
Infineon Technologies - AN2131QC Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application
Specific: Tailored Solutions for Precision and
Performance

Embedded - Microcontrollers - Application Specific
represents a category of microcontrollers designed with
unique features and capabilities tailored to specific
application needs. Unlike general-purpose
microcontrollers, application-specific microcontrollers are
optimized for particular tasks, offering enhanced
performance, efficiency, and functionality to meet the
demands of specialized applications.

What Are Embedded - Microcontrollers -
Application Specific?

Application-specific microcontrollers are engineered to
excel in particular roles or environments, making them
ideal for applications where general-purpose
microcontrollers might fall short. These microcontrollers
integrate custom features and peripherals that align with
the specific requirements of an application, such as
specialized communication protocols, real-time processing
capabilities, or unique power management needs. By
focusing on particular use cases, they provide solutions
that are both efficient and effective, reducing the need for
additional components and simplifying system design.

Applications of Embedded - Microcontrollers
- Application Specific

The versatility of application-specific microcontrollers
enables their use across a wide range of industries and
applications. In automotive systems, these
microcontrollers are used for tasks like engine control,
advanced driver assistance systems (ADAS), and in-vehicle
communication. In industrial automation, they control
machinery, manage data acquisition, and handle complex
sensor interfacing. Consumer electronics benefit from
these microcontrollers in applications such as smart home
devices, wearable technology, and advanced audio
equipment. Additionally, in medical devices, they provide
precise control for diagnostic and therapeutic equipment,
ensuring reliability and accuracy in critical situations.

Common Subcategories

Within the Embedded - Microcontrollers - Application
Specific category, several subcategories address different
application needs. Automotive Microcontrollers are
designed to meet stringent automotive standards and
provide robust performance in harsh conditions.
Industrial Microcontrollers offer features tailored for
automation, including real-time processing and robust I/O
capabilities. Consumer Electronics Microcontrollers
are optimized for low power consumption and integration
with various sensors and communication modules.
Medical Microcontrollers emphasize reliability,
precision, and compliance with medical device standards.

Details

Product Status Obsolete

Applications USB Microcontroller

Core Processor 8051

Program Memory Type ROMless

Controller Series AN213x

RAM Size 8K x 8

Interface I²C, USB

Number of I/O 24

Voltage - Supply 3V ~ 3.6V

Operating Temperature 0°C ~ 70°C

Mounting Type Surface Mount

Package / Case 80-QFP

Supplier Device Package 80-PQFP

Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/an2131qc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/an2131qc-4513049
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific

.... 1-4

. 1-16
. 1-23

... 2-4

.... 2-6

. 4-3
. 4-13

.. 4-14

... 5-2

... 5-4
... 5-5

.... 5-6
.. 5-7

.. 5-8
. 5-9

5-10
5-13

5-14
5-14

5-15
-15

-16
-17

. 5-18
5-19

-19
-20

. 5-21

. 6-1

. 6-8

-10
6-16

-16
Tables

Table 1-1. USB PIDs..

Table 1-2. EZ-USB Series 2100 Family ...
Table 1-3. EZ-USB Series 2100 Pinouts by Pin Function ..

Table 2-1. EZ-USB Interrupts...
Table 2-2. Added Registers and Bits..

Table 4-1. IO Pin Functions for PORTxCFG=0 and PORTxCFG=1
Table 4-2. Strap Boot EEPROM Address Lines to These Values

Table 4-3. Results of Power-On I2C Test ..
Table 5-1. EZ-USB Default Endpoints ...

Table 5-2. How the EZ-USB Core Handles EP0 Requests When ReNum=0
Table 5-3. Firmware Download ..

Table 5-4. Firmware Upload ..
Table 5-5. EZ-USB Core Action at Power-Up ..

Table 5-6. EZ-USB Device Characteristics, No Serial EEPROM.....................................
Table 5-7. EEPROM Data Format for “B0” Load ..

Table 5-8. EEPROM Data Format for “B2” Load ...
Table 5-9. USB Default Device Descriptor ...

