

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XF

| Product Status             | Not For New Designs                                                      |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | e200z0h                                                                  |
| Core Size                  | 32-Bit Single-Core                                                       |
| Speed                      | 64MHz                                                                    |
| Connectivity               | CANbus, I <sup>2</sup> C, LINbus, SCI, SPI, UART/USART                   |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                  |
| Number of I/O              | 77                                                                       |
| Program Memory Size        | 1MB (1M × 8)                                                             |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 80K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                |
| Data Converters            | A/D 53x10/12b                                                            |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 100-LQFP                                                                 |
| Supplier Device Package    | 100-LQFP (14x14)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/spc560b60l3c6e0y |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1 Introduction

## 1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device.

## 1.2 Description

This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle.

The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power Architecture technology and only implements the VLE (variable-length encoding) APU (Auxiliary Processor Unit), providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

| Feature                                            | SPC5             | 60B54            | S                | PC560B           | 60               |                  | SPC560B64        |                  |                  |  |  |
|----------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|--|
| CPU                                                |                  |                  |                  |                  | e200z0           | )h               |                  |                  |                  |  |  |
| Execution speed <sup>(2)</sup>                     | Up to 64 MHz     |                  |                  |                  |                  |                  |                  |                  |                  |  |  |
| Code flash memory                                  | 768              | 8 KB             |                  | 1 MB             |                  |                  | 1                | .5 MB            |                  |  |  |
| Data flash memory                                  | 64 (4 × 16) KB   |                  |                  |                  |                  |                  |                  |                  |                  |  |  |
| SRAM                                               | 64               | KB               |                  | 80 KB            |                  |                  |                  | 96 KB            |                  |  |  |
| MPU                                                | 8-entry          |                  |                  |                  |                  |                  |                  |                  |                  |  |  |
| eDMA                                               | 16 ch            |                  |                  |                  |                  |                  |                  |                  |                  |  |  |
| 10-bit ADC                                         |                  |                  |                  |                  | Yes              |                  |                  |                  |                  |  |  |
| dedicated <sup>(3)</sup>                           | 7 ch             | 15 ch            | 7 ch             | 15 ch            | 29 ch            | 7 ch             | 15 ch            | 29 ch            | 29 ch            |  |  |
| shared with 12-bit ADC                             |                  |                  |                  |                  | 19 ch            |                  |                  |                  |                  |  |  |
| 12-bit ADC                                         |                  |                  |                  |                  | Yes              |                  |                  |                  |                  |  |  |
| dedicated <sup>(4)</sup>                           | 5 ch             |                  |                  |                  |                  |                  |                  |                  |                  |  |  |
| shared with 10-bit ADC                             |                  |                  |                  |                  | 19 ch            |                  |                  |                  |                  |  |  |
| Total timer I/O <sup>(5)</sup> eMIOS               | 37 ch,<br>16-bit | 64 ch,<br>16-bit | 37 ch,<br>16-bit | 64 ch,<br>16-bit | 64 ch,<br>16-bit | 37 ch,<br>16-bit | 64 ch,1<br>6-bit | 64 ch,<br>16-bit | 64 ch,<br>16-bit |  |  |
| Counter / OPWM / ICOC <sup>(6)</sup>               |                  |                  |                  |                  | 10 ch            |                  |                  |                  |                  |  |  |
| O(I)PWM / OPWFMB /<br>OPWMCB / ICOC <sup>(7)</sup> |                  | 7 ch             |                  |                  |                  |                  |                  |                  |                  |  |  |
| O(I)PWM / ICOC <sup>(8)</sup>                      | 7 ch             | 14 ch            | 7 ch             | 14 ch            | 14 ch            | 7 ch             | 14 ch            | 14 ch            | 14 ch            |  |  |
|                                                    | <i>i</i> ch      | 14 CH            | 7 Ch             | 14 CH            | 14 CH            | <i>i</i> ch      | 14 Ch            | 14 CN            | 14 CH            |  |  |

Table 2. SPC560B54/6x family comparison<sup>(1)</sup>



| Feature                    | SPC5        | 60B54       | s           | PC560B      | 60          |             | SPO         | C560B64     |                         |
|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------------------|
| OPWM / ICOC <sup>(9)</sup> | 13 ch       | 33 ch       | 13 ch       | 33 ch       | 33 ch       | 13 ch       | 33 ch       | 33 ch       | 33 ch                   |
| SCI (LINFlex)              | 4           | 8           | 4           | 8           | 10          | 4           | 8           | 10          | 10                      |
| SPI (DSPI)                 | 3           | 5           | 3           | 5           | 6           | 3           | 5           | 6           | 6                       |
| CAN (FlexCAN)              |             |             |             |             | 6           |             |             |             |                         |
| 12C                        |             |             |             |             | 1           |             |             |             |                         |
| 32 KHz oscillator          |             |             |             |             | Yes         |             |             |             |                         |
| GPIO <sup>(10)</sup>       | 77          | 121         | 77          | 121         | 149         | 77          | 121         | 149         | 149                     |
| Debug                      |             |             |             | JT.         | AG          |             |             |             | N2+                     |
| Package                    | LQFP<br>100 | LQFP<br>144 | LQFP<br>100 | LQFP<br>144 | LQFP<br>176 | LQFP<br>100 | LQFP<br>144 | LQFP<br>176 | LBGA208 <sup>(11)</sup> |

| Table 2. SPC300D34/0X Taining Companison / (Continu |
|-----------------------------------------------------|
|-----------------------------------------------------|

1. Feature set dependent on selected peripheral multiplexing; table shows example.

2. Based on 125  $^\circ C$  ambient operating temperature.

3. Not shared with 12-bit ADC, but possibly shared with other alternate functions.

4. Not shared with 10-bit ADC, but possibly shared with other alternate functions.

5. See the eMIOS section of the chip reference manual for information on the channel configuration and functions.

6. Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.

7. Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.

8. Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width measurement.

9. Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.

10. Maximum I/O count based on multiplexing with peripherals.

11. LBGA208 available only as development package for Nexus2+.







*Figure 5* shows the SPC560B54/6x in the LBGA208 package.



|                  | Table 6. Functional port pin descriptions (continued) |         |                                    |                                                                            |                                                             |                                        |          |                        |             |             |             |                            |  |  |
|------------------|-------------------------------------------------------|---------|------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|----------|------------------------|-------------|-------------|-------------|----------------------------|--|--|
|                  |                                                       |         | (1)                                |                                                                            |                                                             | 2)                                     |          | (3)                    |             | Pin nu      | umber       |                            |  |  |
| DocID15131 Rev ( | Port pin                                              | PCR     | Alternate function                 | Function                                                                   | Peripheral                                                  | I/O direction <sup>()</sup>            | Pad type | RESET<br>configuration | LQFP<br>100 | LQFP<br>144 | LQFP<br>176 | LBGA<br>208 <sup>(4)</sup> |  |  |
|                  | PC[4]                                                 | PCR[36] | AF0<br>AF1<br>AF2<br>AF3<br>—<br>— | GPIO[36]<br>E1UC[31]<br>—<br>DEBUG[2]<br>EIRQ[18]<br>SIN_1<br>CAN3RX       | SIUL<br>eMIOS_1<br>—<br>SSCM<br>SIUL<br>DSPI_1<br>FlexCAN_3 | /O<br> /O<br>—<br>0<br> <br> <br> <br> | М        | Tristate               | 92          | 131         | 159         | B7                         |  |  |
|                  | PC[5]                                                 | PCR[37] | AF0<br>AF1<br>AF2<br>AF3<br>—      | GPIO[37]<br>SOUT_1<br>CAN3TX<br>DEBUG[3]<br>EIRQ[7]                        | SIUL<br>DSPI_1<br>FlexCAN_3<br>SSCM<br>SIUL                 | I/O<br>O<br>O<br>I                     | Μ        | Tristate               | 91          | 130         | 158         | A7                         |  |  |
| -                | PC[6]                                                 | PCR[38] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[38]<br>LIN1TX<br>E1UC[28]<br>DEBUG[4]                                 | SIUL<br>LINFlex_1<br>eMIOS_1<br>SSCM                        | I/O<br>O<br>I/O<br>O                   | S        | Tristate               | 25          | 36          | 44          | R2                         |  |  |
|                  | PC[7]                                                 | PCR[39] | AF0<br>AF1<br>AF2<br>AF3<br>—      | GPIO[39]<br>—<br>E1UC[29]<br>DEBUG[5]<br>LIN1RX<br>WKPU[12] <sup>(5)</sup> | SIUL<br>—<br>eMIOS_1<br>SSCM<br>LINFlex_1<br>WKPU           | /O<br>                                 | S        | Tristate               | 26          | 37          | 45          | Ρ3                         |  |  |

DocID15131 Rev 9

29/133

SPC560B54x/6x

Package pinouts and signal descriptions

50/133

| 0        |
|----------|
| C        |
|          |
| 0        |
| <u>~</u> |
| σ        |
| <u>→</u> |
| ω        |
| -        |
|          |
|          |
| Ð,       |
| <        |
| G        |
| _        |

|          |          | on <sup>(1)</sup>             |                                        |                                | 2)                         |          | (3)                    |             | Pin n       | umber       |                            |
|----------|----------|-------------------------------|----------------------------------------|--------------------------------|----------------------------|----------|------------------------|-------------|-------------|-------------|----------------------------|
| Port pin | PCR      | Alternate function            | Function                               | Peripheral                     | I/O direction <sup>(</sup> | Pad type | RESET<br>configuration | LQFP<br>100 | LQFP<br>144 | LQFP<br>176 | LBGA<br>208 <sup>(4)</sup> |
| PI[5]    | PCR[133] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[133]<br>E1UC[29]<br>SCK_4<br>—    | SIUL<br>eMIOS_1<br>DSPI_4<br>— | I/O<br>I/O<br>I/O<br>—     | S        | Tristate               | _           | _           | 142         | C12                        |
| PI[6]    | PCR[134] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[134]<br>E1UC[30]<br>CS0_4<br>—    | SIUL<br>eMIOS_1<br>DSPI_4<br>— | I/O<br>I/O<br>I/O<br>—     | S        | Tristate               | _           |             | 11          | D2                         |
| PI[7]    | PCR[135] | AF0<br>AF1<br>AF2<br>AF3      | GPIO[135]<br>E1UC[31]<br>CS1_4<br>—    | SIUL<br>eMIOS_1<br>DSPI_4<br>— | I/O<br>I/O<br>O            | S        | Tristate               |             |             | 12          | D3                         |
| PI[8]    | PCR[136] | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[136]<br>—<br>—<br>—<br>ADC0_S[16] | SIUL<br>—<br>—<br>—<br>ADC_0   | I/O<br>—<br>—<br>—<br>—    | J        | Tristate               | _           | _           | 108         | J13                        |
| PI[9]    | PCR[137] | AF0<br>AF1<br>AF2<br>AF3<br>— | GPIO[137]<br>—<br>—<br>—<br>ADC0_S[17] | SIUL<br>—<br>—<br>—<br>ADC_0   | I/O<br>—<br>—<br>—         | J        | Tristate               | _           |             | 109         | J14                        |

