

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	121
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 53x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b54l5c6e0y

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Block diagram

Figure 1 shows a top-level block diagram of the SPC560B54/6x.

Figure 1. SPC560B54/6x block diagram

Block	Function
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Non-maskable interrupt (NMI)	Handles external events that must produce an immediate response, such as power down detection
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Real-time counter (RTC)	A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode)
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System integration unit lite (SIUL)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
System status and configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks
Software watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	The wakeup unit supports up to 27 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events.

Table 3. SPC560B54/6x series block summary (continued)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	PC[8]	PC[13]	PH[15]	PJ[4]	PH[8]	PH[4]	PC[5]	PC[0]	PI[0]	PI[1]	PC[2]	PI[4]	PE[15]	PH[11]	NC	NC	A
В	PC[9]	PB[2]	PH[13]	PC[12]	PE[6]	PH[5]	PC[4]	PH[9]	PH[10]	PI[2]	PC[3]	PG[11]	PG[15]	PG[14]	PA[11]	PA[10]	В
С	PC[14]	VDD_H V	PB[3]	PE[7]	PH[7]	PE[5]	PE[3]	VSS_LV	PC[1]	PI[3]	PA[5]	PI[5]	PE[14]	PE[12]	PA[9]	PA[8]	С
D	PH[14]	PI[6]	PC[15]	PI[7]	PH[6]	PE[4]	PE[2]	VDD_L V	VDD_H V	NC	PA[6]	PH[12]	PG[10]	PF[14]	PE[13]	PA[7]	D
Е	PG[4]	PG[5]	PG[3]	PG[2]									PG[1]	PG[0]	PF[15]	VDD_H V	Е
F	PE[0]	PA[2]	PA[1]	PE[1]									PH[0]	PH[1]	PH[3]	PH[2]	F
G	PE[9]	PE[8]	PE[10]	PA[0]			VSS_H V	VSS_H V	VSS_H V	VSS_H V			VDD_H V	PI[12]	PI[13]	MSEO	G
н	VSS_HV	PE[11]	VDD_H V	NC			VSS_H V	VSS_H V	VSS_H V	VSS_H V			MDO3	MDO2	MDO0	MDO1	н
J	RESET	VSS_LV	NC	NC			VSS_H V	VSS_H V	VSS_H V	VSS_H V			PI[8]	PI[9]	PI[10]	PI[11]	J
к	EVTI	NC	VDD_B V	VDD_L V			VSS_H V	VSS_H V	VSS_H V	VSS_H V			VDD_H V_ADC 1	PG[12]	PA[3]	PG[13]	к
L	PG[9]	PG[8]	NC	EVTO									PB[15]	PD[15]	PD[14]	PB[14]	L
М	PG[7]	PG[6]	PC[10]	PC[11]									PB[13]	PD[13]	PD[12]	PB[12]	М
Ν	PB[1]	PF[9]	PB[0]	VDD_H V	PJ[0]	PA[4]	VSS_LV	EXTAL	VDD_H V	PF[0]	PF[4]	VSS_H V_ADC 1	PB[11]	PD[10]	PD[9]	PD[11]	N
Ρ	PF[8]	PJ[3]	PC[7]	PJ[2]	PJ[1]	PA[14]	VDD_L V	XTAL	PB[10]	PF[1]	PF[5]	PD[0]	PD[3]	VDD_H V_ADC 0	PB[6]	PB[7]	Ρ
R	PF[12]	PC[6]	PF[10]	PF[11]	VDD_H V	PA[15]	PA[13]	PI[14]	XTAL32	PF[3]	PF[7]	PD[2]	PD[4]	PD[7]	VSS_H V_ADC 0	PB[5]	R
т	NC	NC	NC	МСКО	NC	PF[13]	PA[12]	PI[15]	EXTAL 32	PF[2]	PF[6]	PD[1]	PD[5]	PD[6]	PD[8]	PB[4]	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

NOTE: The LBGA208 is available only as development package for Nexus 2+.