Table 5-10. USB Default Configuration Descriptor ..
Table 5-11. USB Default Interface 0, Alternate Setting 0 Descriptor

Table 5-12. USB Default Interface 0, Alternate Setting 1 Descriptor
Table 5-13. USB Default Interface 0, Alternate Setting 1, Interrupt Endpoint Descriptor.. 5

Table 5-14. USB Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors 5
Table 5-14. USB Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors 5

Table 5-15. USB Default Interface 0, Alternate Setting 1, Isochronous Endpoint
Descriptors ...

Table 5-16. USB Default Interface 0, Alternate Setting 2 Descriptor

Table 5-17. USB Default Interface 0, Alternate Setting 1, Interrupt Endpoint Descriptor.. 5
Table 5-18. USB Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors 5

Table 5-19. USB Default Interface 0, Alternate Setting 2, Isochronous Endpoint
Descriptors ...

Table 6-1. EZ-USB Bulk, Control, and Interrupt Endpoints ..
Table 6-2. Endpoint Pairing Bits (in the USB PAIR Register)...

Table 6-3. EZ-USB Endpoint 0-7 Buffer Addresses.. 6
Table 6-4. 8051 INT2 Interrupt Vector ..

Table 6-5. Byte Inserted by EZ-USB Core at Location 0x45 if AVEN=1 6
EZ-USB TRM v1.9 List of Tables xi

pa-
dard
rnal
mem-
h
and
non-
for-

t or an
(in
pins.

e sig-

.
the
u-

rs an

e
their
Members of the EZ-USB family that provide pins to expand 8051 memory provide se
rate non-multiplexed 16-bit address and 8-bit data busses. This differs from the stan
8051, which multiplexes eight device pins between three sources: IO port 0, the exte
data bus, and the low byte of the address bus. A standard 8051 system with external
ory requires a de-multiplexing address latch, strobed by the 8051 ALE (Address Latc
Enable) pin. The external latch is not required by the non-multiplexed EZ-USB chip,
no ALE signal is needed. In addition to eliminating the customary external latch, the
multiplexed bus saves one cycle per memory fetch cycle, further improving 8051 per
mance.

A standard 8051 user must choose between using Port 0 as a memory expansion por
IO port. The AN2131Q provides a separate IO system with its own control registers
external memory space), and provides the IO port signals on dedicated (not shared)
This allows the external data bus to be used to expand memory without sacrificing IO
pins.

The 8051 is the sole master of the memory expansion bus. It provides read and writ
nals to external memory. The address bus is output-only.

A specialfast transfermode gives the EZ-USB family the capability to transfer data to
and from external memory over the expansion bus using a single MOVX instruction,
which takes only two cycles (eight clocks) per byte.

The internal 8051 RESET signal is not directly controlled by the EZ-USB RESET pin
Instead, it is controlled by an EZ-USB register bit accessible to the USB host. When
EZ-USB chip is powered, the 8051 is held in reset. Using the default USB device (en
merated by the USB core), the host downloads code into RAM. Finally, the host clea
EZ-USB register bit that takes the 8051 out of reset.

The EZ-USB family also operates with external non-volatile memory, in which case th
8051 exits the reset state automatically at power-on. The various EZ-USB resets and
effects are described in Chapter 10, "EZ-USB Resets."

2.10 Internal Bus

2.11 Reset
EZ-USB TRM v1.9 Chapter 2. EZ-USB CPU Page 2-7

-
t
ance-

B
sing

nd-
or
the
n-

USB
,
f

For purposes of downloading 8051 code, the Default USB Device requires only CON
TROL endpoint zero. Nevertheless, the USB default machine is enhanced to suppor
other endpoints as shown in Figure 5-1 (note the alternate settings 1 and 2). This enh
ment is provided to allow the developer to get a head start generating USB traffic and
learning the USB system. All the descriptors are automatically handled by the EZ-US
core, so the developer can immediately start writing code to transfer data over USB u
these pre-configured endpoints.

When the EZ-USB core establishes the Default USB Device, it also sets the proper e
point configuration bits to match the descriptor data supplied by the EZ-USB core. F
example, bulk endpoints 2, 4, and 6 are implemented in the Default USB Device, so
EZ-USB core sets the corresponding EPVAL bits. Chapter 6, “EZ-Bulk Transfers” co
tains a detailed explanation of the EPVAL bits.

