

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	77
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 53x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b60l3c6e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	SPC560B54/6x block diagram
Figure 2.	LQFP176 pin configuration
Figure 3.	LQFP144 pin configuration
Figure 4.	LQFP100 pin configuration
Figure 5.	LBGA208 configuration
Figure 6.	I/O input DC electrical characteristics definition
Figure 7.	Start-up reset requirements
Figure 8.	Noise filtering on reset signal
Figure 9.	Voltage regulator capacitance connection
Figure 10.	Low voltage detector vs reset
Figure 11.	Crystal oscillator and resonator connection scheme
Figure 12.	Fast external crystal oscillator (4 to 16 MHz) timing diagram
Figure 13.	Crystal oscillator and resonator connection scheme
Figure 14.	Equivalent circuit of a quartz crystal
Figure 15.	Slow external crystal oscillator (32 kHz) timing diagram
Figure 16.	ADC_0 characteristic and error definitions
Figure 17.	Input equivalent circuit (precise channels)
Figure 18.	Input equivalent circuit (extended channels)
Figure 19.	Transient behavior during sampling phase
Figure 20.	Spectral representation of input signal 101
Figure 21.	ADC_1 characteristic and error definitions 104
Figure 22.	DSPI classic SPI timing — master, CPHA = 0
Figure 23.	DSPI classic SPI timing — master, CPHA = 1 112
Figure 24.	DSPI classic SPI timing — slave, CPHA = 0 112
Figure 25.	DSPI classic SPI timing — slave, CPHA = 1 113
Figure 26.	DSPI modified transfer format timing — master, CPHA = 0
Figure 27.	DSPI modified transfer format timing — master, CPHA = 1
Figure 28.	DSPI modified transfer format timing — slave, CPHA = 0 114
Figure 29.	DSPI modified transfer format timing — slave, CPHA = 1 115
Figure 30.	DSPI PCS strobe (PCSS) timing
Figure 31.	Nexus TDI, TMS, TDO timing
Figure 32.	Timing diagram — JTAG boundary scan
Figure 33.	LQFP176 package mechanical drawing 118
Figure 34.	LQFP144 package mechanical drawing
Figure 35.	LQFP100 package mechanical drawing
Figure 36.	LBGA208 package mechanical drawing124
Figure 37.	Commercial product code structure 126

2 Block diagram

Figure 1 shows a top-level block diagram of the SPC560B54/6x.

Figure 1. SPC560B54/6x block diagram

3.3 Pad configuration during standby mode exit

Pad configuration (input buffer enable, pull enable) for low-power wakeup pads is controlled by both the SIUL and WKPU modules. During standby exit, all low power pads PA[0,1,2,4,15], PB[1,3,8,9,10]^(a), PC[7,9,11], PD[0,1], PE[0,9,11], PF[9,11,13]^(b), PG[3,5,7,9]^(b), PI[1,3]^(c) are configured according to their respective configuration done in the WKPU module. All other pads will have the same configuration as expected after a reset.

The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is floating causing additional current consumption.

To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of 47–100 kOhms should be added between the TDO pin and VDD. Only if the TDO pin is used as an application pin and a pull-up cannot be used should a pull-down resistor with the same value be used instead between the TDO pin and GND.

3.4 Voltage supply pins

Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.

Port nin	Function	Pin number							
Port pin	Function	LQFP100	LQFP144	LQFP176	LBGA208				
VDD_HV	Digital supply voltage	15, 37, 70, 84	19, 51, 100, 123	6, 27, 59, 85, 124, 151	C2, D9, E16, G13, H3, N4, N9, R5				
VSS_HV	Digital ground	14, 16, 35, 69, 83	18, 20, 49, 99, 122	7, 26, 28, 57, 86, 123, 150	G7, G8, G9, G10, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10				
VDD_LV	1.2 V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest $V_{SS_{LV}}$ pin. ⁽¹⁾	19, 32, 85	23, 46, 124	31, 54, 152	D8, K4, P7				
VSS_LV	1.2 V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{DD_LV} pin. ⁽¹⁾	18, 33, 86	22, 47, 125	30, 55, 153	C8, J2, N7				

Table 4. Voltage supply pin descriptions

a. PB[8, 9] ports have wakeup functionality in all modes except STANDBY.

c. PI[1,3] are not available in the 144-pin LQFP.

b. PF[9,11,13], PG[3,5,7,9], PI[1,3] are not available in the 100-pin LQFP.

