

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	77
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 53x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b54l3b6e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	4.6.5	I/O pad current specification	68
4.7	RESET	electrical characteristics	76
4.8	Power r	nanagement electrical characteristics	79
	4.8.1	Voltage regulator electrical characteristics	79
	4.8.2	Low voltage detector electrical characteristics	81
4.9	Power c	consumption	82
4.10	Flash m	emory electrical characteristics	84
	4.10.1	Program/erase characteristics	84
	4.10.2	Flash power supply DC characteristics	85
	4.10.3	Start-up/Switch-off timings	86
4.11	Electron	nagnetic compatibility (EMC) characteristics	86
	4.11.1	Designing hardened software to avoid noise problems	86
	4.11.2	Electromagnetic interference (EMI)	87
	4.11.3	Absolute maximum ratings (electrical sensitivity)	87
4.12	Fast ext	ernal crystal oscillator (4 to 16 MHz) electrical characteristics	88
4.13	Slow ex	ternal crystal oscillator (32 kHz) electrical characteristics	91
4.14	FMPLL	electrical characteristics	93
4.15	Fast inte	ernal RC oscillator (16 MHz) electrical characteristics	94
4.16	Slow int	ernal RC oscillator (128 kHz) electrical characteristics	95
4.17	ADC ele	ectrical characteristics	96
	4.17.1	Introduction	96
	4.17.2	Input impedance and ADC accuracy	97
	4.17.3	ADC electrical characteristics 1	02
4.18	On-chip	peripherals 1	07
	4.18.1	Current consumption	07
	4.18.2	DSPI characteristics1	09
	4.18.3	Nexus characteristics 1	115
	4.18.4	JTAG characteristics 1	117
Dacks	aa cha	racteristics	10
	•		
5.1		CK®	
5.2	0	e mechanical data1	
	5.2.1	LQFP176	
	5.2.2	LQFP144	-
	5.2.3	LQFP100	22

5

List of figures

Figure 1.	SPC560B54/6x block diagram
Figure 2.	LQFP176 pin configuration
Figure 3.	LQFP144 pin configuration
Figure 4.	LQFP100 pin configuration
Figure 5.	LBGA208 configuration
Figure 6.	I/O input DC electrical characteristics definition
Figure 7.	Start-up reset requirements
Figure 8.	Noise filtering on reset signal
Figure 9.	Voltage regulator capacitance connection
Figure 10.	Low voltage detector vs reset
Figure 11.	Crystal oscillator and resonator connection scheme
Figure 12.	Fast external crystal oscillator (4 to 16 MHz) timing diagram
Figure 13.	Crystal oscillator and resonator connection scheme
Figure 14.	Equivalent circuit of a quartz crystal
Figure 15.	Slow external crystal oscillator (32 kHz) timing diagram
Figure 16.	ADC_0 characteristic and error definitions
Figure 17.	Input equivalent circuit (precise channels)
Figure 18.	Input equivalent circuit (extended channels)
Figure 19.	Transient behavior during sampling phase
Figure 20.	Spectral representation of input signal 101
Figure 21.	ADC_1 characteristic and error definitions 104
Figure 22.	DSPI classic SPI timing — master, CPHA = 0
Figure 23.	DSPI classic SPI timing — master, CPHA = 1 112
Figure 24.	DSPI classic SPI timing — slave, CPHA = 0 112
Figure 25.	DSPI classic SPI timing — slave, CPHA = 1 113
Figure 26.	DSPI modified transfer format timing — master, CPHA = 0
Figure 27.	DSPI modified transfer format timing — master, CPHA = 1
Figure 28.	DSPI modified transfer format timing — slave, CPHA = 0 114
Figure 29.	DSPI modified transfer format timing — slave, CPHA = 1 115
Figure 30.	DSPI PCS strobe (PCSS) timing
Figure 31.	Nexus TDI, TMS, TDO timing
Figure 32.	Timing diagram — JTAG boundary scan
Figure 33.	LQFP176 package mechanical drawing
Figure 34.	LQFP144 package mechanical drawing
Figure 35.	LQFP100 package mechanical drawing
Figure 36.	LBGA208 package mechanical drawing124
Figure 37.	Commercial product code structure 126