Tables 5-9 through 5-13 show the various descriptors returned to the host by the EZ-
core when ReNum=0. These tables describe the USB endpoints defined in Table 5-1
along with other USB details, and should be useful to help understand the structure o
USB descriptors.
EZ-USB TRM v1.9 Chapter 5. EZ-USB CPU Page 5-3

The bulk endpoints for alternate setting 2 are identical to alternate setting 1.

Table 5-18. USB Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptor Type Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN2 82H
3 bmAttributes XFR Type = BULK 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT2 02H

3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN4 84H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H

5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 00H
0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT4 04H
3 bmAttributes XFR Type = ISO 02H

4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 00H

0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN6 86H

3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds (1 for iso) 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT6 06H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H

5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 00H
Page 5-20 Chapter 5. EZ-USB CPU EZ-USB TRM v1.9

-

is

7-10.

UF)
-byte
he
f

4. Write the endpoint 2 transfer program.

Figure 6-10. Background Program Transfers Endpoint 2-OUT Data to Endpoint 2-IN

The main program loop tests the “got_EP2_data” flag, waiting until it is set by the end
point 2 OUT interrupt service routine in Figure 6-10. This indicates that a new data
packet has arrived in OUT2BUF. Then the service routine is entered, where the flag
cleared in line 2. The number of bytes received in OUT2BUF is retrieved from the
OUT2BC register (Endpoint 2 Byte Count) and saved in registers R6 and R7 in lines

The dual data pointers are initialized to the source (OUT2BUF) and destination (IN2B
buffers for the data transfer in lines 15-18. These labels represent the start of the 64
buffers for endpoint 2-OUT and endpoint 2-IN, respectively. Each byte is read from t
OUT2BUF buffer and written to the IN2BUF buffer in lines 19-25. The saved value o

1 loop: jnb got_EP2_data,loop
2 clr got_EP2_data ; clear my flag
3 ;
4 ; The user sent bytes to OUT2 endpoint using the USB Control Panel.
5 ; Find out how many bytes were sent.
6 ;
7 mov dptr,#OUT2BC ; point to OUT2 byte count register
8 movx a,@dptr ; get the value
9 mov r7,a ; stash the byte count
10 mov r6,a ; save here also
11 ;
12 ; Transfer the bytes received on the OUT2 endpoint to the IN2 endpoint
13 ; buffer. Number of bytes in r6 and r7.
14 ;
15 mov dptr,#OUT2BUF ; first data pointer points to EP2OUT buffer
16 inc dps ; select the second data pointer
17 mov dptr,#IN2BUF ; second data pointer points to EP2IN buffer
18 inc dps ; back to first data pointer
19 transfer: movx movx get OUT byte
20 inc dptr ; bump the pointer
21 inc dps ; second data pointer
22 movx @dptr,a ; put into IN buffer
23 inc dptr ; bump the pointer
24 inc dps ; first data pointer
25 djnz r7,transfer
26 ;
27 ; Load the byte count into IN2BC. This arms in IN transfer
28 ;
29 mov dptr,#IN2BC
30 mov a,r6 ; get other saved copy of byte count
31 movx @dptr,a ; this arms the IN transfer
32 ;
33 ; Load any byte count into OUT2BC. This arms the next OUT transfer.
34 ;
35 mov dptr,#OUT2BC
36 movx @dptr,a ; use whatever is in acc
37 sjmp loop ; start checking for another OUT2 packet
EZ-USB TRM v1.9 Chapter 6. EZ-USB CPU Page 6-19

it
Z-

ng
ess-
ca-
It is
ing
ted
ON-

EZ-

ing
ed.

P0.

zero,
USB registers starting at SETUPDAT. The EZ-USB core takes care of any re-tries if
finds any errors in the SETUP data. These two interrupt request bits are set by the E
USB core, and must be cleared by firmware.

An 8051 program responds to the SUDAV interrupt request by either directly inspecti
the eight bytes at SETUPDAT or by transferring them to a local buffer for further proc
ing. Servicing the SETUP data should be a high 8051 priority, since the USB Specifi
tion stipulates that CONTROL transfers must always be accepted and never NAKd.
therefore possible that a CONTROL transfer could arrive while the 8051 is still servic
a previous one. In this case the previous CONTROL transfer service should be abor
and the new one serviced. The SUTOK interrupt gives advance warning that a new C
TROL transfer is about to over-write the eight SETUPDAT bytes.