				Table 6. Fund	tional port pin	descr	iption	s (continue	ed)			
			(1)			2)		(8)		Pin nu	umber	
	Port pin	PCR	Alternate functio	Function	Peripheral	I/O direction ⁽³	Pad type	RESET configuration ⁽	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
	PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] CS0_1 LIN5RX WKPU[9] ⁽⁵⁾	SIUL eMIOS_0 DSPI_1 LINFlex_5 WKPU	I/O I/O I/O I I	S	Tristate	29	43	51	N6
DocID1513	PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] LIN4TX —	SIUL eMIOS_0 LINFlex_4 —	I/O I/O O	М	Tristate	79	118	146	C11
1 Rev 9	PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — CS1_1 EIRQ[1] LIN4RX	SIUL eMIOS_0 DSPI_1 SIUL LINFlex_4	/O /O — 0 	S	Tristate	80	119	147	D11
	PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] LIN3TX — EIRQ[2] ADC1_S[1]	SIUL eMIOS_0 LINFlex_3 — SIUL ADC_1	/O /O — 	J	Tristate	71	104	128	D16

DocID15131 Rev 9

21/133

SPC560B54x/6x

Package pinouts and signal descriptions

			Table 6. Fund	ctional port pin	descr	iption	s (continue	ed)			
		0 ⁽¹⁾			â		3)		Pin n	umber	
Port pi	n PCR	Alternate functio	Function	Peripheral	I/O direction ⁽³	Pad type	RESET configuration ⁽	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
		AF0	GPIO[69]	SIUL	I/O						
	DCDIGOI	AF1	E0UC[21]	eMIOS_0	I/O	N.4	Triototo	04	100	161	<u> </u>
FE[0]	FCK[09]	AF2	CS0_1	DSPI_1	I/O	IVI	mstate	94	155		0
		AF3	MA[2]	ADC_0	0						
		AF0	GPIO[70]	SIUL	I/O						
		AF1	E0UC[22]	eMIOS_0	I/O						B5
PE[6]	PCR[70]	AF2	CS3_0	DSPI_0	0	М	Tristate	95	139	167	
		AF3	MA[1]	ADC_0	0						
		—	EIRQ[22]	SIUL	I						
		AF0	GPIO[71]	SIUL	I/O						
		AF1	E0UC[23]	eMIOS_0	I/O		Tristate			168	
PE[7]	PCR[71]	AF2	CS2_0	DSPI_0	0	М		96	96 140		C4
		AF3	MA[0]	ADC_0	0						
			EIRQ[23]	SIUL	I						
		AF0	GPIO[72]	SIUL	I/O						
	PCP[72]	AF1	CAN2TX	FlexCAN_2	0	м	Tristato	0	13	21	G2
I L[0]		AF2	E0UC[22]	eMIOS_0	I/O	IVI	mstate	3	15	21	62
		AF3	CAN3TX	FlexCAN_3	0						
		AF0	GPIO[73]	SIUL	I/O						
		AF1	—	—							
		AF2	E0UC[23]	eMIOS_0	I/O						
PE[9]	PCR[73]	AF3	<u> </u>	—	—	S	Tristate	10	14	22	G1
			WKPU[7] ⁽⁵⁾	WKPU	I						
		-	CAN2RX	FlexCAN_2	I						
			CAN3RX	FlexCAN_3	I						

SPC560B54x/6x

37/133

Package pinouts and signal descriptions

38				Table 6. Fund	tional port pin	descr	iption	s (continue	ed)			
/133			n ⁽¹⁾			()		3)		Pin nu	umber	
	Port pin	PCR	Alternate functio	Function	Peripheral	I/O direction ⁽³	Pad type	RESET configuration ⁽	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
	PE[10]	PCR[74]	AF0 AF1 AF2 AF3 —	GPIO[74] LIN3TX CS3_1 E1UC[30] EIRQ[10]	SIUL LINFlex_3 DSPI_1 eMIOS_1 SIUL	I/O O I/O I	S	Tristate	11	15	23	G3
DocID15131 Rev 9	PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] E0UC[24] CS4_1 — LIN3RX WKPU[14] ⁽⁵⁾	SIUL eMIOS_0 DSPI_1 — LINFlex_3 WKPU	I/O I/O — I I	S	Tristate	13	17	25	H2
	PE[12]	PCR[76]	AF0 AF1 AF2 AF3 — —	GPIO[76] — E1UC[19] ⁽¹²⁾ — EIRQ[11] SIN_2 ADC1_S[7]	SIUL — eMIOS_1 — SIUL DSPI_2 ADC_1	/O /O 	J	Tristate	76	109	133	C14
	PE[13]	PCR[77]	AF0 AF1 AF2 AF3	GPIO[77] SOUT_2 E1UC[20] —	SIUL DSPI_2 eMIOS_1 —	I/O O I/O —	S	Tristate	_	103	127	D15

