

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	121
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 53x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b54l5c6e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

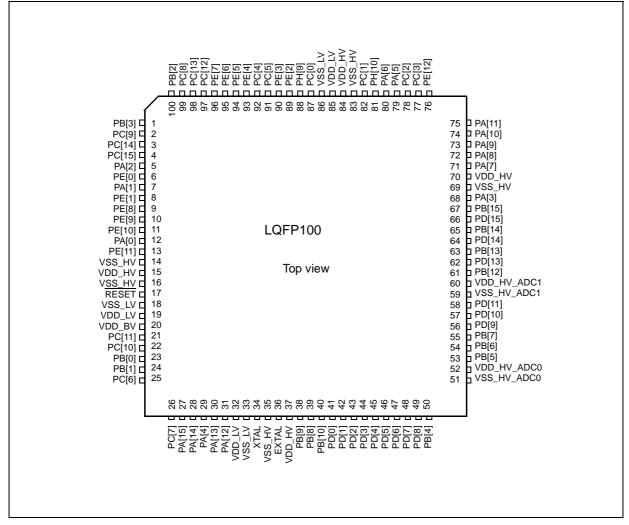
1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device.

1.2 Description

This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle.


The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power Architecture technology and only implements the VLE (variable-length encoding) APU (Auxiliary Processor Unit), providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

Feature	SPC5	60B54	S	PC560B	60		SPO	C560B64		
CPU					e200z0)h				
Execution speed ⁽²⁾					Up to 64	MHz				
Code flash memory	768	KB		1 MB			1	.5 MB		
Data flash memory	64 (4 × 16) KB									
SRAM	64	KB		80 KB			ç	96 KB		
MPU 8-entry										
eDMA					16 ch					
10-bit ADC					Yes					
dedicated ⁽³⁾	7 ch	15 ch	7 ch	15 ch	29 ch	7 ch	15 ch	29 ch	29 ch	
shared with 12-bit ADC					19 ch					
12-bit ADC					Yes					
dedicated ⁽⁴⁾					5 ch					
shared with 10-bit ADC					19 ch					
Total timer I/O ⁽⁵⁾ eMIOS	37 ch, 16-bit	64 ch, 16-bit	37 ch, 16-bit	64 ch, 16-bit	64 ch, 16-bit	37 ch, 16-bit	64 ch,1 6-bit	64 ch, 16-bit	64 ch, 16-bit	
Counter / OPWM / ICOC ⁽⁶⁾					10 ch					
O(I)PWM / OPWFMB / OPWMCB / ICOC ⁽⁷⁾					7 ch	7 ch				
O(I)PWM / ICOC ⁽⁸⁾	7 ch	14 ch	7 ch	14 ch	14 ch	7 ch	14 ch	14 ch	14 ch	

Table 2. SPC560B54/6x family comparison⁽¹⁾

Figure 5 shows the SPC560B54/6x in the LBGA208 package.

	Table 4. Voltage Supply	pin accompa							
Dert nin	Function	Pin number							
Port pin	Function	LQFP100	LQFP144	LQFP176	LBGA208				
VDD_BV	Internal regulator supply voltage	20	24	32	K3				
VSS_HV_ADC0	Reference ground and analog ground for the A/D converter 0 (10- bit)	51	73	89	R15				
VDD_HV_ADC0	Reference voltage and analog supply for the A/D converter 0 (10- bit)	52	74	90	P14				
VSS_HV_ADC1	Reference ground and analog ground for the A/D converter 1 (12- bit)	59	81	98	N12				
VDD_HV_ADC1	Reference voltage and analog supply for the A/D converter 1 (12- bit)	60	82	99	K13				

Table 4. Voltage supply pin descriptions (continued)

1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet).