Package pinouts and signal descriptions

SPC560B54x/6x

| Symbol             |          | ~ | Deremeter                                                | Conditions <sup>(2)</sup> | Pin count               |                         |     | Unit |       |    |  |
|--------------------|----------|---|----------------------------------------------------------|---------------------------|-------------------------|-------------------------|-----|------|-------|----|--|
| Synd               |          | C | Parameter                                                | Conditions                |                         |                         | Тур | Max  | Unit  |    |  |
|                    |          |   |                                                          |                           | 100                     | —                       | _   | 36   |       |    |  |
| R <sub>θJB</sub> C |          |   | Thermal resistance, junction-to-<br>board <sup>(4)</sup> | Single-layer board — 1s   | 144                     |                         | _   | 38   |       |    |  |
|                    | ~~       |   |                                                          |                           | 176                     | _                       | _   | 38   | °C/W  |    |  |
|                    | 00       |   |                                                          |                           | 100                     | _                       | _   | 33.6 |       |    |  |
|                    |          |   |                                                          | Four-layer board — 2s2p   | 144                     | _                       | _   | 33.4 |       |    |  |
|                    |          |   |                                                          |                           | 176                     | _                       |     | 33.4 |       |    |  |
|                    |          |   |                                                          |                           | 100                     | _                       | _   | 23   |       |    |  |
|                    |          |   |                                                          | 1                         |                         | Single-layer board — 1s | 144 | _    | _     | 23 |  |
| Б                  | <u> </u> |   | Thermal resistance, junction-to-                         |                           | 176                     | _                       | _   | 23   | 00 AA |    |  |
| κ <sub>θ</sub> jc  | CC       |   | case <sup>(5)</sup>                                      |                           | 100                     | _                       | _   | 19.8 | C/vv  |    |  |
|                    |          |   |                                                          |                           | Four-layer board — 2s2p | 144                     | _   | _    | 19.2  |    |  |
|                    |          |   |                                                          |                           | 176                     | _                       | _   | 18.8 |       |    |  |

 Table 15. LQFP thermal characteristics<sup>(1)</sup> (continued)

1. Thermal characteristics are targets based on simulation.

2.  $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$ ,  $T_A = -40$  to 125 °C.

 Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R<sub>thJA</sub> and R<sub>thJMA</sub>.

 Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R<sub>thJB</sub>.

 Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R<sub>thJC</sub>.

## 4.5.3 Power considerations

The average chip-junction temperature,  $T_J$ , in degrees Celsius, may be calculated using *Equation 1*:

## Equation 1 $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

T<sub>A</sub> is the ambient temperature in °C.

 $R_{\theta JA}$  is the package junction-to-ambient thermal resistance, in °C/W.

 $P_D$  is the sum of  $P_{INT}$  and  $P_{I/O} (P_D = P_{INT} + P_{I/O})$ .

 $\mathsf{P}_{\mathsf{INT}}$  is the product of  $\mathsf{I}_{\mathsf{DD}}$  and  $\mathsf{V}_{\mathsf{DD}},$  expressed in watts. This is the chip internal power.

 $\mathsf{P}_{\mathsf{I/O}}$  represents the power dissipation on input and output pins; user determined.

Most of the time for the applications,  $P_{I/O} < P_{INT}$  and may be neglected. On the other hand,  $P_{I/O}$  may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between  $P_D$  and  $T_J$  (if  $P_{I/O}$  is neglected) is given by:





#### Figure 6. I/O input DC electrical characteristics definition

| Table 16. I/O input DC electrical characteristics |    |          |                                            |                              |                         |                     |       |                       |        |  |  |  |
|---------------------------------------------------|----|----------|--------------------------------------------|------------------------------|-------------------------|---------------------|-------|-----------------------|--------|--|--|--|
| Sumak                                             |    | <u>ر</u> | Doromotor                                  | Conditi                      | ono(1)                  |                     | Value |                       | l Init |  |  |  |
| Synn                                              |    | 5        | Farameter                                  | Conditi                      | UIS 7                   | Min                 | Тур   | Max                   | Unit   |  |  |  |
| V <sub>IH</sub>                                   | SR | Ρ        | Input high level CMOS (Schmitt<br>Trigger) | _                            | -                       | 0.65V <sub>DD</sub> | _     | V <sub>DD</sub> + 0.4 |        |  |  |  |
| V <sub>IL</sub>                                   | SR | Ρ        | Input low level CMOS (Schmitt<br>Trigger)  | _                            | -                       | -0.4                | _     | 0.35V <sub>DD</sub>   | V      |  |  |  |
| V <sub>HYS</sub>                                  | сс | С        | Input hysteresis CMOS (Schmitt<br>Trigger) | _                            | -                       | 0.1V <sub>DD</sub>  | _     | _                     |        |  |  |  |
|                                                   |    | D        |                                            |                              | T <sub>A</sub> = −40 °C | _                   | 2     | 200                   |        |  |  |  |
|                                                   |    | D        |                                            |                              | T <sub>A</sub> = 25 °C  | _                   | 2     | 200                   |        |  |  |  |
| I <sub>LKG</sub>                                  | сс | D        | Digital input leakage                      | No injection on adjacent pin | T <sub>A</sub> = 85 °C  | —                   | 5     | 300                   | nA     |  |  |  |
|                                                   |    | D        |                                            |                              | T <sub>A</sub> = 105 °C | —                   | 12    | 500                   |        |  |  |  |
|                                                   |    | Ρ        | >                                          |                              | T <sub>A</sub> = 125 °C | —                   | 70    | 1000                  |        |  |  |  |
| $W_{FI}^{(2)}$                                    | SR | Ρ        | Wakeup input filtered pulse                | _                            | -                       | —                   |       | 40                    | ns     |  |  |  |
| W <sub>NFI</sub> <sup>(2</sup>                    | SR | Ρ        | Wakeup input not filtered pulse            |                              | -                       | 1000                |       | —                     | ns     |  |  |  |

1.  $V_{DD}$  = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%,  $T_A$  = –40 to 125 °C, unless otherwise specified.

2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.



- 1.  $V_{DD}$  = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%,  $T_A$  = –40 to 125 °C, unless otherwise specified.
- 2. The configuration PAD3V5 = 1 when V<sub>DD</sub> = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

| Symbol          |        | 6 | Barameter                                  |           | Conditions <sup>(1)</sup>                                                                                                                                                                                                                       |                          |                    | Unit               |      |  |
|-----------------|--------|---|--------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|--------------------|------|--|
| Synn            |        | C | Faraineter                                 |           | Conditions                                                                                                                                                                                                                                      | Min                      | Тур                | Max                | Unit |  |
| V <sub>OH</sub> |        | Ρ | Output high level<br>FAST<br>configuration | Push Pull | $I_{OH} = -14 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>PAD3V5V = 0<br>(recommended)                                                                                                                                                | 0.8V <sub>DD</sub>       | _                  | _                  |      |  |
|                 | C<br>C | с |                                            |           | $I_{OH} = -7 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>$PAD3V5V = 1^{(2)}$                                                                                                                                                          | 0.8V <sub>DD</sub>       | _                  | _                  | V    |  |
|                 |        | с |                                            |           | $I_{OH} = -11 \text{ mA},$<br>$V_{DD} = 3.3 \text{ V} \pm 10\%,$<br>PAD3V5V = 1<br>(recommended)                                                                                                                                                | V <sub>DD</sub> –<br>0.8 | _                  | _                  |      |  |
|                 |        | Ρ | Output low level<br>FAST<br>configuration  | Push Pull | $I_{OL} = 14 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>PAD3V5V = 0<br>(recommended)                                                                                                                                                 | _                        | _                  | 0.1V <sub>DD</sub> |      |  |
| V <sub>OL</sub> | C<br>C | с |                                            |           | $\begin{array}{c c} I_{OL} = 7 \text{ mA}, \\ V_{DD} = 5.0 \text{ V} \pm 10\%, \\ PAD3V5V = 1^{(2)} \end{array} \qquad $ |                          | 0.1V <sub>DD</sub> | V                  |      |  |
|                 |        | с |                                            |           | $I_{OL} = 11 \text{ mA},$<br>$V_{DD} = 3.3 \text{ V} \pm 10\%,$<br>PAD3V5V = 1<br>(recommended)                                                                                                                                                 | _                        |                    | 0.5                |      |  |

1.  $V_{DD}$  = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%,  $T_A$  = –40 to 125 °C, unless otherwise specified.

2. The configuration PAD3V5 = 1 when V<sub>DD</sub> = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

## 4.6.4 Output pin transition times

### Table 21. Output pin transition times

| Symbol          |    | с | Parameter                                                                   | Conditions <sup>(1)</sup> |                                               |     | Value |     |     |  |
|-----------------|----|---|-----------------------------------------------------------------------------|---------------------------|-----------------------------------------------|-----|-------|-----|-----|--|
|                 |    |   | Falameter                                                                   | CO                        | Min                                           | Тур | Max   | •   |     |  |
|                 |    | D |                                                                             | C <sub>L</sub> = 25 pF    |                                               | —   |       | 50  |     |  |
| t <sub>tr</sub> |    | Т | C<br>Output transition time output pin <sup>(2)</sup><br>SLOW configuration | C <sub>L</sub> = 50 pF    | V <sub>DD</sub> = 5.0 V ± 10%,<br>PAD3V5V = 0 | —   | _     | 100 |     |  |
|                 | ~~ | D |                                                                             | C <sub>L</sub> = 100 pF   |                                               | —   | _     | 125 | 200 |  |
|                 | CC | D |                                                                             | C <sub>L</sub> = 25 pF    | V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1 |     | _     | 50  |     |  |
|                 |    | Т |                                                                             | C <sub>L</sub> = 50 pF    |                                               | _   |       | 100 |     |  |
|                 |    | D |                                                                             | C <sub>L</sub> = 100 pF   |                                               | —   | _     | 125 |     |  |