Feature	SPC560B54 SPC560B60 SPC560B64								
OPWM / ICOC ⁽⁹⁾	13 ch	33 ch	13 ch	33 ch	33 ch	13 ch	33 ch	33 ch	33 ch
SCI (LINFlex)	4	8	4	8	10	4	8	10	10
SPI (DSPI)	3	5	3	5	6	3	5	6	6
CAN (FlexCAN)					6				
12C					1				
32 KHz oscillator					Yes				
GPIO ⁽¹⁰⁾	77	121	77	121	149	77	121	149	149
Debug	JTAG N2						N2+		
Package	LQFP 100	LQFP 144	LQFP 100	LQFP 144	LQFP 176	LQFP 100	LQFP 144	LQFP 176	LBGA208 ⁽¹¹⁾

	Table 2. SPC560B54/6x famil	y comparison ⁽¹⁾ ((continued)
--	-----------------------------	-------------------------------	-------------

1. Feature set dependent on selected peripheral multiplexing; table shows example.

2. Based on 125 $^\circ C$ ambient operating temperature.

3. Not shared with 12-bit ADC, but possibly shared with other alternate functions.

4. Not shared with 10-bit ADC, but possibly shared with other alternate functions.

5. See the eMIOS section of the chip reference manual for information on the channel configuration and functions.

6. Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.

7. Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.

8. Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width measurement.

9. Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.

10. Maximum I/O count based on multiplexing with peripherals.

11. LBGA208 available only as development package for Nexus2+.

Table 3 summarizes the functions of the blocks present on the SPC560B54/6x.

Block	Function
Analog-to-digital converter (ADC)	Converts analog voltages to digital values
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Crossbar switch (XBAR)	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Enhanced direct memory access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via "n" programmable channels
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Error correction status module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase- locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Inter-integrated circuit (I ² C) bus	Two-wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC)	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Memory protection unit (MPU)	Provides hardware access control for all memory references generated in a device

Table 3. SPC560B54/6x series block summary

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
А	PC[8]	PC[13]	PH[15]	PJ[4]	PH[8]	PH[4]	PC[5]	PC[0]	PI[0]	PI[1]	PC[2]	PI[4]	PE[15]	PH[11]	NC	NC	А
В	PC[9]	PB[2]	PH[13]	PC[12]	PE[6]	PH[5]	PC[4]	PH[9]	PH[10]	PI[2]	PC[3]	PG[11]	PG[15]	PG[14]	PA[11]	PA[10]	в
С	PC[14]	VDD_H V	PB[3]	PE[7]	PH[7]	PE[5]	PE[3]	VSS_LV	PC[1]	PI[3]	PA[5]	PI[5]	PE[14]	PE[12]	PA[9]	PA[8]	с
D	PH[14]	PI[6]	PC[15]	PI[7]	PH[6]	PE[4]	PE[2]	VDD_L V	VDD_H V	NC	PA[6]	PH[12]	PG[10]	PF[14]	PE[13]	PA[7]	D
Е	PG[4]	PG[5]	PG[3]	PG[2]									PG[1]	PG[0]	PF[15]	VDD_H V	Е
F	PE[0]	PA[2]	PA[1]	PE[1]									PH[0]	PH[1]	PH[3]	PH[2]	F
G	PE[9]	PE[8]	PE[10]	PA[0]			VSS_H V	VSS_H V	VSS_H V	VSS_H V			VDD_H V	PI[12]	PI[13]	MSEO	G
н	VSS_HV	PE[11]	VDD_H V	NC			VSS_H V	VSS_H V	VSS_H V	VSS_H V			MDO3	MDO2	MDO0	MDO1	н
J	RESET	VSS_LV	NC	NC			VSS_H V	VSS_H V	VSS_H V	VSS_H V			PI[8]	PI[9]	PI[10]	PI[11]	J
к	EVTI	NC	VDD_B V	VDD_L V			VSS_H V	VSS_H V	VSS_H V	VSS_H V			VDD_H V_ADC 1	PG[12]	PA[3]	PG[13]	к
L	PG[9]	PG[8]	NC	EVTO									PB[15]	PD[15]	PD[14]	PB[14]	L
М	PG[7]	PG[6]	PC[10]	PC[11]									PB[13]	PD[13]	PD[12]	PB[12]	м
N	PB[1]	PF[9]	PB[0]	VDD_H V	PJ[0]	PA[4]	VSS_LV	EXTAL	VDD_H V	PF[0]	PF[4]	VSS_H V_ADC 1	PB[11]	PD[10]	PD[9]	PD[11]	N
Ρ	PF[8]	PJ[3]	PC[7]	PJ[2]	PJ[1]	PA[14]	VDD_L V	XTAL	PB[10]	PF[1]	PF[5]	PD[0]	PD[3]	VDD_H V_ADC 0	PB[6]	PB[7]	Ρ
R	PF[12]	PC[6]	PF[10]	PF[11]	VDD_H V	PA[15]	PA[13]	PI[14]	XTAL32	PF[3]	PF[7]	PD[2]	PD[4]	PD[7]	VSS_H V_ADC 0	PB[5]	R
т	NC	NC	NC	МСКО	NC	PF[13]	PA[12]	PI[15]	EXTAL 32	PF[2]	PF[6]	PD[1]	PD[5]	PD[6]	PD[8]	PB[4]	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