3.5 Pad types

In the device the following types of pads are available for system pins and functional port pins:

S = Slow^(d)

 $M = Medium^{(d)}$ (e)

F = Fast^(d) (e)

I = Input only with analog feature^(d)

J = Input/Output ('S' pad) with analog feature

X = Oscillator

3.6 System pins

The system pins are listed in Table 5.

d. See the I/O pad electrical characteristics in the chip datasheet for details.

e. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. The only exception is PC[1] which is in medium configuration by default (see the PCR.SRC description in the chip reference manual, Pad Configuration Registers (PCR0–PCR148)).

		0 ⁽¹⁾			(1)		3)		Pin number					Pin number				
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration ⁽³⁾	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾							
PB[1]	PCR[17]	AF0 AF1 AF2 AF3 — — —	GPIO[17] — E0UC[31] — WKPU[4] ⁽⁵⁾ CAN0RX LIN0RX	SIUL — eMIOS_0 — WKPU FlexCAN_0 LINFlex_0	/O 	S	Tristate	24	32	40	N1							
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LINOTX SDA E0UC[30]	SIUL LINFlex_0 I ² C_0 eMIOS_0	I/O O I/O I/O	М	Tristate	100	144	176	B2							
PB[3]	PCR[19]	AF0 AF1 AF2 AF3 — —	GPIO[19] E0UC[31] SCL — WKPU[11] ⁽⁵⁾ LIN0RX	SIUL eMIOS_0 I ² C_0 — WKPU LINFlex_0	/O /O /O 	S	Tristate	1	1	1	C3							
PB[4]	PCR[20]	AF0 AF1 AF2 AF3 — — —	 ADC0_P[0] ADC1_P[0] GPIO[20]			I	Tristate	50	72	88	T16							

SPC560B54x/6x

34/133	Table 6. Functional port pin descriptions (continued)												
133			0n ⁽¹⁾			5)		(2)		Pin ni	umber		
	Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration ⁽³⁾	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾	
			AF0	GPIO[56]	SIUL	I							
			AF1	—	—	—							
	PD[8]	PCR[56]	AF2	_	—	—	Ι	Tristate	49	71	87	T15	
			AF3		ADC_0								
			_	ADC0_P[12] ADC1_P[12]	ADC_0 ADC_1								
_			AF0	GPIO[57]	SIUL								
U cc			AF1	—		· _							
D1:	DD (a)	DODICZI	AF2	_	_	_		Tristate	50				
513	PD[9]	PCR[57]	AF3	_	—	—	I	Iristate	56	78	94	N15	
1 R			—	ADC0_P[13]	ADC_0	I							
DocID15131 Rev 9			—	ADC1_P[13]	ADC_1	I							
			AF0	GPIO[58]	SIUL	I							
			AF1	—	—	—							
	PD[10]	PCR[58]	AF2	—	—	—	Ι	Tristate	57	79	95	N14	
			AF3	— ADC0_P[14]	ADC_0	— 							
			_	ADC0_P[14] ADC1_P[14]	ADC_0 ADC_1								
			AF0	GPIO[59]	SIUL	1							
			AF1	<u> </u>		· _							
			AF2	_	_	_	,	Triototo	50	00	00	NAC	
	PD[11]	PCR[59]	AF3	—	—	—	I	Tristate	58	80	96	N16	
			—	ADC0_P[15]	ADC_0	I							
			—	ADC1_P[15]	ADC_1	I							