| Sup         |             | nont        |        |                           | LQFF    | P176    |         |         | LQFP1   | 44/100       |         |
|-------------|-------------|-------------|--------|---------------------------|---------|---------|---------|---------|---------|--------------|---------|
| Sup         | piy segi    | nem         | Pad    | Weigh                     | nt 5 V  | Weigh   | t 3.3 V | Weig    | ht 5 V  | Weight 3.3 V |         |
| LQFP<br>176 | LQFP<br>144 | LQFP<br>100 |        | SRC <sup>(2)</sup> =<br>0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0      | SRC = 1 |
|             |             | _           | PG[9]  | 9%                        | —       | 10%     | _       | 9%      |         | 10%          | _       |
|             |             | _           | PG[8]  | 9%                        |         | 11%     | _       | 9%      |         | 11%          | _       |
|             |             | 1           | PC[11] | 9%                        |         | 11%     | _       | 9%      |         | 11%          | _       |
|             |             | 1           | PC[10] | 9%                        | 13%     | 11%     | 12%     | 9%      | 13%     | 11%          | 12%     |
|             |             | —           | PG[7]  | 9%                        | —       | 11%     | —       | 9%      |         | 11%          | —       |
|             |             | —           | PG[6]  | 10%                       | 14%     | 11%     | 12%     | 10%     | 14%     | 11%          | 12%     |
|             |             | 1           | PB[0]  | 10%                       | 14%     | 12%     | 12%     | 10%     | 14%     | 12%          | 12%     |
|             |             | 1           | PB[1]  | 10%                       | —       | 12%     | —       | 10%     | _       | 12%          | —       |
|             |             | _           | PF[9]  | 10%                       | —       | 12%     | —       | 10%     | -       | 12%          | —       |
|             |             | _           | PF[8]  | 10%                       | 14%     | 12%     | 13%     | 10%     | 14%     | 12%          | 13%     |
| 2           | 1           | _           | PF[12] | 10%                       | 15%     | 12%     | 13%     | 10%     | 15%     | 12%          | 13%     |
|             |             | 4           | PC[6]  | 10%                       | _       | 12%     | _       | 10%     | _       | 12%          | _       |
|             |             | 1           | PC[7]  | 10%                       | _       | 12%     | _       | 10%     | _       | 12%          | _       |
|             |             |             | PF[10] | 10%                       | 14%     | 11%     | 12%     | 10%     | 14%     | 11%          | 12%     |
|             |             |             | PF[11] | 9%                        | _       | 11%     | _       | 9%      | _       | 11%          | _       |
|             |             | 1           | PA[15] | 8%                        | 12%     | 10%     | 10%     | 8%      | 12%     | 10%          | 10%     |
|             |             | _           | PF[13] | 8%                        | —       | 10%     | —       | 8%      | _       | 10%          | —       |
|             |             |             | PA[14] | 8%                        | 11%     | 9%      | 10%     | 8%      | 11%     | 9%           | 10%     |
|             |             |             | PA[4]  | 7%                        | —       | 9%      | —       | 7%      | _       | 9%           | _       |
|             |             | 1           | PA[13] | 7%                        | 10%     | 8%      | 9%      | 7%      | 10%     | 8%           | 9%      |
|             |             |             | PA[12] | 7%                        | _       | 8%      | —       | 7%      | _       | 8%           | —       |

Table 24. I/O weight<sup>(1)</sup> (continued)



| Sup         |             | nont        |        |                           | LQFF    | P176         |         | LQFP144/100 |         |              |         |   |       |    |   |    |   |    |   |    |   |
|-------------|-------------|-------------|--------|---------------------------|---------|--------------|---------|-------------|---------|--------------|---------|---|-------|----|---|----|---|----|---|----|---|
|             |             |             | Pad    | Weight 5 V                |         | Weight 3.3 V |         | Weight 5 V  |         | Weight 3.3 V |         |   |       |    |   |    |   |    |   |    |   |
| LQFP<br>176 | LQFP<br>144 | LQFP<br>100 |        | SRC <sup>(2)</sup> =<br>0 | SRC = 1 | SRC = 0      | SRC = 1 | SRC = 0     | SRC = 1 | SRC = 0      | SRC = 1 |   |       |    |   |    |   |    |   |    |   |
|             |             |             | PD[8]  | 1%                        | —       | 1%           | —       | 1%          | —       | 2%           | —       |   |       |    |   |    |   |    |   |    |   |
|             |             |             | PB[4]  | 1%                        |         | 1%           |         | 1%          | —       | 2%           | —       |   |       |    |   |    |   |    |   |    |   |
|             |             |             | PB[5]  | 1%                        |         | 1%           |         | 1%          |         | 2%           |         |   |       |    |   |    |   |    |   |    |   |
| 1           | 2           | 2           | PB[6]  | 1%                        | _       | 1%           | _       | 1%          | —       | 2%           | _       |   |       |    |   |    |   |    |   |    |   |
| -           | 2           | 2           | PB[7]  | 1%                        | —       | 1%           | —       | 1%          | —       | 2%           | —       |   |       |    |   |    |   |    |   |    |   |
|             |             |             |        |                           |         |              |         |             |         |              | -       | - | PD[9] | 1% | — | 1% | — | 1% | — | 2% | — |
|             |             |             |        | PD[10]                    | 1%      | —            | 1%      | —           | 1%      | —            | 2%      | — |       |    |   |    |   |    |   |    |   |
|             |             |             | PD[11] | 1%                        | —       | 1%           | —       | 1%          | —       | 2%           | —       |   |       |    |   |    |   |    |   |    |   |