Figure 5. LBGA208 configuration

3.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are tristate with the following exceptions:

- PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
- PA[8], PC[0] and PH[9:10] are in input weak pull-up when out of reset.
- RESET pad is driven low by the device till 40 FIRC clock cycles after phase2 completion. Minimum phase3 duration is 40 FIRC cycles.
- Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.

DocID15131 Rev 9

NC

= Not connected

3.3 Pad configuration during standby mode exit

Pad configuration (input buffer enable, pull enable) for low-power wakeup pads is controlled by both the SIUL and WKPU modules. During standby exit, all low power pads PA[0,1,2,4,15], PB[1,3,8,9,10]^(a), PC[7,9,11], PD[0,1], PE[0,9,11], PF[9,11,13]^(b), PG[3,5,7,9]^(b), PI[1,3]^(c) are configured according to their respective configuration done in the WKPU module. All other pads will have the same configuration as expected after a reset.

The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is floating causing additional current consumption.

To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of 47–100 kOhms should be added between the TDO pin and VDD. Only if the TDO pin is used as an application pin and a pull-up cannot be used should a pull-down resistor with the same value be used instead between the TDO pin and GND.

3.4 Voltage supply pins

Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.

Port nin	Function	Pin number							
Port pin	Function	LQFP100	LQFP144	LQFP176	LBGA208				
VDD_HV	Digital supply voltage	15, 37, 70, 84	19, 51, 100, 123	6, 27, 59, 85, 124, 151	C2, D9, E16, G13, H3, N4, N9, R5				
VSS_HV	Digital ground	14, 16, 35, 69, 83	18, 20, 49, 99, 122	7, 26, 28, 57, 86, 123, 150	G7, G8, G9, G10, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10				
VDD_LV	1.2 V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest $V_{SS_{LV}}$ pin. ⁽¹⁾	19, 32, 85	23, 46, 124	31, 54, 152	D8, K4, P7				
VSS_LV	1.2 V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{DD_LV} pin. ⁽¹⁾	18, 33, 86	22, 47, 125	30, 55, 153	C8, J2, N7				

Table 4. Voltage supply pin descriptions

a. PB[8, 9] ports have wakeup functionality in all modes except STANDBY.

c. PI[1,3] are not available in the 144-pin LQFP.

b. PF[9,11,13], PG[3,5,7,9], PI[1,3] are not available in the 100-pin LQFP.

Dont nin	Function	Pin number								
Port pin	Function	LQFP100	LQFP144	LQFP176	LBGA208					
VDD_BV	Internal regulator supply voltage	20	24	32	K3					
VSS_HV_ADC0	Reference ground and analog ground for the A/D converter 0 (10- bit)	51	73	89	R15					
VDD_HV_ADC0	Reference voltage and analog supply for the A/D converter 0 (10- bit)	52	74	90	P14					
VSS_HV_ADC1	Reference ground and analog ground for the A/D converter 1 (12- bit)	59	81	98	N12					
VDD_HV_ADC1	Reference voltage and analog supply for the A/D converter 1 (12- bit)	60	82	99	K13					

Table 4. Voltage supply pin descriptions (continued)

1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet).

3.5 Pad types

In the device the following types of pads are available for system pins and functional port pins:

S = Slow^(d)

 $M = Medium^{(d)}$ (e)

F = Fast^(d) (e)

I = Input only with analog feature^(d)

J = Input/Output ('S' pad) with analog feature

X = Oscillator

3.6 System pins

The system pins are listed in Table 5.

d. See the I/O pad electrical characteristics in the chip datasheet for details.

e. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. The only exception is PC[1] which is in medium configuration by default (see the PCR.SRC description in the chip reference manual, Pad Configuration Registers (PCR0–PCR148)).

			type	DEOET	Pin number					
Port pin	Function	I/O direc	Pad ty	configuration	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽¹⁾		
RESET	Bidirectional reset with Schmitt- Trigger characteristics and noise filter.	I/O	М	Input weak pull-up after RGM PHASE2 and 40 FIRC cycles	17	21	29	J1		
EXTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode.	I/O	х	Tristate	36	50	58	N8		
XTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator bypass mode is used.	I	х	Tristate	34	48	56	P8		

Table 5. System pin descriptions

1. LBGA208 available only as development package for Nexus2+.

3.7 Functional port pins

The functional port pins are listed in *Table 6*.