NOTE: The LBGA208 is available only as development package for Nexus 2+.

Figure 5. LBGA208 configuration

3.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are tristate with the following exceptions:

- PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
- PA[8], PC[0] and PH[9:10] are in input weak pull-up when out of reset.
- RESET pad is driven low by the device till 40 FIRC clock cycles after phase2 completion. Minimum phase3 duration is 40 FIRC cycles.
- Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.

DocID15131 Rev 9

NC

= Not connected

	Table 4. Voltage Supply	pin accompa							
Dert nin	Function	Pin number							
Port pin	Function	LQFP100	LQFP144	LQFP176	LBGA208				
VDD_BV	Internal regulator supply voltage	20	24	32	K3				
VSS_HV_ADC0	Reference ground and analog ground for the A/D converter 0 (10- bit)	51	73	89	R15				
VDD_HV_ADC0	Reference voltage and analog supply for the A/D converter 0 (10- bit)	52	74	90	P14				
VSS_HV_ADC1	Reference ground and analog ground for the A/D converter 1 (12- bit)	59	81	98	N12				
VDD_HV_ADC1	Reference voltage and analog supply for the A/D converter 1 (12- bit)	60	82	99	K13				

Table 4. Voltage supply pin descriptions (continued)

1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet).

3.5 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^{(d)}$

 $M = Medium^{(d)}$ (e)

F = Fast^(d) (e)

I = Input only with analog feature^(d)

J = Input/Output ('S' pad) with analog feature

X = Oscillator

3.6 System pins

The system pins are listed in Table 5.

d. See the I/O pad electrical characteristics in the chip datasheet for details.

e. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. The only exception is PC[1] which is in medium configuration by default (see the PCR.SRC description in the chip reference manual, Pad Configuration Registers (PCR0–PCR148)).

				Table 6. Fund	tional port pin	descr	iption	s (continue	ed)				
X			00 ⁽¹⁾			2)		(6)	Pin number				
	Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration ⁽³⁾	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾	
	PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] — CS0_1 LIN5RX WKPU[9] ⁽⁵⁾	SIUL eMIOS_0 — DSPI_1 LINFlex_5 WKPU	I/O I/O I/O I I	S	Tristate	29	43	51	N6	
DocID15131 Rev 9	PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] LIN4TX —	SIUL eMIOS_0 LINFlex_4 —	I/O I/O O —	М	Tristate	79	118	146	C11	
1 Rev 9	PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — CS1_1 EIRQ[1] LIN4RX	SIUL eMIOS_0 — DSPI_1 SIUL LINFlex_4	/O /O 	S	Tristate	80	119	147	D11	
	PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] LIN3TX — EIRQ[2] ADC1_S[1]	SIUL eMIOS_0 LINFlex_3 — SIUL ADC_1	/O /O - 	J	Tristate	71	104	128	D16	