Table 24. I/O weight<sup>(1)</sup> (continued)



#### **Electrical characteristics**

| Cum         |             |             |        |                           | LQFF    | P176    |         |         | LQFP1   | 44/100  |         |
|-------------|-------------|-------------|--------|---------------------------|---------|---------|---------|---------|---------|---------|---------|
| Sup         | pıy segr    | nent        | Pad    | Weigh                     | nt 5 V  | Weigh   | t 3.3 V | Weig    | ht 5 V  | Weigh   | t 3.3 V |
| LQFP<br>176 | LQFP<br>144 | LQFP<br>100 |        | SRC <sup>(2)</sup> =<br>0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 | SRC = 0 | SRC = 1 |
|             |             |             | PC[0]  | 6%                        | 9%      | 7%      | 8%      | 7%      | 10%     | 8%      | 8%      |
|             |             |             | PH[9]  | 7%                        | —       | 8%      | —       | 7%      | _       | 9%      | _       |
|             |             | 4           | PE[2]  | 7%                        | 10%     | 8%      | 9%      | 8%      | 11%     | 9%      | 10%     |
|             |             |             | PE[3]  | 7%                        | 10%     | 9%      | 9%      | 8%      | 12%     | 10%     | 10%     |
|             |             |             | PC[5]  | 7%                        | 11%     | 9%      | 9%      | 8%      | 12%     | 10%     | 11%     |
|             |             |             | PC[4]  | 8%                        | 11%     | 9%      | 10%     | 9%      | 13%     | 10%     | 11%     |
|             |             |             | PE[4]  | 8%                        | 11%     | 9%      | 10%     | 9%      | 13%     | 11%     | 12%     |
|             | 4           |             | PE[5]  | 8%                        | 11%     | 10%     | 10%     | 9%      | 14%     | 11%     | 12%     |
|             |             | _           | PH[4]  | 8%                        | 12%     | 10%     | 10%     | 10%     | 14%     | 12%     | 12%     |
|             |             | _           | PH[5]  | 8%                        | —       | 10%     | —       | 10%     | _       | 12%     | _       |
|             |             | _           | PH[6]  | 8%                        | 12%     | 10%     | 11%     | 10%     | 15%     | 12%     | 13%     |
| 6           |             | _           | PH[7]  | 9%                        | 12%     | 10%     | 11%     | 11%     | 15%     | 13%     | 13%     |
|             |             | _           | PH[8]  | 9%                        | 12%     | 10%     | 11%     | 11%     | 16%     | 13%     | 14%     |
|             |             | 4           | PE[6]  | 9%                        | 12%     | 10%     | 11%     | 11%     | 16%     | 13%     | 14%     |
|             |             | 4           | PE[7]  | 9%                        | 12%     | 10%     | 11%     | 11%     | 16%     | 14%     | 14%     |
|             | _           | _           | PI[3]  | 9%                        | —       | 10%     | —       | —       | _       | —       | _       |
|             | _           | —           | PI[2]  | 9%                        | —       | 10%     | —       | —       | _       | —       | _       |
|             | _           | —           | PI[1]  | 9%                        | —       | 10%     | —       | —       |         | —       | _       |
|             | —           | —           | PI[0]  | 9%                        | —       | 10%     | —       | —       | —       | —       | —       |
|             |             |             | PC[12] | 8%                        | 12%     | 10%     | 11%     | 12%     | 18%     | 15%     | 16%     |
|             | л           | А           | PC[13] | 8%                        | —       | 10%     | —       | 13%     | —       | 15%     | _       |
|             | 4           | 4           | PC[8]  | 8%                        | —       | 10%     | —       | 13%     | —       | 15%     | —       |
|             |             |             | PB[2]  | 8%                        | 11%     | 9%      | 10%     | 13%     | 18%     | 15%     | 16%     |

Table 24. I/O weight<sup>(1)</sup> (continued)

1.  $V_{DD}$  = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%,  $T_A$  = –40 to 125 °C, unless otherwise specified.

2. SRC: "Slew Rate Control" bit in SIU\_PCRx.

# 4.7 **RESET** electrical characteristics

The device implements a dedicated bidirectional  $\overline{\text{RESET}}$  pin.