If the 8051 stalls endpoint zero (by setting the EP0STALL and HSNAK bits to 1), the
USB core automatically clears this stall bit when the next SETUP token arrives.

Like all EZ-USB interrupt requests, the SUTOKIR and SUDAVIR bits can be directly
tested and reset by the CPU (they are reset by writing a “1”). Thus, if the correspond
interrupt enable bits are zero, the interrupt request conditions can still be directly poll

Figure 7-3 shows the EZ-USB registers that deal with CONTROL transactions over E

Figure 7-3. Registers Associated with EP0 Control Transfers

These registers augment those associated with normal bulk transfers over endpoint
which are described in Chapter 6, "EZ-USB Bulk Transfers."

8 Bytes of
SETUP Data

USBIRQ

Interrupt Request:
T=Setup Token SUTOKIR
D=Setup Data SUDAVIR

USBIEN

Global Enable:
T=Setup Token SUTOKIE
D=Setup Data SUDAVIE

T

Initialization

SETUPDAT

Data transfer

Interrupt Control

Registers Associated with Endpoint Zero
For handling SETUP transactions

D

T D

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

SUDPTRH

SUDPTRL
Page 7-4 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

the

earing

USB
sing

o-
quires

ess
s

e

er of
The CONTROL transaction starts in the usual way, with the EZ-USB core transferring
eight bytes in the SETUP packet into RAM at SETUPDAT and activating the SUDAV
interrupt request. The 8051 decodes the Get_Descriptor request, and responds by cl
the HSNAK bit (by writing “1” to it), and then loading the SUDPTR registers with the
address of the requested descriptor. Loading the SUDPTRL register causes the EZ-
core to automatically respond to two IN transfers with 64 bytes and 27 bytes of data u
SUDPTR as a base address, and then to respond to (ACK) the STATUS stage.

The usual endpoint zero interrupts, SUDAV and EP0IN, remain active during this aut
mated transfer. The 8051 normally disables these interrupts because the transfer re
no 8051 intervention.

Three types of descriptors are defined: Device, Configuration, and String.

7.3.4.1 Get Descriptor-Device

As illustrated in Figure 7-5, the 8051 loads the 2-byte SUDPTR with the starting addr
of the Device Descriptor table. When SUDPTRL is loaded, the EZ-USB core perform
the following operations:

1. Reads the requested number of bytes for the transfer from bytes 6 and 7 of th
SETUP packet (LenL andLenH in Table 7-11).

2. Reads the requested string’s descriptor to determine the actual string length.

3. Sends the smaller of (a) the requested number of bytes or (b) the actual numb
bytes in the string, over IN0BUF using the Setup Data Pointer as a data table

Table 7-10. Get Descriptor-Device

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x80 IN, Device Set SUDPTR H-L to start of

1 bRequest 0x06 “Get_Descriptor” Device Descriptor table in RAM

2 wValueL 0x00

3 wValueH 0x01 Descriptor Type:
Device

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH
Page 7-14 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

Page 7-24 Chapter 7. EZ-USB CPU EZ-USB TRM v1.9

us
y

al
a
, into

EZ-
d the

1
ry
de,
ram
The amount of data USB can transfer during a 1-ms frame is slightly more than 1,000
bytes per frame (1,500 bytes theoretical, without accounting for USB overhead and b
utilization). A device’s actual isochronous transfer bandwidth is usually determined b
how fast the CPU can move data in and out of its isochronous endpoint FIFOs.

The 8051 code example in Figure 8-6 shows a typical transfer loop for moving extern
FIFO data into an IN endpoint FIFO. This code assumes that the 8051 is moving dat
from an external FIFO attached to the EZ-USB data bus and strobed by the RD signal
an internal isochronous IN FIFO.

Figure 8-6. 8051 Code to Transfer Data to an Isochronous FIFO (IN8DATA)

The numbers in parentheses indicate 8051 cycles. One cycle is four clocks, and the
USB 8051 is clocked at 24 MHz (42 ns). Thus, an 8051 cycle takes 4*42=168 ns, an
loop takes 9 cycles or 1.5µs. This loop can transfer about 660 bytes into an IN FIFO
every millisecond (1 ms/1.5µs).