				Table 6. Fund	tional port pin	descr	iption	s (continue	ed)			
			0n ⁽¹⁾			(7		3)		Pin nu	umber	
•	Port pin	PCR	Alternate functio	Function	Peripheral	I/O direction ⁽³	Pad type	RESET configuration ⁽	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
			AF0 AF1	GPIO[27] E0UC[3]	SIUL eMIOS_0	I/O I/O						
	PB[11]	PCR[27]	AF2 AF3 —	 CS0_0 ADC0_S[3]	— DSPI_0 ADC_0	— I/O I	J	Tristate	_	_	97	N13
	PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ADC0_X[0]	SIUL eMIOS_0 — DSPI_0 ADC_0	/O /O 0 	J	Tristate	61	83	101	M16
	PB[13]	PCR[29]	AF0 AF1 AF2 AF3 —	GPIO[29] E0UC[5] — CS2_0 ADC0_X[1]	SIUL eMIOS_0 — DSPI_0 ADC_0	/O /O 0 	J	Tristate	63	85	103	M13
	PB[14]	PCR[30]	AF0 AF1 AF2 AF3 —	GPIO[30] E0UC[6] — CS3_0 ADC0_X[2]	SIUL eMIOS_0 — DSPI_0 ADC_0	/O /O 0 	J	Tristate	65	87	105	L16
07/4	PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] — CS4_0 ADC0_X[3]	SIUL eMIOS_0 — DSPI_0 ADC_0	/O /O — 0 	J	Tristate	67	89	107	L13

SPC560B54x/6x

DocID15131 Rev 9

27/133

			Table 6. Fund	tional port pin	descr	iption	s (continue	ed)			
		(1)			5)		(6)		Pin nu	umber	
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ^{(;}	Pad type	RESET configuration ⁽	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
		AF0	GPIO[44]	SIUL	I/O						
		AF1	E0UC[12]	eMIOS_0	I/O						
PC[12]	PCR[44]	AF2 AF3	_	_		М	Tristate	97	141	173	B4
			EIRQ[19]	SIUL	I						
		—	SIN_2	DSPI_2	I						
	PCR[45]	AF0	GPIO[45]	SIUL	I/O						
PC[13]		AF1	E0UC[13]	eMIOS_0	I/O	S	Tristate	08	1/2	17/	Δ2
10[10]		AF2	SOUT_2	DSPI_2	0			30	172	174	/\Z
		AF3		_	—						
		AF0	GPIO[46]	SIUL	I/O						
		AF1	E0UC[14]	eMIOS_0	I/O						
PC[14]	PCR[46]	AF2	SCK_2	DSPI_2	I/O	S	Tristate	3	3	3	C1
		AF3 —	EIRQ[8]	 SIUL							
		AF0	GPIOI471	SIUL	I/O						
		AF1	E0UC[15]	eMIOS_0	I/O						
PC[15]	PCR[47]	AF2	CS0_2	DSPI_2	I/O	М	Tristate	4	4	4	D3
		AF3	—	—	—						
		—	EIRQ[20]	SIUL	I						
				Port	D						

