics

Programming of the EPROM on the P87LPC761 is accomplished with a serial programming method. Commands, addresses, and data are transmitted to and from the device on two pins after programming mode is entered. Serial programming allows easy implementation of in-circuit programming of the P87LPC761 in an application board.

The P87LPC761 contains three signature bytes that can be read and used by an EPROM programming system to identify the device. The signature bytes designate the device as an P87LPC761 manufactured by Philips. The signature bytes may be read by the user program at addresses FC30h, FC31h and FC60h with the MOVC instruction, using the DPTR register for addressing.

A special user data area is also available for access via the MOVC instruction at addresses FCE0h through FCFFh. This "customer code" space is programmed in the same manner as the main code EPROM and may be used to store a serial number, manufacturing date, or other application information.

32-Byte Customer Code Space

A small supplemental EPROM space is reserved for use by the customer in order to identify code revisions, store checksums, add a serial number to each device, or any other desired use. This area exists in the code memory space from addresses FCE0h through FCFFh. Code execution from this space is not supported, but it may be read as data through the use of the MOVC instruction with the appropriate addresses. The memory may be programmed at the same time as the rest of the code memory and UCFG bytes are programmed.

System Configuration Bytes

A number of user configurable features of the P87LPC761 must be defined at power up and therefore cannot be set by the program after start of execution. Those features are configured through the use of two EPROM bytes that are programmed in the same manner as the EPROM program space. The contents of the two configuration bytes, UCFG1 and UCFG2, are shown in Figures 39 and 40. The values of these bytes may be read by the program through the use of the MOVX instruction at the addresses shown in the figure.

FG1 Address	s: FD00h							Unj	programmed Value: FF
	7	6	5	4	3	2	1	0	
	WDTE	RPD	PRHI	BOV	CLKR	FOSC2	FOSC1	FOSC0	
BIT	SYMBOL	FUNC	ΓΙΟΝ						
UCFG1.7	WDTE			nable. Whe nerate an ir		med (0), c	lisables the	watchdog	timer. The timer may
UCFG1.6	RPD		Reset pin disable. When 1 disables the reset function of pin P1.5, allowing it to be used as input only port pin.						ving it to be used as ar
UCFG1.5	PRHI	Port reset high. When 1, ports reset to a high state. When 0, ports reset to a low state.							
UCFG1.4	BOV	Brownout voltage select. When 1, the brownout detect voltage is 2.5V. When 0, the brownout detect voltage is 3.8V. This is described in the Power Monitoring Functions section.							
UCFG1.3	CLKR	Clock rate select. When 0, the CPU clock rate is divided by 2. This results in machine cycles taking 12 CPU clocks to complete as in the standard 80C51. For full backward compatibility, this division applies to peripheral timing as well.							
UCFG1.2-0	FOSC2-FSOC0								tion. Combinations or future use.
	FOSC2-FOSC0	<u>Oscilla</u>	tor Configu	ration					
	1 1 1	Externa	al clock inp	ut on X1 (d	efault setti	ng for an ι	Inprogram	med part).	
	0 1 1	Interna	I RC oscilla	ator, 6 MHz	. For tolera	nce, see /	AC Electric	al Characte	eristics table.
	010	Low fre	equency cry	∕stal, 20 kH	lz to 100 k	Hz.			
	001	Mediur	n frequenc	y crystal or	resonator,	100 kHz t	o 4 MHz.		
	0 0 0	High fr	equency cr	ystal or res	onator, 4 N	/Hz to 20	MHz.		
									SU0147

Figure 39. EPROM System Configuration Byte 1 (UCFG1)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Operating temperature under bias	-55 to +125	°C
Storage temperature range	-65 to +150	°C
Voltage on RST/V _{PP} pin to V _{SS}	0 to +11.0	V
Voltage on any other pin to V_{SS}	–0.5 to V _{DD} +0.5V	V
Maximum I _{OL} per I/O pin	20	mA
Power dissipation (based on package heat transfer, not device power consumption)	1.5	W

NOTES:

2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted.