If more speed is required, the loop can beunrolledby in-line coding the first four instruc-
tions in the loop. Then, a byte is transferred in 6 cycles (24 clocks) which equates toµs
per byte. Using this method, the 8051 could transfer 1,000 bytes into an IN FIFO eve
millisecond. In practice, a better solution is to in-line code only a portion of the loop co
which decreases full in-line performance only slightly and uses far fewer bytes of prog
code.

8.5 Isochronous Transfer Speed

mov dptr,#8000H ; pointer to any outside address
inc dps ; switch to second data pointer
mov dptr,#IN8DATA ; pointer to an IN endpoint FIFO (IN8 as example)
inc dps ; back to first data pointer
mov r7,#nBytes ; r7 is loop counter—transfer this many bytes

;
loop: movx a,@dptr ; (2) read byte from external bus to acc

inc dps ; (1) switch to second data pointer
movx @dptr,a ; (2) write to ISO FIFO
inc dps ; (1) switch back to first data pointer
djnz r7,loop ; (3) loop ‘nBytes’ times
Page 8-8 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

ore,
CTL

end-
ro-
51

UT
this

ta to
will
ISOCTL register bits shown as MBZ (must be zero) must be written with zeros. The
PPSTAT bit toggles every SOF, and may be written with any value (no effect). Theref
to disable the isochronous endpoints, the 8051 should write the value 0x01 to the ISO
register.

8.9.2 Zero Byte Count Bits

When the SOF interrupt is asserted, the 8051 normally checks the isochronous OUT
point FIFOs for data. Before reading the byte count registers and unloading an isoch
nous FIFO, the firmware may wish to check for a zero byte count. In this case, the 80
can check bits in the ZBCOUT register. Any endpoint bit set to “1” indicates that no O
bytes were received for that endpoint during the previous frame. Figure 8-15 shows
register.

Figure 8-15. ZBCOUT Register

The EZ-USB core updates these bits every SOF.

Caution!

If you use this option, be absolutely certain that the host never sends isochronous da
your device. Isochronous data directed to a disabled isochronous endpoint system
cause unpredictable operation.

Note

The Autopointer is not usable from 0x2000-0x27FF (the reclaimed ISO buffer RAM)
when ISODISAB=1.

ZBCOUT Zero Byte Count Bits 7FA2

b7 b6 b5 b4 b3 b2 b1 b0

EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8
Page 8-16 Chapter 8. EZ-USB CPU EZ-USB TRM v1.9

-2.
rre-

-5.
SB
st.
ight

a

s at
es.
The USBIEN and USBIRQ registers control the first five interrupts shown in Figure 9
The IN07IEN and OUT07 registers control the remaining 16 USB interrupts, which co
spond to the 16 bulk endpoints IN0-IN7 and OUT0-OUT7.

The 21 USB interrupts are now described in detail.

Figure 9-5. SUTOK and SUDAV Interrupts

SUTOK and SUDAV are supplied to the 8051 by EZ-USB CONTROL endpoint zero.
The first portion of a USB CONTROL transfer is the SETUP stage shown in Figure 9
(A full CONTROL transfer is the SETUP stage shown in Figure 7-1.) When the EZ-U
core decodes a SETUP packet, it asserts the SUTOK (SETUP Token) interrupt reque
After the EZ-USB core has received the eight bytes error-free and copied them into e
internal registers at SETUPDAT, it asserts the SUDAV interrupt request.

The 8051 program responds to the SUDAV interrupt by reading the eight SETUP dat
bytes in order to decode the USB request (Chapter 7, "EZ-USB Endpoint Zero").

The SUTOK interrupt is provided to give advance warning that the eight register byte
SETUPDAT are about to be over-written. It is useful for debug and diagnostic purpos

9.5 SUTOK, SUDAV Interrupts

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

SETUP Stage

SUTOK
Interrupt

SUDAV
Interrupt
Page 9-8 Chapter 9. EZ-USB Interrupts EZ-USB TRM v1.9

ore
into

est.

pt
USB

the
uest.

nts.
s ser-
nt
ry.

the
IN
Figure 9-6. A Start Of Frame (SOF) Packet

USB Start of Frame interrupt requests occur every millisecond. When the EZ-USB c
receives an SOF packet, it copies the eleven-bit frame number (FRNO in Figure 9-6)
the USBFRAMEH and USBFRAMEL registers, and activates the SOF interrupt requ
The 8051 services all isochronous endpoint data as a result of the SOF interrupt.