DocID15131 Rev 9

31/133

SPC560B54x/6x

				Table 6. Fund	tional port pin	descr	iption	s (continue	ed)			
			(1)			5)		(2)		Pin nu	umber	
Po	ort pin	PCR	Alternate functio	Function	Peripheral	I/O direction ⁽	Pad type	RESET configuration	LQFP 100	LQFP 144	LQFP 176	LBG <i>A</i> 208 ⁽⁴
			AF0	GPIO[83]	SIUL	I/O						
			AF1	E0UC[13]	eMIOS_0	I/O						
F	PF[3]	PCR[83]	AF2	CS1_2	DSPI_2	0	J	Tristate	—	58	66	R10
			AF3	—	—							
			—	ADC0_S[11]	ADC_0	I						
			AF0	GPIO[84]	SIUL	I/O						
			AF1	E0UC[14]	eMIOS_0	I/O						
PF	PF[4]	PCR[84]	AF2	CS2_2	DSPI_2	0	J	Tristate	—	59	67	N11
			AF3	—	—	—						
			—	ADC0_S[12]	ADC_0	Ι						
		PCR[85]	AF0	GPIO[85]	SIUL	I/O						
			AF1	E0UC[22]	eMIOS_0	I/O		Tristate —		60	68	P11
F	PF[5]		AF2	CS3_2	DSPI_2	0	J		_			
			AF3	—	—	—						
			—	ADC0_S[13]	ADC_0	I						
			AF0	GPIO[86]	SIUL	I/O						
			AF1	E0UC[23]	eMIOS_0	I/O						
F	PF[6]	PCR[86]	AF2	CS1_1	DSPI_1	0	J	Tristate	—	61	69	T11
			AF3	—	—							
			_	ADC0_S[14]	ADC_0	Ι						
			AF0	GPIO[87]	SIUL	I/O						
			AF1	—	—	-						
F	PF[7]	PCR[87]	AF2	CS2_1	DSPI_1	0	J	Tristate	—	62	70	R11
			AF3	—	—	-						
			-	ADC0_S[15]	ADC_0	I						

Package pinouts and signal descriptions

SPC560B54x/6x

Table 6. Functional port pin descriptions (continued)												
			0 ⁽¹⁾			(2		3)		Pin nu	umber	
•	Port pin	PCR	Alternate functio	Function	Peripheral	I/O direction ⁽³	Pad type	RESET configuration ⁽	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
	PG[10]	PCR[106]	AF0 AF1 AF2 AF3 —	GPIO[106] E0UC[24] E1UC[31] — SIN_4	SIUL eMIOS_0 eMIOS_1 — DSPI_4	I/O I/O I/O I	S	Tristate	_	114	138	D13
DocID15	PG[11]	PCR[107]	AF0 AF1 AF2 AF3	GPIO[107] E0UC[25] CS0_4 —	SIUL eMIOS_0 DSPI_4 —	I/O I/O I/O —	Μ	Tristate	Ι	115	139	B12
131 Rev 9	PG[12]	PCR[108]	AF0 AF1 AF2 AF3	GPIO[108] E0UC[26] SOUT_4 —	SIUL eMIOS_0 DSPI_4 —	I/O I/O O —	М	Tristate	_	92	116	K14
	PG[13]	PCR[109]	AF0 AF1 AF2 AF3	GPIO[109] E0UC[27] SCK_4 —	SIUL eMIOS_0 DSPI_4 —	I/O I/O I/O —	М	Tristate	_	91	115	K16
	PG[14]	PCR[110]	AF0 AF1 AF2 AF3	GPIO[110] E1UC[0] LIN8TX —	SIUL eMIOS_1 LINFlex_8 —	I/O I/O O	S	Tristate	_	110	134	B14

DocID15131 Rev 9

45/133

SPC560B54x/6x

				Table 6. Fund	ctional port pin	descr	iption	s (continue	ed)			
			00 ⁽¹⁾			2)		(8)		Pin n	umber	
	Port pin	PCR	Alternate functio	Function	Peripheral	I/O direction ⁽⁾	Pad type	RESET configuration ⁽	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
Ī			AF0	GPIO[138]	SIUL	I/O						
			AF1	—	—							
	PI[10]	PCR[138]	AF2	—	—	—	J	Tristate	—	—	110	J15
			AF3	—	—							
				ADC0_S[18]	ADC_0	I						
		PCR[139]	AF0	GPIO[139]	SIUL	I/O						
,	DI[11]		AF1	—	—	—						
			AF2	—	—			Trictoto			111	116
	[]		AF3	—	—		5	Iristate	_	_		510
				ADC0_S[19]	ADC_0	I						
,			—	SIN_3	DSPI_3	I						
. Γ			AF0	GPIO[140]	SIUL	I/O						
			AF1	CS0_3	DSPI_3	I/O						
	PI[12]	PCR[140]	AF2	—	—	—	J	Tristate	—	—	112	G14
			AF3	—	—	—						
				ADC0_S[20]	ADC_0	I						
f			AF0	GPIO[141]	SIUL	I/O						
			AF1	CS1_3	DSPI_3	0						
	PI[13]	PCR[141]	AF2	_	_	_	J Tristate	Tristate	—	—	113	G15
			AF3	_	—	—						
				ADC0_S[21]	ADC_0	I						