Package pinouts and signal descriptions

SPC560B54x/6x

5

		(1) no			6		(2)		Pin n	umber		
Port pin	PCR	Alternate functio	Function	Peripheral	I/O direction ⁽³	Pad type	RESET configuration ⁽	LQFP 100	LQFP 144	LQFP 176	LBG 208 ⁽	
		AF0	GPIO[111]	SIUL	I/O							
		AF1	E1UC[1]	eMIOS_1	I/O							
PG[15]	PCR[111]	AF2	—	—	—	М	Tristate	—	111	135	B13	
		AF3	—	—	—							
		—	LIN8RX	LINFlex_8	I							
				Port	Н							
PH[0]	PCR[112]	AF0 AF1 AF2	GPIO[112] E1UC[2] —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	_	93	117	F1:	
		AF3 —	 SIN_1	DSPI_1	- I							
PH[1]	PCR[113]	AF0 AF1 AF2 AF3	GPIO[113] E1UC[3] SOUT_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O O —	М	Tristate	_	94	118	F1	
PH[2]	PCR[114]	AF0 AF1 AF2 AF3	GPIO[114] E1UC[4] SCK_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	М	Tristate	_	95	119	F1	
PH[3]	PCR[115]	AF0 AF1 AF2 AF3	GPIO[115] E1UC[5] CS0_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	М	Tristate	_	96	120	F1	

Package pinouts and signal descriptions

SPC560B54x/6x

				Table 6. Fund	tional port pin	descr	iption	s (continue	ed)			
			(1)			5)		(6)		Pin nu		
	Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ⁽³	Pad type	RESET configuration ⁽	LQFP 100	LQFP 144	LQFP 176	LBGA 208 ⁽⁴⁾
	PH[4]	PCR[116]	AF0 AF1 AF2 AF3	GPIO[116] E1UC[6] — —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	_	134	162	A6
DocID15131 Rev 9	PH[5]	PCR[117]	AF0 AF1 AF2 AF3	GPIO[117] E1UC[7] — —	SIUL eMIOS_1 —	I/O I/O —	S	Tristate	_	135	163	B6
	PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] — MA[2]	SIUL eMIOS_1 — ADC_0	I/O I/O — O	М	Tristate	_	136	164	D5
	PH[7]	PCR[119]	AF0 AF1 AF2 AF3	GPIO[119] E1UC[9] CS3_2 MA[1]	SIUL eMIOS_1 DSPI_2 ADC_0	I/O I/O O O	М	Tristate	_	137	165	C5
	PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC_0	I/O I/O O O	М	Tristate	_	138	166	A5
4	PH[9] ⁽¹⁰⁾	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O — I —	S	Input, weak pull- up	88	127	155	B8

SPC560B54x/6x

DocID15131 Rev 9

47/133

Package pinouts and signal descriptions

3.8 Nexus 2+ pins

In the LBGA208 package, eight additional debug pins are available (see Table 7).

		1/0		Eurotion	Pin number				
Port pin	Function	direction	Pad type	after reset	LQFP 100	LQFP 144	LBGA 208 ⁽¹⁾		
MCKO	Message clock out	0	F	—	—	—	T4		
MDO0	Message data out 0	0	М	—		—	H15		
MDO1	Message data out 1	0	М	—		—	H16		
MDO2	Message data out 2	0	М	—		—	H14		
MDO3	Message data out 3	0	М	—	_	—	H13		
EVTI	Event in	I	М	Pull-up	—	—	K1		
EVTO	Event out	0	М	—	_	—	L4		
MSEO	Message start/end out	0	М	—	_	—	G16		

 Table 7. Nexus 2+ pin descriptions

1. LBGA208 available only as development package for Nexus2+.

Equation 2 $P_D = K / (T_J + 273 °C)$

Therefore, solving equations <Cross Refs>1 and <Cross Refs>2:

Equation 3 K = $P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$

Where:

K is a constant for the particular part, which may be determined from *Equation 3* by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J may be obtained by solving equations *Equation 1* and *Equation 2* iteratively for any value of T_A .