If the EZ-USB detects 3 ms of no bus activity, it activates the SUSP (Suspend) interru
request. A full description of Suspend-Resume signaling appears in Chapter 11, "EZ-
Power Management."

The USB signals a bus reset by driving both D+ and D- low for at least 10 ms. When
EZ-USB core detects the onset of USB bus reset, it activates the URES interrupt req

The remaining 16 USB interrupt requests are indexed to the 16 EZ-USB bulk endpoi
The EZ-USB core activates a bulk interrupt request when the endpoint buffer require
vice. For an OUT endpoint, the interrupt request signifies that OUT data has been se
from the host, validated by the EZ-USB core, and is sitting in the endpoint buffer memo
For an IN endpoint, the interrupt request signifies that the data previously loaded by
8051 into the IN endpoint buffer has been read and validated by the host, making the
endpoint buffer ready to accept new data.

9.6 SOF Interrupt

9.7 Suspend Interrupt

9.8 USB RESET Interrupt

9.9 Bulk Endpoint Interrupts

S
O
F

F
R
N
O

C
R
C
5

Token Pkt
EZ-USB TRM v1.9 Chapter 9. EZ-USB Interrupts Page 9-9

, start

en
rs

re

8051
t to
bout

s

8051
EZ-
* AN2122/AN2126 only.

Figure 12-18. USB Interrupt Request (IRQ) Registers

USBIRQ indicates the interrupt request status of the USB reset, suspend, setup token
of frame, and setup data available interrupts.

Bit 5: IBNIR IN Bulk NAK Interrupt Request

This bit is in the AN2122 and AN2126 versions only. The EZ-USB core sets this bit wh
any of the IN bulk endpoints responds to an IN token with a NAK. This interrupt occu
when the host sends an IN token to a bulk IN endpoint which has not beenarmedby the
8051 writing its byte count register. Individual enables and requests (per endpoint) a
controlled by the IBNIRQ and IBNIEN registers (7FB0, 7FB1).

Bit 4: URESIR USB Reset Interrupt Request

The EZ-USB core sets this bit to “1” when it detects a USB bus reset.

Because this bit can change state while the 8051 is in reset, it may be active when the
comes out of reset, although it is reset to “0” by a power-on reset. Write a “1” to this bi
clear the interrupt request. See Chapter 10, "EZ-USB Resets" for more information a
this bit.

Bit 3: SUSPIR USB Suspend Interrupt Request

The EZ-USB core sets this bit to “1” when it detects USB SUSPEND signaling (no bu
activity for 3 ms). Write a “1” to this bit to clear the interrupt request.

Because this bit can change state while the 8051 is in reset, it may be active when the
comes out of reset, although it is reset to “0” by a power-on reset. See Chapter 11, "
USB Power Management" for more information about this bit.

USBIRQ USB Interrupt Request 7FAB

b7 b6 b5 b4 b3 b2 b1 b0

- - IBNIR* URESIR SUSPIR SUTOKIR SOFIR SUDAVIR

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-21

oint
nse,
),
ener-

sed

EN
rupt.
* AN2122/AN2126 only.

Figure 12-22. IN Bulk NAK Interrupt Request Register

These bits are set when a bulk IN endpoint (0-6) received an IN token while the endp
was notarmedfor data transfer. In this case the SIE automatically sends a NAK respo
and sets the corresponding IBNIRQ bit. If the IBN interrupt is enabled (USBIEN.5=1
and the endpoint interrupt is enabled in the IBNIEN register, an interrupt is request g
ated. The 8051 can test the IBNIRQ register to determine which of the endpoints cau
the interrupt. The 8051 clears an IBNIRQ bit by writing a “1” to it.