21/133

SPC560B54x/6x

Package pinouts and signal descriptions

				Table 6. Fund	tional port pin	descr	iption	s (continue	ed)			
			00 ⁽¹⁾			2)		3)		Pin nu	umber	
	Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration ⁽³⁾	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
	PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — EIRQ[19] SIN_2	SIUL eMIOS_0 — SIUL DSPI_2	I/O I/O — I I	Μ	Tristate	97	141	173	B4
DocID15131 Rev 9	PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O —	S	Tristate	98	142	174	A2
1 Rev 9	PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	/O /O /O 	S	Tristate	3	3	3	C1
	PC[15]	PCR[47]	AF0 AF1 AF2 AF3 —	GPIO[47] E0UC[15] CS0_2 — EIRQ[20]	SIUL eMIOS_0 DSPI_2 — SIUL	/O /O /O 	Μ	Tristate	4	4	4	D3
					Port	D						

31/133

SPC560B54x/6x

Package pinouts and signal descriptions

1			(1)			<u> </u>		3)	Pin number				
	Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration ⁽³⁾	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾	
			AF0	GPIO[52]	SIUL	Ι							
			AF1	—	—	—							
	PD[4]	PCR[52]	AF2	—	—	—	I	Tristate	45	67	81	R13	
		1 011[02]	AF3	—	—	—			10		01		
DocID15131 Rev 9			—	ADC0_P[8]	ADC_0								
			—	ADC1_P[8]	ADC_1	I							
			AF0	GPIO[53]	SIUL	I							
i			AF1	—	—	—							
1	PD[5]	PCR[53]	AF2	—	—	—	Т	Tristate	46	68	82	T13	
			AF3		-	_							
2			—	ADC0_P[9]	ADC_0								
)			—	ADC1_P[9]	ADC_1								
		PCR[54]	AF0	GPIO[54]	SIUL	I			47	69	83	T14	
			AF1 AF2	—	—	_							
	PD[6]		AF2 AF3	—	_	_	Ι	Tristate					
			AF3 —	 ADC0_P[10]	ADC_0								
				ADC1_P[10]	ADC_1								
			AF0	GPIO[55]	SIUL								
			AFU AF1	GFI0[00]								1	
			AF2	_	_								
	PD[7]	PCR[55]	AF3	_	_	_	Т	Tristate	48	70	84	R14	
			_	ADC0_P[11]	ADC_0	I							
			—	ADC1_P[11]	ADC_1	I							

SPC560B54x/6x

33/133

Package pinouts and signal descriptions

50/133

U
0
0
2
01
ω
<u> </u>
т
~
Rev
9

			Table 6. Fund	tional port pin	descr	iption	s (continue	ed)			
		on ⁽¹⁾			5)		(3)		Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration ⁽³⁾	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾	
PI[5]	PCR[133]	AF0 AF1 AF2 AF3	GPIO[133] E1UC[29] SCK_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O I/O —	S	Tristate	_	_	142	C12
PI[6]	PCR[134]	AF0 AF1 AF2 AF3	GPIO[134] E1UC[30] CS0_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O I/O —	S	Tristate	_	_	11	D2
PI[7]	PCR[135]	AF0 AF1 AF2 AF3	GPIO[135] E1UC[31] CS1_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O O	S	Tristate	_	_	12	D3
PI[8]	PCR[136]	AF0 AF1 AF2 AF3 —	GPIO[136] — — — ADC0_S[16]	SIUL — — — ADC_0	I/O — — — I	J	Tristate	_	_	108	J13
PI[9]	PCR[137]	AF0 AF1 AF2 AF3 —	GPIO[137] — — — — ADC0_S[17]	SIUL — — — ADC_0	I/O — — — I	J	Tristate		_	109	J14

Package pinouts and signal descriptions

SPC560B54x/6x

3.8 Nexus 2+ pins

In the LBGA208 package, eight additional debug pins are available (see Table 7).

		I/O		Function	Pin number			
Port pin	Function	direction	Pad type	after reset	LQFP 100	LQFP 144	LBGA 208 ⁽¹⁾	
MCKO	Message clock out	0	F	—		—	T4	
MDO0	Message data out 0	0	М	—		_	H15	
MDO1	Message data out 1	0	М	—		_	H16	
MDO2	Message data out 2	0	М	—		_	H14	
MDO3	Message data out 3	0	М	—		_	H13	
EVTI	Event in	I	М	Pull-up			K1	
EVTO	Event out	0	М	—		—	L4	
MSEO	Message start/end out	0	М	—			G16	

 Table 7. Nexus 2+ pin descriptions

1. LBGA208 available only as development package for Nexus2+.

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 4.4: Recommended operating conditions).