DocID15131 Rev 9

51/133

SPC560B54x/6x

3.8 Nexus 2+ pins

In the LBGA208 package, eight additional debug pins are available (see Table 7).

		1/0		Function	Pin number				
Port pin	Function	direction	Pad type	after reset	LQFP 100	LQFP 144	LBGA 208 ⁽¹⁾		
MCKO	Message clock out	0	F	—	—	—	T4		
MDO0	Message data out 0	0	М	—	_	—	H15		
MDO1	Message data out 1	0	М	—		—	H16		
MDO2	Message data out 2	0	М	—	_	—	H14		
MDO3	Message data out 3	0	М	—	_	—	H13		
EVTI	Event in	I	М	Pull-up	—	—	K1		
EVTO	Event out	0	М	—	_	_	L4		
MSEO	Message start/end out	0	М	_			G16		

 Table 7. Nexus 2+ pin descriptions

1. LBGA208 available only as development package for Nexus2+.

4 Electrical characteristics

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

4.1 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in *Table 8* are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8. Parameter classifications

Note: The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4.2 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

Sup	Supply segment			LQFP176			LQFP144/100				
Supply segment		nem	Pad	Weigh	nt 5 V	Weight 3.3 V		Weight 5 V		Weight 3.3 V	
LQFP 176	LQFP 144	LQFP 100		SRC ⁽²⁾ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
			PD[8]	1%	—	1%	—	1%	—	2%	—
			PB[4]	1%		1%		1%	—	2%	—
			PB[5]	1%		1%		1%		2%	
1	2	2	PB[6]	1%	_	1%	_	1%	—	2%	_
-	2	Z	PB[7]	1%	—	1%	—	1%	—	2%	—
			PD[9]	1%	—	1%	—	1%	—	2%	—
			PD[10]	1%	—	1%	—	1%	—	2%	—
			PD[11]	1%	—	1%	—	1%	—	2%	—

Table 24. I/O weight⁽¹⁾ (continued)

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 4.4: Recommended operating conditions).

Symbol		6	Decemeter	Conditions(1)		Unit		
Symbol	Symbol		Parameter	Conditions ⁽)	Min	Тур	Max	Unit
C _{REGn}	SR		Internal voltage regulator external capacitance	—	200	_	500	nF
R _{REG}	SR	_	Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	_	0.2	w
Contraction	QD		Decoupling capacitance ⁽²⁾ ballact	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ⁽³⁾	470(4)	_	nE
CDEC1	SK			V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400	470	_	
C _{DEC2}	SR	_	Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF
N	<u> </u>	Т	Main regulator output voltage	Before exiting from reset	_	1.32		V
V MREG	CC	Ρ		After trimming	1.16	1.28	_	v
I _{MREG}	SR	_	Main regulator current provided to V _{DD_LV} domain	_	_	_	150	mA
	~~	П	Main regulator module current	I _{MREG} = 200 mA	_	—	2	m۸
'MREGINT	00		consumption	I _{MREG} = 0 mA		—	1	mA
V _{LPREG}	СС	Ρ	Low-power regulator output voltage	After trimming	1.16	1.28		V
I _{LPREG}	SR		Low-power regulator current provided to V _{DD_LV} domain	_	_	_	15	mA
	<u> </u>	D	Low-power regulator module current	I _{LPREG} = 15 mA; T _A = 55 °C	_	_	600	
'LPREGINT			consumption	I _{LPREG} = 0 mA; T _A = 55 °C	_	5	_	μΑ
V _{ULPREG}	сс	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V
I _{ULPREG}	SR	_	Ultra low power regulator current provided to V _{DD_LV} domain	_	_	_	5	mA
	<u> </u>		Ultra low power regulator module	I _{ULPREG} = 5 mA; T _A = 55 °C	_	_	100	
ULPREGINT			current consumption	I _{ULPREG} = 0 mA; T _A = 55 °C	_	2	_	μΑ
I _{DD_BV}	сс	D	In-rush average current on V _{DD_BV} during power-up ⁽⁵⁾	—	_	_	300 ⁽⁶⁾	mA