Figure 12-23. IN Bulk NAK Interrupt Enable Register

Each of the individual IN endpoints may be enabled for an IBN interrupt using the IBN
register. The 8051 sets an interrupt enable bit to 1 to enable the corresponding inter

IBNIRQ IN Bulk NAK Interrupt Requests 7FB0

b7 b6 b5 b4 b3 b2 b1 b0

- EP6IN EP5IN EP4IN EP3IN EP2IN EP1IN EP0IN

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

IBNIEN IN Bulk NAK Interrupt Enables 7FB1

b7 b6 b5 b4 b3 b2 b1 b0

- EP6IN EP5IN EP4IN EP3IN EP2IN EP1IN EP0IN

R/W R/W R/W R/W R/W R/W R/W R/W

x x 0 0 0 0 0 0
EZ-USB TRM v1.9 Chapter 12. EZ-USB Registers Page 12-27

s,
PU
to its
Figure 12-34. Function Address Register

During the USB enumeration process, the host sends a device a unique 7-bit addres
which the EZ-USB core copies into this register. There is normally no reason for the C
to know its USB device address because the USB Core automatically responds only
assigned address.

FNADDR Function Address 7FDB

b7 b6 b5 b4 b3 b2 b1 b0

0 FA6 FA5 FA4 FA3 FA2 FA1 FA0

R R R R R R R R

x x x x x x x x

Note

During ReNumeration the USB Core sets register to 0 to allow the EZ-USB chip to
respond to the default address 0.
Page 12-42 Chapter 12. EZ-USB Registers EZ-USB TRM v1.9

13.1.4 AC Electrical Characteristics

Specified Conditions: Capacitive load on all pins = 30 pF

13.1.5 General Memory Timing

13.1.6 Program Memory Read

13.1.7 Data Memory Read

Table 13-2. General Memory Timing

Symbol Parameter Min Typ Max Unit Notes

tCL 1/CLK24 Frequency 41.66 ns

tAV Delay from Clock to Valid Address 0 10 ns

tCD Delay from CLK24 to CS# 2 15 ns

tOED Delay from CLK24 to OE# 2 15 ns

tWD Delay from CLK24 to WR# 2 15 ns

tRD Delay from CLK24 to RD# 2 15 ns

tPD Delay from CLK24 to PSEN# 2 15 ns

Table 13-3. Program Memory Read

Symbol Parameter Formula Min Max Unit Notes

tAA1 Address Access Time 3tCL-tAV-TDSU1 103 ns

tAH1 Address Hold from CLK24 tCL+1 42 ns

tDSU1 Data setup to CLK24 12 ns

tDH1 Data Hold from CLK24 0 ns

Table 13-4. Data Memory Read

Symbol Parameter Formula Min Max Unit Notes

tAA2 Address Access Time 3tCL-tAV-TDSU1 103 ns

tAH2 Address Hold from CLK24 tCL+1 42 ns

tDSU2 Data setup to CLK24 12 ns

tDH2 Data Hold from CLK24 0 ns
Page 13-2 Chapter 13. EZ-USB AC/DC Parameters EZ-USB TRM v1.9

Figure 14-9. 48-Pin TQFP Package (Detail View)

0.05
0.15

1.
35

1.
45

0.08
0.20

0 o M IN .

0 .08 R .
M IN .

0 .20 M IN .

R.

0 - 7o

1.00 REF.

0.45
0.75

Seating Plane

Base Plane

48-Pin Lead Detail

AL L D IM E N S IO N S IN M ILLIM E T ER S.
0.

25
G

au
ge

P
la

ne
Page 14-6 Chapter 14. EZ-USB Packaging EZ-USB TRM v1.9

XCH A, @Ri Exchange A and data memory 1 1 C6-C7

XCHD A, @Ri Exchange A and data memory nibble 1 1 D6-D7

* Number of cycles is user-selectable. See “Stretch Memory Cycles (Wait States)” on page B-10.