Package pinouts and signal descriptions

SPC560B54x/6x

5

				Table 6. Fund	tional port pin	descr	iptions	s (continue	∋d)			
			00 ⁽¹⁾			2)		(8)		Pin n	umber	
	Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration ⁽³⁾	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
	PD[12]	PCR[60]	AF0 AF1 AF2 AF3 —	GPIO[60] CS5_0 E0UC[24] — ADC0_S[4]	SIUL DSPI_0 eMIOS_0 — ADC_0	I/O O I/O I	J	Tristate	_	_	100	M15
DocID15131 Rev 9	PD[13]	PCR[61]	AF0 AF1 AF2 AF3 —	GPIO[61] CS0_1 E0UC[25] ADC0_S[5]	SIUL DSPI_1 eMIOS_0 — ADC_0	I/O I/O I/O I	J	Tristate	62	84	102	M14
l Rev 9	PD[14]	PCR[62]	AF0 AF1 AF2 AF3 —	GPIO[62] CS1_1 E0UC[26] — ADC0_S[6]	SIUL DSPI_1 eMIOS_0 — ADC_0	I/O O I/O _ I	J	Tristate	64	86	104	L15
	PD[15]	PCR[63]	AF0 AF1 AF2 AF3 —	GPIO[63] CS2_1 E0UC[27] — ADC0_S[7]	SIUL DSPI_1 eMIOS_0 — ADC_0	I/O O I/O _ I	J	Tristate	66	88	106	L14
					Port	E						

35/133

SPC560B54x/6x

Package pinouts and signal descriptions

36				Table 6. Fund	tional port pin	descr	iption	s (continue	ed)			
36/133			on ⁽¹⁾			2)		(3)		Pin ni	umber	
	Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration ⁽³⁾	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
	PE[0]	PCR[64]	AF0 AF1 AF2 AF3 — —	GPIO[64] E0UC[16] — WKPU[6] ⁽⁵⁾ CAN5RX	SIUL eMIOS_0 — — WKPU FlexCAN_5	I/O I/O — I I	S	Tristate	6	10	18	F1
DocID15131 Rev 9	PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX —	SIUL eMIOS_0 FlexCAN_5 —	I/O I/O O —	М	Tristate	8	12	20	F4
l Rev 9	PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] — EIRQ[21] SIN_1	SIUL eMIOS_0 — SIUL DSPI_1	/O /O 	М	Tristate	89	128	156	D7
	PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O —	М	Tristate	90	129	157	C7
5	PE[4]	PCR[68]	AF0 AF1 AF2 AF3 —	GPIO[68] E0UC[20] SCK_1 — EIRQ[9]	SIUL eMIOS_0 DSPI_1 — SIUL	/O /O /O 	Μ	Tristate	93	132	160	D6

Package pinouts and signal descriptions

SPC560B54x/6x

		on ⁽¹⁾			2)		(3)		Pin nu	umber	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	I/O direction ⁽²⁾	Pad type	RESET configuration ⁽³⁾	LQFP 100	LQFP 144	LQFP 176	LBG 208 ⁽
		AF0	GPIO[146]	SIUL	I/O						
		AF1	CS0_5	DSPI_5	I/O						
PJ[2]	PCR[146]	AF2	—	—	—	J	Tristate	—	—	72	P4
		AF3	—	—							
		—	ADC0_S[26]	ADC_0	I						
		AF0	GPIO[147]	SIUL	I/O						
		AF1	CS1_5	DSPI_5	0						
PJ[3]	PCR[147]	AF2	—	—	—	J	Tristate	—	—	71	P2
		AF3	—	—	—						
		—	ADC0_S[27]	ADC_0	I						
		AF0	GPIO[148]	SIUL	I/O						
PJ[4]	PCR[148]	AF1	SCK_5	DSPI_5	I/O	М	Tristate			5	A4
1.2[4]	1.01(140]	AF2	E1UC[18]	eMIOS_1	I/O	IVI	msiale	_		5	A4
		AF3	_	—	—						

Table 6. Functional port pin descriptions (continued)

1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF2. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "--".

2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

- 3. The RESET configuration applies during and after reset.
- 4. LBGA208 available only as development package for Nexus2+
- 5. All WKPU pins also support external interrupt capability. See the WKPU chapter for further details.
- 6. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
- 7. "Not applicable" because these functions are available only while the device is booting. Refer to the BAM information for details.
- 8. Value of PCR.IBE bit must be 0.
- 9. This wakeup input cannot be used to exit STANDBY mode.
- 53/133

DocID15131 Rev 9

3.8 Nexus 2+ pins

In the LBGA208 package, eight additional debug pins are available (see Table 7).