Table 26. Voltage regulator electrical characteristics

Symbol		c	Parameter	6		Unit				
Symbol		C	raiametei			Min	Тур	Max		
					sysclk = off	—	500	—		
			Fast internal RC oscillator high		sysclk = 2 MHz		600			
I _{FIRCSTOP} CC	сс	Т	frequency and system clock current in stop mode	T _A = 25 °C	sysclk = 4 MHz	_	700		μA	
					sysclk = 8 MHz	_	900	_		
					sysclk = 16 MHz	_	1250	_		
t _{FIRCSU}	сс	С	Fast internal RC oscillator start- up time	V _{DD} = 5.0 V ± 10%		_	1.1	2.0	μs	
	сс	с	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C		-1	_	1	%	
	сс	С	Fast internal RC oscillator trimming step	T _A = 25 °C		_	1.6		%	
	сс	С	Fast internal RC oscillator variation over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration		_	-5	_	5	%	

Table 42. Fast internal RC oscillator ((16 MHz)	electrical	characteristics	(continued)
		0.000.000		(

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified.

2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.16 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.

Symbol		0	Paramotor	Conditions ⁽¹⁾		Unit		
Symbol		C	Falanielei	Conditions	Min	Тур	Max	Unit
farra	CC	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed		128	_	kH7
SIRC	SR		frequency	—	100		150	
I _{SIRC} ⁽²⁾	сс	с	Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed		_	5	μA
t _{SIRCSU}	сс	Ρ	Slow internal RC oscillator start-up time	$T_A = 25 \text{ °C}, V_{DD} = 5.0 \text{ V} \pm 10\%$		8	12	μs

Table 43. Slow internal RC oscillator (128 kHz) electrical characteristics

Equation 14 ADC_1 (12-bit)

$$C_F > 8192 \bullet C_S$$

4.17.3 ADC electrical characteristics

Sum	Symbol		Paramotor	Conditions		Unit		
Sym	1001	0	Farameter	Conditions		Тур	Max	Unit
		D		$T_A = -40 \text{ °C}$	—	1	70	
		D		T _A = 25 °C	—	1	70	
I _{LKG}	сс	D	Input leakage current	$T_A = 85 \text{ °C}$ No current injection on adjacent pin		3	100	nA
	р	T _A = 105 °C	—	8	200			
		Ρ		T _A = 125 °C		45	400	

Table 44. ADC input leakage current

Symbol		~	Devementer	Conditions(1)		Unit			
Symbo	1	C	Parameter	Conditions	Min	Тур	Max	Unit	
V _{SS_ADC0}	SR	_	Voltage on VSS_HV_ADC0 (ADC_0 reference) pin with respect to ground (V _{SS}) ⁽²⁾	_	-0.1	_	0.1	V	
V _{DD_ADC0}	SR	_	Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (V _{SS})	_	V _{DD} – 0.1		V _{DD} + 0.1	V	
V _{AINx}	SR	_	Analog input voltage ⁽³⁾	_	V _{SS_ADC0} - 0.1	—	V _{DD_ADC0} + 0.1	V	
I _{ADC0pwd}	SR	_	ADC_0 consumption in power down mode	_	_	_	50	μA	
I _{ADC0run}	SR	_	ADC_0 consumption in running mode	_	_		5	mA	
f _{ADC0}	SR	_	ADC_0 analog frequency	—	6	_	32 + 4%	MHz	
Δ_{ADC0} SYS	SR	_	ADC_0 digital clock duty cycle (ipg_clk)	ADCLKSEL = 1 ⁽⁴⁾	45		55	%	
t _{ADC0_PU}	SR	_	ADC_0 power up delay	—			1.5	μs	
+	6	т	Sampling time ⁽⁵⁾	f _{ADC} = 32 MHz, INPSAMP = 17	0.5	_			
'ADC0_S			Sampling time	f _{ADC} = 6 MHz, INPSAMP = 255	_	_	42	- µs	
t _{ADC0_C}	сс	Ρ	Conversion time ⁽⁶⁾	f _{ADC} = 32 MHz, INPCMP = 2	0.625		_	μs	
C _S	сс	D	ADC_0 input sampling capacitance	_	_	_	3	pF	