Figure 12. Fast external crystal oscillator (4 to 16 MHz) timing diagram

| Symbol               |        | <b>c</b> | Paramotor                                     | Conditions <sup>(1)</sup>                                             |     | Value |      | Unit |
|----------------------|--------|----------|-----------------------------------------------|-----------------------------------------------------------------------|-----|-------|------|------|
| Symbol               |        | C        | Farameter                                     | Conditions                                                            | Min | Тур   | Max  | Unit |
| f <sub>FXOSC</sub>   | S<br>R | _        | Fast external crystal<br>oscillator frequency | _                                                                     | 4.0 | _     | 16.0 | MHz  |
|                      | СС     | С        |                                               | $V_{DD} = 3.3 V \pm 10\%,$<br>PAD3V5V = 1<br>OSCILLATOR_MARGIN =<br>0 | 2.2 |       | 8.2  |      |
| 6                    | СС     | Ρ        | Fast external crystal                         | $V_{DD} = 5.0 V \pm 10\%,$<br>PAD3V5V = 0<br>OSCILLATOR_MARGIN = 0    | 2.0 |       | 7.4  | mA/  |
| 9mFXOSC              | C<br>C | С        | transconductance                              | $V_{DD} = 3.3 V \pm 10\%,$<br>PAD3V5V = 1<br>OSCILLATOR_MARGIN = 1    | 2.7 |       | 9.7  | V    |
|                      | ပပ     | С        |                                               | $V_{DD} = 5.0 V \pm 10\%,$<br>PAD3V5V = 0<br>OSCILLATOR_MARGIN =<br>1 | 2.5 | _     | 9.2  |      |
| Vevee                | С      | т        | Oscillation amplitude at                      | f <sub>OSC</sub> = 4 MHz,<br>OSCILLATOR_MARGIN =<br>0                 | 1.3 | _     | _    | V    |
| ✓FXOSC               | С      |          | EXTAL                                         | f <sub>OSC</sub> = 16 MHz,<br>OSCILLATOR_MARGIN =<br>1                | 1.3 | _     | _    | v    |
| V <sub>FXOSCOP</sub> | C<br>C | С        | Oscillation operating point                   | _                                                                     | _   | 0.95  | _    | V    |

Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics





Figure 18. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances  $C_{F}$ ,  $C_{P1}$  and  $C_{P2}$  are initially charged at the source voltage  $V_A$  (refer to the equivalent circuit reported in *Figure 17*): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).





#### In particular two different transient periods can be distinguished:



Equation 14 ADC\_1 (12-bit)

$$C_F > 8192 \bullet C_S$$

### 4.17.3 ADC electrical characteristics

| Sum              | Svmbol |   | Paramotor             | Conditions                                                 |     | Unit |     |      |
|------------------|--------|---|-----------------------|------------------------------------------------------------|-----|------|-----|------|
| Sym              | 1001   | 0 | Farameter             | Conditions                                                 | Min | Тур  | Max | Unit |
|                  |        | D |                       | $T_A = -40 \text{ °C}$                                     | —   | 1    | 70  |      |
|                  |        | D |                       | T <sub>A</sub> = 25 °C                                     | —   | 1    | 70  |      |
| I <sub>LKG</sub> | сс     | D | Input leakage current | $T_A = 85 \text{ °C}$ No current injection on adjacent pin |     | 3    | 100 | nA   |
|                  |        | D |                       | T <sub>A</sub> = 105 °C                                    | —   | 8    | 200 |      |
|                  |        | Ρ |                       | T <sub>A</sub> = 125 °C                                    |     | 45   | 400 |      |

#### Table 44. ADC input leakage current

| Sympho               |    | ~ | Devementer                                                                                                  | Conditions(1)                                |                               | Value |                               | - Unit |
|----------------------|----|---|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|-------|-------------------------------|--------|
| Symbo                | 1  | C | Parameter                                                                                                   | ameter Conditions <sup>(1)</sup> Min Typ Max |                               | Unit  |                               |        |
| V <sub>SS_ADC0</sub> | SR | _ | Voltage on VSS_HV_ADC0<br>(ADC_0 reference) pin with<br>respect to ground (V <sub>SS</sub> ) <sup>(2)</sup> | _                                            | -0.1                          | _     | 0.1                           | V      |
| V <sub>DD_ADC0</sub> | SR | _ | Voltage on VDD_HV_ADC pin<br>(ADC reference) with respect to<br>ground (V <sub>SS</sub> )                   | _                                            | V <sub>DD</sub> – 0.1         |       | V <sub>DD</sub> + 0.1         | V      |
| V <sub>AINx</sub>    | SR | _ | Analog input voltage <sup>(3)</sup>                                                                         | _                                            | V <sub>SS_ADC0</sub><br>- 0.1 | —     | V <sub>DD_ADC0</sub><br>+ 0.1 | V      |
| I <sub>ADC0pwd</sub> | SR | _ | ADC_0 consumption in power down mode                                                                        | _                                            | _                             | _     | 50                            | μA     |
| I <sub>ADC0run</sub> | SR | _ | ADC_0 consumption in running mode                                                                           | _                                            | _                             |       | 5                             | mA     |
| f <sub>ADC0</sub>    | SR | _ | ADC_0 analog frequency                                                                                      | —                                            | 6                             | _     | 32 + 4%                       | MHz    |
| $\Delta_{ADC0}$ SYS  | SR | _ | ADC_0 digital clock duty cycle<br>(ipg_clk)                                                                 | ADCLKSEL = 1 <sup>(4)</sup>                  | 45                            |       | 55                            | %      |
| t <sub>ADC0_PU</sub> | SR | _ | ADC_0 power up delay                                                                                        | —                                            |                               |       | 1.5                           | μs     |
| +                    | 6  | т | Sampling time <sup>(5)</sup>                                                                                | f <sub>ADC</sub> = 32 MHz,<br>INPSAMP = 17   | 0.5                           | _     |                               | 19     |
| 'ADC0_S              |    | I |                                                                                                             | f <sub>ADC</sub> = 6 MHz,<br>INPSAMP = 255   | _                             | _     | 42                            | μο     |
| t <sub>ADC0_C</sub>  | сс | Ρ | Conversion time <sup>(6)</sup>                                                                              | f <sub>ADC</sub> = 32 MHz,<br>INPCMP = 2     | 0.625                         |       | _                             | μs     |
| C <sub>S</sub>       | сс | D | ADC_0 input sampling capacitance                                                                            | _                                            | _                             | _     | 3                             | pF     |