		I/O		Function	Pin number					
Port pin	Function	direction	Pad type	after reset	LQFP 100	LQFP 144	LBGA 208 ⁽¹⁾			
MCKO	Message clock out	0	F	—		—	T4			
MDO0	Message data out 0	0	М	—		_	H15			
MDO1	Message data out 1	0	М	—		_	H16			
MDO2	Message data out 2	0	М	—		_	H14			
MDO3	Message data out 3	0	М	—		_	H13			
EVTI	Event in	I	М	Pull-up			K1			
EVTO	Event out	0	М	—		—	L4			
MSEO	Message start/end out	0	М	—			G16			

 Table 7. Nexus 2+ pin descriptions

1. LBGA208 available only as development package for Nexus2+.

4 Electrical characteristics

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

4.1 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in *Table 8* are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8. Parameter classifications

Note: The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4.2 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

Symph		с	Devemeter	Conditions ⁽²⁾	Din count		l Init		
Symb	100	C	Parameter	Conditions	Pin count	Min	Тур	Max	Unit
					100	—	—	36	
				Single-layer board — 1s	144		_	38	
Б	<u> </u>		Thermal resistance, junction-to-		176	—		38	°C ///
ĸ _θ jΒ	R _{θJB} CC board ⁽⁴⁾	board ⁽⁴⁾		100	—	_	33.6	°C/W	
				Four-layer board — 2s2p	144		_	33.4	
					176	—		33.4	
					100	—	_	23	
				Single-layer board — 1s	144		_	23	
Р	R _{θJC} CC		Thermal resistance, junction-to-		176			23	°C 1.1/
κ _θ JC			case ⁽⁵⁾		100	—	—	19.8	°C/W
				Four-layer board — 2s2p	144	—	—	19.2	
					176	—	—	18.8	

 Table 15. LQFP thermal characteristics⁽¹⁾ (continued)

1. Thermal characteristics are targets based on simulation.

2. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C.

 Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R_{thJA} and R_{thJMA}.

 Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R_{thJB}.

 Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R_{thJC}.

4.5.3 Power considerations

The average chip-junction temperature, T_J , in degrees Celsius, may be calculated using *Equation 1*:

Equation 1 $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

 $\mathsf{P}_{\mathsf{INT}}$ is the product of I_{DD} and $\mathsf{V}_{\mathsf{DD}},$ expressed in watts. This is the chip internal power.

 $\mathsf{P}_{\mathsf{I/O}}$ represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

Symph	Symbol		Deremeter	Conditions ⁽¹⁾			Value											
Symbol		С	Parameter				Тур	Max	Unit									
		D	Output transition time output pin ⁽²⁾ C_{I}	C _L = 25 pF	V _{DD} = 5.0 V ± 10%,	_	—	10										
		Т		C _L = 50 pF	PAD3V5V = 0			20										
+	сс	D		C _L = 100 pF	SIUL.PCRx.SRC = 1	_	—	40	– ns									
t _{tr}		D		C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1	_	—	12										
		Т		C _L = 50 pF		_	—	25										
		D	C	C _L = 100 pF			—	40										
				C _L = 25 pF			—	4										
														C _L = 50 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	— — 6	
+	сс	Р	Output transition time output pin ⁽²⁾	C _L = 100 pF			—	12	ns									
t _{tr}				C _L = 25 pF		_	—	4										
							C _L = 50 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	7							
					C _L = 100 pF		—	—	12									

Table 21. Output pin transition times (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified.

2. C_L includes device and package capacitances ($C_{PKG} < 5 \text{ pF}$).

4.6.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 22*.

Table 23 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the $I_{\rm AVGSEG}$ maximum value.