Boolean

CLR C Clear carry 1 1 C3

CLR bit Clear direct bit 2 2 C2

SETB C Set carry 1 1 D3

SETB bit Set direct bit 2 2 D2

CPL C Complement carry 1 1 B3

CPL bit Complement direct bit 2 2 B2

ANL C, bit AND direct bit to carry 2 2 82

ANL C, /bit AND direct bit inverse to carry 2 2 B0

ORL C, bit OR direct bit to carry 2 2 72

ORL C, /bit OR direct bit inverse to carry 2 2 A0

MOV C, bit Move direct bit to carry 2 2 A2

MOV bit, C Move carry to direct bit 2 2 92

Branching

ACALL addr 11 Absolute call to subroutine 2 3 11-F1

LCALL addr 16 Long call to subroutine 3 4 12

RET Return from subroutine 1 4 22

RETI Return from interrupt 1 4 32

AJMP addr 11 Absolute jump unconditional 2 3 01-E1

LJMP addr 16 Long jump unconditional 3 4 02

SJMP rel Short jump (relative address) 2 3 80

JC rel Jump on carry = 1 2 3 40

JNC rel Jump on carry = 0 2 3 50

JB bit, rel Jump on direct bit = 1 3 4 20

Table B-2. 8051 Instruction Set

Mnemonic Description Byte
Instr.

Cycles
Hex
Code
B - 8 Appendix B: 8051 Architectural Overview EZ-USB TRM v1.9

bits:
0 (or

or
can
uses

er
baud

er

r with
TH1
C.3.3 Mode 1

Mode 1 provides standard asynchronous, full-duplex communication, using a total of 10
1 start bit, 8 data bits, and 1 stop bit. For receive operations, the stop bit is stored in RB8_
RB8_1). Data bits are received and transmitted LSB first.

C.3.3.1 Mode 1 Baud Rate

The mode 1 baud rate is a function of timer overflow. Serial Port 0 can use either Timer 1
Timer 2 to generate baud rates. Serial Port 1 can only use Timer 1. The two serial ports
run at the same baud rate if they both use Timer 1, or different baud rates if Serial Port 0
Timer 2 and Serial Port 1 uses Timer 1.

Each time the timer increments from its maximum count (FFh for Timer 1 or FFFFh for Tim
2), a clock is sent to the baud rate circuit. The clock is then divided by 16 to generate the
rate.

When using Timer 1, the SMOD0 (or SMOD1) bit selects whether or not to divide the Tim
1 rollover rate by 2. Therefore, when using Timer 1, the baud rate is determined by the
equation:

SMOD0 is SFR bit PCON.7; SMOD1 is SFR bit EICON.7.

When using Timer 2, the baud rate is determined by the equation:

To use Timer 1 as the baud rate generator, it is best to use Timer 1 mode 2 (8-bit counte
auto-reload), although any counter mode can be used. The Timer 1 reload is stored in the
register, which makes the complete formula for Timer 1:

x Timer 1 OverflowBaud Rate =
32

2
SMODx

Timer 2 Overflow
Baud Rate =

16

xBaud Rate =
32

2
SMODx

12 x (256 - TH1)

CLK24
EZ-USB TRM v1.9 Appendix C: 8051 Hardware Description C - 19

ned

low
ed

he
where RCAP2H,RCAP2L is the content of RCAP2H and RCAP2L taken as a 16-bit unsig
number.

The 32 in the denominator is the result of CLK24 being divided by 2 and the Timer 2 overf
being divided by 16. Setting TCLK or RCLK to 1 automatically causes CLK24 to be divid
by 2, as shown in Figure C-6., instead of the 4 or 12 determined by the T2M bit in the
CKCON SFR.

To derive the required RCAP2H and RCAP2L values from a known baud rate, use the
equation:

When either RCLK or TCLK is set, the TF2 flag will not be set on a Timer 2 roll over, and t
T2EX reload trigger is disabled.

Table C-11. Timer 2 Reload Values for Common Serial port Mode 1 Baud Rates

Nominal
Rate

C/T2
Diviso

r
Reload Val

Actual
Rate

Error

57600 0 13 F3 57692.31 0.16%

38400 0 20 EC 37500 -2.34%

28800 0 26 E6 28846.15 0.16%

19200 0 39 D9 19230.77 0.16%

9600 0 78 B2 9615.385 0.16%

4800 0 156 64 4807.692 0.16%

2400 0 312 FEC8 2403.846 0.16%

Note: using rates that are off by 2.3% or more will not work in all systems.

Baud Rate =
32 x (65536 - RCAP2H,RCAP2L)

CLK24

RCAP2H,RCAP2L = CLK24

32 x Baud Rate
65536 -
EZ-USB TRM v1.9 Appendix C: 8051 Hardware Description C - 21