P87LPC761

^{1.} Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification are not implied.

P87LPC761

COMPARATOR ELECTRICAL CHARACTERISTICS

 V_{DD} = 3.0 V to 6.0 V unless otherwise specified; T_{amb} = 0 °C to +70 °C, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS	UNIT	
STMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IO}	Offset voltage comparator inputs ¹		-	-	±10	mV
V _{CR}	Common mode range comparator inputs		0	-	V _{DD} 0.3	V
CMRR	Common mode rejection ratio ¹		-	-	-50	dB
	Response time		-	250	500	ns
	Comparator enable to output valid		-	-	10	μs
١ _{١L}	Input leakage current, comparator	$0 < V_{IN} < V_{DD}$	-	-	±10	μΑ

NOTE:

1. This parameter is guaranteed by characterization, but not tested in production.

AC ELECTRICAL CHARACTERISTICS

 T_{amb} = 0 °C to +70 °C, V_{DD} = 2.7 V to 6.0 V unless otherwise specified; V_{SS} = 0 V^{1, 2, 3}

	FIGURE	DADAMETED				
SYMBOL	FIGURE	PARAMETER	MIN	MAX	UNIT	
External Cl	ock	•			-	
f _C	42	Oscillator frequency ($V_{DD} = 4.0 \text{ V}$ to 6.0 V)		0	20	MHz
f _C	42	Oscillator frequency ($V_{DD} = 2.7 \text{ V to } 6.0 \text{ V}$)		0	10	MHz
t _C	42	Clock period and CPU timing cycle		1/f _C	-	ns
f _{CLCX}	42	Clock low-time ¹	f _{OSC} = 20 MHz	20	-	ns
f _{CLCX}	42	1	f _{OSC} = 10 MHz	40	-	ns
f _{CHCX}	42	Clock high-time ¹	f _{OSC} = 20 MHz	20	-	ns
f _{CHCX}	42	1	f _{OSC} = 10 MHz	40	-	ns
Internal RC	Oscillator	•			-	
f _{CCAL}		On-chip RC oscillator calibration ²	f _{RCOSC} = 6 MHz	-1	+1	%
fctol		On-chip RC oscillator, 0 °C to +50 °C ^{3,4} tol.	f _{RCOSC} = 6 MHz	-2.5	+2.5	%
f _{CTOL}		On-chip RC oscillator, 0 °C to +70 °C ³ tol.	f _{RCOSC} = 6 MHz	-5 ⁵	+2.5	%
Shift Regist	er	•			-	
t _{XLXL}	41	Serial port clock cycle time		6t _C	-	ns
t _{QVXH}	41	Output data setup to clock rising edge	5t _C – 133	-	ns	
t _{XHQX}	41	Output data hold after clock rising edge	1t _C - 80	-	ns	
t _{XHDV}	41	Input data setup to clock rising edge	-	5t _C – 133	ns	
t _{XHDX}	41	Input data hold after clock rising edge	0	-	ns	

NOTES:

1. Applies only to an external clock source, not when a crystal is connected to the X1 and X2 pins.

2. Tested at $V_{DD} = 5.0$ V and room temperature.

3. These parameters are characterized but not tested.

4. +/- 2.5% accuracy enables serial communication over the UART with the internal Oscillator.

5. Min frequency at hot temperature.

Philips Semiconductors

Low power, low price, low pin count (16 pin) microcontroller with 2 kbyte OTP

P87LPC761

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specifications defined by Philips. This specification can be ordered using the code 9398 393 40011.

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825

sales.addresses@www.semiconductors.philips.com

For sales offices addresses send e-mail to:

4825

Document order number:

Date of release: 03-02

9397 750 09533

Let's make things better.

© Koninklijke Philips Electronics N.V. 2002

All rights reserved. Printed in U.S.A.