Package	Supply segment										
	1	2	3	4	5	6	7	8			
LBGA208 (1)		Equivalent	МСКО	MDOn /MSEO							
LQFP176	pin7 – pin27	pin28 – pin57	pin59 – pin85	pin86 – pin123	pin124 – pin150	pin151 – pin6	_	—			
LQFP144	pin20 – pin49	pin51 – pin99	pin100 – pin122	pin 123 – pin19	—	—	—	—			
LQFP100	pin16 – pin35	pin37 – pin69	pin70 – pin83	pin84 – pin15	_	_					

Table 22. I/O supply segments

1. LBGA208 available only as development package for Nexus2+.

Electrical characteristics

•				LQFP176				LQFP144/100				
Sup	ply segr	nent	Pad	Weight 5 V		Weigh	t 3.3 V	Weight 5 V		Weight 3.3 V		
LQFP 176	LQFP 144	LQFP 100		SRC ⁽²⁾ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
			PC[0]	6%	9%	7%	8%	7%	10%	8%	8%	
			PH[9]	7%	_	8%		7%	_	9%	_	
			PE[2]	7%	10%	8%	9%	8%	11%	9%	10%	
		4	PE[3]	7%	10%	9%	9%	8%	12%	10%	10%	
		4	PC[5]	7%	11%	9%	9%	8%	12%	10%	11%	
			PC[4]	8%	11%	9%	10%	9%	13%	10%	11%	
			PE[4]	8%	11%	9%	10%	9%	13%	11%	12%	
	4		PE[5]	8%	11%	10%	10%	9%	14%	11%	12%	
		_	PH[4]	8%	12%	10%	10%	10%	14%	12%	12%	
		_	PH[5]	8%	_	10%	_	10%	_	12%	_	
		_	PH[6]	8%	12%	10%	11%	10%	15%	12%	13%	
6		_	PH[7]	9%	12%	10%	11%	11%	15%	13%	13%	
		_	PH[8]	9%	12%	10%	11%	11%	16%	13%	14%	
			PE[6]	9%	12%	10%	11%	11%	16%	13%	14%	
		4	PE[7]	9%	12%	10%	11%	11%	16%	14%	14%	
	_	_	PI[3]	9%	_	10%	_	_	_	_	_	
	_	_	PI[2]	9%	—	10%		—	_	_	_	
	_	_	PI[1]	9%	_	10%	_	_	_	—	_	
		_	PI[0]	9%	_	10%	_	_			_	
			PC[12]	8%	12%	10%	11%	12%	18%	15%	16%	
			PC[13]	8%	_	10%	_	13%	_	15%	_	
	4	4	PC[8]	8%	_	10%	_	13%		15%	_	
			PB[2]	8%	11%	9%	10%	13%	18%	15%	16%	

Table 24. I/O weight⁽¹⁾ (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. SRC: "Slew Rate Control" bit in SIU_PCRx.

4.7 **RESET** electrical characteristics

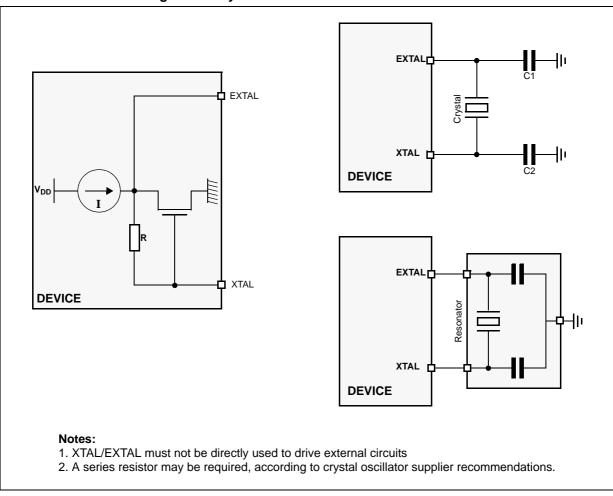
The device implements a dedicated bidirectional $\overline{\text{RESET}}$ pin.