4.6 I/O pad electrical characteristics

4.6.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads—provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads—provide maximum speed. These are used for improved Nexus debugging capability.
- Input only pads—are associated with ADC channels and 32 kHz low power external crystal oscillator providing low input leakage.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

4.6.2 I/O input DC characteristics

Table 16 provides input DC electrical characteristics as described in Figure 6.

Figure 6. I/O input DC electrical characteristics definition

	Table 16. I/O input DC electrical characteristics												
Sumak		6	Doromotor	Conditi	ono(1)		Value		l Init				
Synn		5	Farameter	Conditi	UIS 7	Min	Тур	Max	Sint				
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_	-	0.65V _{DD}	_	V _{DD} + 0.4					
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	_	-	-0.4	_	0.35V _{DD}	V				
V _{HYS}	сс	С	Input hysteresis CMOS (Schmitt Trigger)	_	-	0.1V _{DD}	_	_					
		D			T _A = −40 °C	_	2	200					
		D	D		T _A = 25 °C	_	2	200					
I _{LKG}	сс	D	Digital input leakage	No injection on adjacent pin	T _A = 85 °C	—	5	300	nA				
		D			T _A = 105 °C	—	12	500					
					T _A = 125 °C	—	70	1000					
$W_{FI}^{(2)}$	SR	Ρ	Wakeup input filtered pulse	_	-	—		40	ns				
W _{NFI} ⁽²	SR	Ρ	Wakeup input not filtered pulse	_		1000		—	ns				

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

Figure 7. Start-up reset requirements

4.8 **Power management electrical characteristics**

4.8.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply V_{DD_LV} from the high voltage ballast supply V_{DD_BV} . The regulator itself is supplied by the common I/O supply V_{DD} . The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through V_{DD} power pin.
- BV: High voltage external power supply for internal ballast module. This must be
 provided externally through V_{DD_BV} power pin. Voltage values should be aligned with
 V_{DD}.
- LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
 - LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
 - LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
 - LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
 - LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

Figure 9. Voltage regulator capacitance connection

57

- 1. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified.
- This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.
- 3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V.
- External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.
- 5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on external capacitances to be loaded).
- The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

4.8.2 Low voltage detector electrical characteristics

The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the V_{DD} and the $V_{DD_{-LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV3B monitors V_{DD_BV} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)
- Note: When enabled, power domain No. 2 is monitored through LVDLVBKP.

			Table 21. Low Vollage delector electrical	characteristi	63			
Symbol		C	Parameter	Conditions ⁽¹⁾			Unit	
Gymbol		Ŭ	i arameter	Conditions	Min	Тур	Max	0111
V _{PORUP}	SR	Ρ	Supply for functional POR module		1.0	_	5.5	
V _{PORH}	СС	Ρ	Power-on reset threshold		1.5	—	2.6	
V _{LVDHV3H}	СС	Т	LVDHV3 low voltage detector high threshold		—	_	2.95	
V _{LVDHV3L}	СС	Ρ	LVDHV3 low voltage detector low threshold		2.6	—	2.9	
V _{LVDHV3BH}	СС	Ρ	LVDHV3B low voltage detector high threshold	T _A = 25 °C,	_	—	2.95	v
V _{LVDHV3BL}	СС	Ρ	LVDHV3B low voltage detector low threshold	after trimming	2.6	—	2.9	v
V _{LVDHV5H}	СС	Т	LVDHV5 low voltage detector high threshold		_	—	4.5	
V _{LVDHV5L}	СС	Ρ	LVDHV5 low voltage detector low threshold		3.8	—	4.4	
V _{LVDLVCORL}	СС	Ρ	LVDLVCOR low voltage detector low threshold		1.08	—	1.16	
V _{LVDLVBKPL}	CC	Ρ	LVDLVBKP low voltage detector low threshold		1.08	_	1.16	1

Table 27. Low voltage detector electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

4.9 Power consumption

Table 28 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for the application.

- Software recommendations The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note *Software Techniques For Improving Microcontroller EMC Performance* (AN1015)).

4.11.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.

Symbol		C	Paramotor	Cond	litions		Unit		
Symb		C	Farameter	Cond	Conditions				Unit
_	SR		Scan range	-	0.15 0		1000	MHz	
f _{CPU}	SR		Operating frequency				64		MHz
V _{DD_LV}	SR	_	LV operating voltages	-	_	_	1.28	_	V
				$V_{DD} = 5 V,$ $T_A = 25 °C,$	No PLL frequency modulation	_	_	18	dBµ V
S _{EMI}	EMI CC T Peak level LQFP144 package Test conforming to IEC 61967-2,		± 2% PLL frequency		_	14	dBµ		
		f		f _{OSC} = 8 MHz/f _{CPU} = 64 MHz	modulation			14	V

Table 34. EMI radiated emission measurement $^{(1)(2)}$

1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.