Cumhal		~	Devenueter	Conditions ⁽¹⁾		Value		11
Symbol		С	Parameter	Conditions	Min	Тур	Max	Unit
C _{REGn}	SR		Internal voltage regulator external capacitance	—	200	—	500	nF
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	_	0.2	W
C	SR		Decoupling capacitance ⁽²⁾ ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ⁽³⁾	470 ⁽⁴⁾	_	nF
C _{DEC1}				V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400	470		
C_{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF
M	<u> </u>	Т		Before exiting from reset	_	1.32	—	v
V _{MREG}	CC	Ρ	Main regulator output voltage	After trimming	1.16	1.16 1.28		v
I _{MREG}	SR		Main regulator current provided to V _{DD_LV} domain	—	_	_	150	mA
1 .	сс	D	Main regulator module current	I _{MREG} = 200 mA	_	_	2	mA
IMREGINT	00		consumption	I _{MREG} = 0 mA	_	_	1	IIIA
V _{LPREG}	СС	Ρ	Low-power regulator output voltage	After trimming	1.16	1.28	—	V
I _{LPREG}	SR		Low-power regulator current provided to V _{DD_LV} domain	_			15	mA
L	сс	D	Low-power regulator module current	I _{LPREG} = 15 mA; T _A = 55 °C	_	_	600	μA
I _{LPREGINT}	00		consumption	I _{LPREG} = 0 mA; T _A = 55 °C		5	_	μΛ
V _{ULPREG}	сс	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V
I _{ULPREG}	SR		Ultra low power regulator current provided to V _{DD_LV} domain	_	_	_	5	mA
	сс	П	Ultra low power regulator module	I _{ULPREG} = 5 mA; T _A = 55 °C			100	
IULPREGINT		U	current consumption	I _{ULPREG} = 0 mA; T _A = 55 °C	_	- 2 -		- μΑ
I _{DD_BV}	сс	D	In-rush average current on V _{DD_BV} during power-up ⁽⁵⁾	—			300 ⁽⁶⁾	mA

Table 26. Voltage regulator electrical characteristics

- 1. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified.
- This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.
- 3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V.
- External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.
- 5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on external capacitances to be loaded).
- The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

4.8.2 Low voltage detector electrical characteristics

The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the V_{DD} and the $V_{DD_{-LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV3B monitors V_{DD_BV} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)
- Note: When enabled, power domain No. 2 is monitored through LVDLVBKP.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for the application.

- Software recommendations The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note *Software Techniques For Improving Microcontroller EMC Performance* (AN1015)).

4.11.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.

Symbo	Symbol C Parameter		Paramotor	Cond	Conditions			Value		
Symbo			Contractors			Тур	Max	Unit		
—	SR	_	Scan range	_				1000	MHz	
f _{CPU}	SR		Operating frequency	—			64		MHz	
V _{DD_LV}	SR	_	LV operating voltages	_			1.28	_	V	
	$V_{DD} = 5 V,$ $T_{A} = 25 °C,$		T _A = 25 °C,	No PLL frequency modulation	_	_	18	dBµ V		
S _{EMI}	сс	Т	Peak level	LQFP144 package Test conforming to IEC 61967-2, f _{OSC} = 8 MHz/f _{CPU} = 64 MHz	± 2% PLL frequency modulation	_	_	14	dBµ V	

Table 34. EMI radiated emission measurement $^{(1)(2)}$

1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.

2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

4.11.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

Figure 15. Slow external crystal oscillator (32 kHz) timing diagram

Symbol		C Parameter		Conditions ⁽¹⁾	Value			Unit
		0	Falameter	Conditions	Min	Тур	Max	
fsxosc	S R		Slow external crystal oscillator		32	32.76 8	40	kHz
V _{SXOSC}	C C	т	Oscillation amplitude	_		2.1	_	V
I _{SXOSCBIAS}	C C	т	Oscillation bias current	_		2.5		μΑ
I _{SXOSC}	C C	т	Slow external crystal oscillator consumption	_	_	—	8	μA
t _{SXOSCSU}	C C	Т	Slow external crystal oscillator start-up time	_	_	_	2 ⁽²⁾	s

1. V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.

2. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

4.14 FMPLL electrical characteristics

The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

Equation 5

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_S is always much longer than the internal time constant:

Equation 6

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to *Equation 7*:

Equation 7

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

Equation 8

$$t_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_L sizing is obtained:

Equation 9 ADC_0 (10-bit)

$$8.5 \bullet \tau_2 = 8.5 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Equation 10 ADC_1 (12-bit)

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1}, C_{P2} and C_S, then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1}. *Equation 11* must be respected (charge balance assuming now C_S already charged at V_{A1}):

Symbol	Symbol		Parameter	Cor	nditions ⁽¹⁾	Value			Unit	
Cymbol		С	Falameter	CO	Min	Тур	Max	Unit		
				Current injection on	V _{DD} = 3.3 V ± 10%	-5	_	5		
I _{INJ}	SR		Input current Injection	one ADC_1 input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5		5	mA	
INLP	сс	Т	Absolute integral nonlinearity – Precise channels	No overload			1	3	LSB	
INLX	сс	Т	Absolute integral nonlinearity – Extended channels	No overload	No overload		1.5	5	LSB	
DNL	сс		Absolute differential nonlinearity	No overload			0.5	1	LSB	
E _O	СС	Т	Absolute offset error		_		2	_	LSB	
E _G	СС	Т	Absolute gain error			_	2	—	LSB	
TUED (7)	~		Total unadjusted error for	Without curr	ent injection	-6		6		
	TUEP ⁽⁷⁾ CC precise channels, input of pins		precise channels, input only pins	With current injection		-8	—	8	LSB	
TUEX ⁽⁷⁾	сс	Т	Total unadjusted error for	Without curre	ent injection	-10	—	10	LSB	
TUEA				With current injection		-12	—	12	LOD	

Table 46. ADC_1 conversion characteristics (12	2-bit ADC_1) (continued)
--	--------------------------

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. Analog and digital $V_{SS}\,\text{must}$ be common (to be tied together externally).

- V_{AINx} may exceed V_{SS_ADC1} and V_{DD_ADC1} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF.
- 4. During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC1 S}. After the end of the sampling time t_{ADC1 S}, changes of the analog input voltage have no effect on the conversion result. Values for the sampling clock t_{ADC1_S} depend on programming.

5. This parameter does not include the sampling time t_{ADC1_S}, but only the time for determining the digital result and the time to load the result's register with the conversion result.

 Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

Figure 27. DSPI modified transfer format timing — master, CPHA = 1

Figure 28. DSPI modified transfer format timing — slave, CPHA = 0

DocID15131 Rev 9

5.2.4 LBGA208

 The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.

Table 54.	LBGA208	mechanical	data
-----------	---------	------------	------

Symbol		mm	inches ⁽¹⁾				Notes	
Symbol	Min	Тур	Max	Min	Тур	Max	Notes	
A	—	—	1.70	—	—	0.0669	(2)	
A1	0.30	—	_	0.0118	_	_	_	
A2	—	1.085	_	—	0.0427	—	_	
A3	—	0.30	_	—	0.0118	_	_	
A4	—	—	0.80	—	_	0.0315	_	
b	0.50	0.60	0.70	0.0197	0.0236	0.0276	(3)	

Cumb of		mm				Notos	
Symbol	Min	Тур	Мах	Min	Тур	Мах	Notes
D	16.80	17.00	17.20	0.6614	0.6693	0.6772	_
D1	—	15.00	—	_	0.5906	—	_
E	16.80	17.00	17.20	0.6614	0.6693	0.6772	_
E1	—	15.00	—	—	0.5906	—	_
е	—	1.00	—	—	0.0394	—	_
F	—	1.00	—	_	0.0394	—	_
ddd	—	—	0.20	—	—	0.0079	
eee	—	—	0.25	—	—	0.0098	(4)
fff	—	—	0.10	—	—	0.0039	(5)

Table 54. LBGA208 mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

LBGA stands for Low profile Ball Grid Array.

 Low profile: The total profile height (Dim A) is measured from the seating plane to the top of the component
 The maximum total package height is calculated by the following methodology:
 A2 (Typ) + A1 (Typ) + √ (A1² + A3² + A4² tolerance values)
 Low profile: 1.20 mm < A ≤ 1.70 mm

3. The typical ball diameter before mounting is 0.60mm.

4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.

5. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones.