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 4.4: Recommended operating conditions).

Cumhal		~	Devenueter	Conditions ⁽¹⁾		Unit			
Symbol		С	Parameter	Conditions	Min	Тур	Max		
C _{REGn}	SR		Internal voltage regulator external capacitance	—	200	—	500	nF	
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	_	0.2	W	
C	SR		Decoupling capacitance ⁽²⁾ ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ⁽³⁾	470 ⁽⁴⁾	_	ьE	
C _{DEC1}	SK			V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400	470		nF	
C_{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF	
M	<u> </u>	Т		Before exiting from reset	_	1.32	—	V	
^V MREG	V _{MREG} CC F		Main regulator output voltage	After trimming	1.16	1.28	V		
I _{MREG}	SR		Main regulator current provided to V _{DD_LV} domain	—	_	_	150	mA	
1 .	сс	D	Main regulator module current	I _{MREG} = 200 mA	_	_	2	mA	
IMREGINT	00		consumption	I _{MREG} = 0 mA	_	_	1		
V _{LPREG}	СС	Ρ	Low-power regulator output voltage	After trimming	1.16	1.28	—	V	
I _{LPREG}	SR		Low-power regulator current provided to V _{DD_LV} domain	_			15	mA	
L	сс	D	Low-power regulator module current	I _{LPREG} = 15 mA; T _A = 55 °C	_	_	600	μA	
I _{LPREGINT}	00		consumption	I _{LPREG} = 0 mA; T _A = 55 °C		5 —		μΛ	
V _{ULPREG}	сс	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V	
I _{ULPREG}	SR		Ultra low power regulator current provided to V _{DD_LV} domain	_	_	_	5	mA	
	сс	П	Ultra low power regulator module	I _{ULPREG} = 5 mA; T _A = 55 °C			100		
IULPREGINT		U	current consumption	I _{ULPREG} = 0 mA; T _A = 55 °C	_	2	_	μA	
I _{DD_BV}	сс	D	In-rush average current on V _{DD_BV} during power-up ⁽⁵⁾	—			300 ⁽⁶⁾	mA	

Table 26. Voltage regulator electrical characteristics


- 1. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified.
- This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.
- 3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V.
- External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.
- 5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on external capacitances to be loaded).
- The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

4.8.2 Low voltage detector electrical characteristics

The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the V_{DD} and the $V_{DD_{-LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV3B monitors V_{DD_BV} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)
- Note: When enabled, power domain No. 2 is monitored through LVDLVBKP.

Figure 11. Crystal oscillator and resonator connection scheme

Table 37. Crystal description Shunt Crystal Load on capacitance Crystal Crystal Nominal equivalent xtalin/xtalout NDK crystal motional motional between frequency series reference capacitance inductance C1 = C2 xtalout resistance (MHz) (pF)⁽¹⁾ and xtalin (C_m) fF (L_m) mH **ESR** Ω C0⁽²⁾ (pF) 4 NX8045GB 300 2.68 591.0 21 2.93 8 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 NX5032GA 12 120 3.11 56.5 15 2.93 16 120 3.90 25.3 10 3.00

1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Symbol		~	C Parameter Conditions ⁽¹⁾			llmit		
Symbol		C	Parameter	Conditions	Min	Тур	Max	Unit
$\Delta_{SIRCPRE}$	сс	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2	_	2	%
	сс	С	Slow internal RC oscillator trimming step	—	_	2.7	_	/0
$\Delta_{SIRCVAR}$	сс	С	Slow internal RC oscillator variation in temperature and supply with respect to f_{SIRC} at $T_A = 55$ °C in high frequency configuration	High frequency configuration	-10	_	10	%

Table 43. Slow internal RC oscillator (1	28 kHz) electrical characteristics (continued)
--	--