Table 45. ADC_0 conversion characteristics (10-bit ADC_0)

5.2.2 LQFP144

Table 52. LQFP144 mechanical data

Symbol		mm		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
А	—	—	1.600	—	—	0.0630	
A1	0.050	—	0.150	0.0020	—	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	—	0.200	0.0035	—	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.8740	

DocID15131 Rev 9

6 Ordering information

1. LBGA208 is available only as development package for Nexus2+.

Date	Revision	Changes
12-Sep- 2011 (continued)	6 (continued)	 Section "Program/erase characteristics": removed table "FLASH_BIU settings vs. frequency of operation" and associated introduction "Program and erase specifications" table: updated symbols PFCRn settings vs. frequency of operation: replaced "FLASH_BIU" with "PFCRn" in table title; updated field names and frequencies "Flash power supply DC electrical characteristics" table: deleted footnote 2 Crystal oscillator and resonator connection scheme: inserted footnote about possibly requiring a series resistor Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated footnote 1 Section "ADC electrical characteristics": updated symbols for offset error and gain error Section "Input impedance and ADC accuracy": changed "V_A/V_{A2}" to "V_{A2}/V_A" in Equation 11 ADC input leakage current: updated I_{LKG} characteristics ADC conversion characteristics table: replaced instances of "ADCx_conf_comp" with "INPCMP ADC_1 conversion characteristics table: replaced instances of "ADCx_conf_sample_input" with "INPSAMP"; replaced instances of "ADCx_conf_comp" with "INPCMP" Updated "On-chip peripherals current consumption" table
18-Sep-2013	7	Updated Disclaimer.
05-May-2014	8	 Table 13: Recommended operating conditions (3.3 V), added minimum value of T_{VDD} and footnote about it. Table 14: Recommended operating conditions (5.0 V), added minimum value of T_{VDD} and footnote about it. Table 21: Output pin transition times, replaced T_{tr} with t_{tr} Table 25: Reset electrical characteristics, replaced T_{tr} with t_{tr} Updated Section 4.17.2: Input impedance and ADC accuracy Table 27: Low voltage detector electrical characteristics, changed V_{LVDHV3L}(min) and V_{LVDHV3BL}(min) from 2.7 V to 2.6 V. Table 29: Program and erase specifications, added footnote about t_{ESRT} Table 41: FMPLL electrical characteristics (10-bit ADC_0), changed I_{ADC0run} value from 40 mA to 5 mA. Table 48: DSPI characteristics, in the heading row, replaced DSPI0/DSPI1/DSPI5/DSPI6 with DSPI0/DSPI1/DSPI3/DSPI5.
22-Jan-2016	9	 In Table 1: Device summary, added SPC560B64L3 for 1.5 MB code flash devices. In Table 2: SPC560B54/6x family comparison, added column relating to "LQFP100" package in SPC560B64 devices. In Table 28: Power consumption on VDD_BV and VDD_HV: changed footnote 2 "Running consumption does not include I/Os" to "I_{DDMAX} is drawn only from the VDD_BV pin. Running consumption does not include I/Os" changed footnote 4 "RUN current measured with" to "I_{DDRUN} is drawn only from the VDD_BV pin. RUN current measured with"

Table 56	Revision	history	(continued)
----------	----------	---------	-------------