2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

4.11.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

Symbol		~	Perometer	Conditions ⁽¹⁾		Unit		
		C	Faiameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN}	SR		- FMPLL reference clock ⁽²⁾ —		4	_	64	MHz
Δ_{PLLIN}	SR	_	FMPLL reference clock duty		40		60	%
f _{PLLOUT}	СС	Ρ	FMPLL output clock frequency —		16	_	64	MHz
(3)	сс	Ρ	VCO frequency without frequency modulation	_	256		512	
IVCO, ,		Ρ	VCO frequency with frequency modulation	_	245.76	_	532.48	
f _{CPU}	SR	_	System clock frequency —		—	_	64	MHz
f _{FREE}	СС	Ρ	Free-running frequency	—	20	_	150	MHz
t _{LOCK}	СС	Ρ	P FMPLL lock time Stable oscillator (f _{PLLIN} = 16 MHz)			40	100	μs
Δt_{STJIT}	СС		FMPLL short term jitter ⁽⁴⁾	rm jitter ⁽⁴⁾ f _{sys} maximum		_	4	%
Δt_{LTJIT}	СС	_	FMPLL long term jitter	f _{PLLCLK} at 64 MHz, 4000 cycles	_		10	ns
I _{PLL}	СС	С	FMPLL consumption	$T_A = 25 °C$	_	_	4	mA

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

3. Frequency modulation is considered $\pm 4\%$.

4. Short term jitter is measured on the clock rising edge at cycle n and n+4.

4.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.

Symbol		<u>د</u>	Paramotor	Conditions ⁽¹⁾		Unit			
Symbol		0	Faiametei	Conditions	Min	Тур	Max	Unit	
f	СС	Ρ	Fast internal RC oscillator high frequency	T _A = 25 °C, trimmed	_	16	—		
IFIRC	SR			_	12		20		
I _{FIRCRUN} ⁽²⁾	сс	т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed	_	_	200	μA	
I _{FIRCPWD}	сс	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 25 °C	_	_	10	μA	

Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics

Figure 29. DSPI modified transfer format timing — slave, CPHA = 1

Figure 30. DSPI PCS strobe (PCSS) timing

4.18.3 Nexus characteristics

Table 49.	Nexus	characteristics
-----------	-------	-----------------

No	Symbol		c	Parameter		Unit		
NO.				Falameter	Min	Тур	Max	Unit
1	t _{TCYC}	CC	D	TCK cycle time	64	_	_	ns
2	t _{MCYC}	СС	D	MCKO cycle time 32 — —			ns	
3	t _{MDOV}	СС	D	MCKO low to MDO data valid	_	_	8	ns
4	t _{MSEOV}	CC	D	MCKO low to MSEO_b data valid 8		8	ns	

4.18.4 JTAG characteristics

No	Symbol		6	Parameter		l lmit		
NO.			C	Faidilleter	Min	Тур	Мах	Onic
1	t _{JCYC}	СС	D	TCK cycle time	64	—	—	ns
2	t _{TDIS}	СС	D	TDI setup time	15	—	—	ns
3	t _{TDIH}	CC	D	TDI hold time 5 — —		—	ns	
4	t _{TMSS}	СС	D	TMS setup time	15	—	—	ns
5	t _{TMSH}	СС	D	TMS hold time	5	—	—	ns
6	t _{TDOV}	CC	D	TCK low to TDO valid	— — 33		33	ns
7	t _{TDOI}	СС	D	TCK low to TDO invalid	6	—	—	ns

Table 50. JTAG characteristics

Figure 32. Timing diagram — JTAG boundary scan

5.2.4 LBGA208

 The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.

Table 54. LBGA208	mechanical	data
-------------------	------------	------

Symbol		mm			Notos			
	Min	Тур	Мах	Min	Тур	Мах	NOLES	
А	—	—	1.70	—	—	0.0669	(2)	
A1	0.30	—	—	0.0118	—	—	—	
A2	—	1.085	—	—	0.0427	—	—	
A3	—	0.30	—	—	0.0118	—	—	
A4	—	—	0.80	—	—	0.0315	—	
b	0.50	0.60	0.70	0.0197	0.0236	0.0276	(3)	