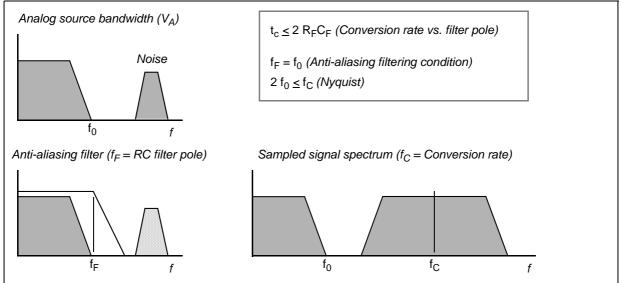
1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.17 ADC electrical characteristics

4.17.1 Introduction


The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).



Equation 11

$$V_{A2} \bullet (C_{S} + C_{P1} + C_{P2} + C_{F}) = V_{A} \bullet C_{F} + V_{A1} \bullet (C_{P1} + C_{P2} + C_{S})$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as antialiasing.

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the antialiasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive *Equation 12* between the ideal and real sampled voltage on C_S :

Equation 12

$$\frac{v_{A2}}{v_A} = \frac{c_{P1} + c_{P2} + c_F}{c_{P1} + c_{P2} + c_F + c_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Equation 13 ADC_0 (10-bit)

 $C_F > 2048 \bullet C_S$

DocID15131 Rev 9

4.18 On-chip peripherals

4.18.1 Current consumption

Table 47. On-chip peripherals current consumption⁽¹⁾

Symbol		с	Parameter		Conditions	Typical value ⁽²⁾	Unit					
				Bitrate: 500 Kbyte/s	Total (static + dynamic) consumption:	8 * f _{periph} + 85						
I _{DD_BV} (CAN)	сс	т	CAN (FlexCAN) supply current on V _{DD_BV}	Bitrate: 125 Kbyte/s	 FlexCAN in loop-back mode XTAL at 8 MHz used as CAN engine clock source Message sending period is 580 µs 	8 * f _{periph} + 27	μA					
I _{DD_BV(eMIOS)}	22	т	eMIOS supply current	Static consumptio – eMIOS channel – Global prescale	OFF	29 * f _{periph}	μA					
		1	on V _{DD_BV}	Dynamic consum – It does not char (0.003 mA)	3							
I _{DD_BV(SCI)}	сс	т	SCI (LINFlex) supply current on V _{DD_BV}	Total (static + dyn – LIN mode – Baudrate: 20 Kl	5 * f _{periph} + 31	μA						
				Ballast static cons	sumption (only clocked)	1						
I _{DD_BV(SPI)}	сс	т	SPI (DSPI) supply current on V _{DD_BV}	Ballast dynamic c communication): – Baudrate: 2 Mb – Transmission e – Frame: 16 bits		16 * f _{periph}	μA					
I _{DD BV}	~~~	_	_	_	_	Ŧ	-	ADC_0/ADC_1 supply		Ballast static consumption (no conversion) ⁽³⁾	41 * f _{periph}	
(ADC_0/ADC_1)	CC	1	ADC_0/ADC_1 supply current on V _{DD_BV}	V _{DD} = 5.5 V	Ballast dynamic consumption (continuous conversion) ⁽³⁾	46 * f _{periph}	μA					
1	<u> </u>	т	ADC_0 supply current		Analog static consumption (no conversion)	200	μA					
IDD_HV_ADC0			on V _{DD_HV_ADC0}	V _{DD} = 5.5 V	Analog dynamic consumption (continuous conversion)	3	mA					
	<u> </u>		ADC_1 supply current	V _{DD} = 5.5 V	Analog static consumption (no conversion)	300 * f _{periph}	μA					
IDD_HV_ADC1			on V _{DD_HV_ADC1}	v _{DD} = 5.5 v	Analog dynamic consumption (continuous conversion)	4	mA					

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID15131 Rev 9