#### Table 45. ADC\_0 conversion characteristics (10-bit ADC\_0)



110/133

### Table 48. DSPI characteristics<sup>(1)</sup> (continued)

| No  | Symbo |           | 6 | Paramotor                  |             | DSPI0/D          | SPI1/DS | PI3/DSPI5 | Γ                | OSPI2/DS | SPI4 | Unit |
|-----|-------|-----------|---|----------------------------|-------------|------------------|---------|-----------|------------------|----------|------|------|
| NO. | Symbo | ,         | 0 | Farameter                  |             | Min              | Тур     | Мах       | Min              | Тур      | Мах  | Unit |
| 0   | +.    | <b>CD</b> | Р | Data cotup timo for inputs | Master mode | 43               | —       | —         | 145              | —        | —    | nc   |
| 9   | ISUI  | SK        | U |                            | Slave mode  | 5                | —       | —         | 5                | —        | _    | 115  |
| 10  | +     | S D       | D | Data hold time for inpute  | Master mode | 0                | —       | —         | 0                | —        | _    | 20   |
| 10  | ۲HI   | SK        | U |                            | Slave mode  | 2 <sup>(6)</sup> | —       | —         | 2 <sup>(6)</sup> | —        | _    | 115  |
| 11  | t     | 0         | П | Data valid after SCK edge  | Master mode |                  | —       | 32        |                  | _        | 50   | ne   |
|     | 'SUO  | 00        | U | Data valiu alter SCR euge  | Slave mode  |                  | _       | 52        |                  | _        | 160  | 115  |
| 12  | + (7) | 2         | D | Data hold time for outputs | Master mode | 0                | —       | —         | 0                | —        | _    | 20   |
| 12  | 'HO`´ |           | U | Data hold time for outputs | Slave mode  | 8                | _       |           | 13               | _        |      | 115  |

1. Operating conditions:  $C_L = 10$  to 50 pF,  $Slew_{IN} = 3.5$  to 15 ns.

2. Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK starts before CSn is asserted. DSPI2 has only SLOW SCK available.

3. Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.

The t<sub>CSC</sub> delay value is configurable through a register. When configuring t<sub>CSC</sub> (using PCSSCK and CSSCK fields in DSPI\_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t<sub>CSC</sub> to ensure positive t<sub>CSCext</sub>.

The t<sub>ASC</sub> delay value is configurable through a register. When configuring t<sub>ASC</sub> (using PASC and ASC fields in DSPI\_CTARx registers), delay between internal CS and internal SCK must be higher than Δt<sub>ASC</sub> to ensure positive t<sub>ASCext</sub>.

6. This delay value corresponds to SMPL\_PT = 00b which is bit field 9 and 8 of DSPI\_MCR register.

7. SCK and SOUT are configured as MEDIUM pad.



Figure 22. DSPI classic SPI timing — master, CPHA = 0





Figure 25. DSPI classic SPI timing — slave, CPHA = 1

Figure 26. DSPI modified transfer format timing — master, CPHA = 0





#### **Electrical characteristics**

| No  | Symb               | <b>a</b> l | C | Parameter                   |     | Value |     | Unit |
|-----|--------------------|------------|---|-----------------------------|-----|-------|-----|------|
| NO. | Symbo              | 01         | C | Farameter                   | Min | Тур   | Max | Unit |
| 5   | t <sub>EVTOV</sub> | CC         | D | MCKO low to EVTO data valid | —   | _     | 8   | ns   |
| 6   | t <sub>NTDIS</sub> | СС         | D | TDI data setup time         | 15  |       | —   | ns   |
| 0   | t <sub>NTMSS</sub> | СС         | D | TMS data setup time         | 15  |       | —   | ns   |
| 7   | t <sub>NTDIH</sub> | СС         | D | TDI data hold time          | 5   |       | —   | ns   |
| '   | t <sub>NTMSH</sub> | СС         | D | TMS data hold time          | 5   |       | —   | ns   |
| 8   | t <sub>TDOV</sub>  | СС         | D | TCK low to TDO data valid   | 35  |       | —   | ns   |
| 9   | t <sub>TDOI</sub>  | CC         | D | TCK low to TDO data invalid | 6   | _     | _   | ns   |

#### Table 49. Nexus characteristics (continued)

#### Figure 31. Nexus TDI, TMS, TDO timing





## 4.18.4 JTAG characteristics

| No  | Symb              |    | 6 | Parameter              |     |     | Unit |      |
|-----|-------------------|----|---|------------------------|-----|-----|------|------|
| NO. | Symbol            |    | C | Faidilleter            | Min | Тур | Мах  | Unit |
| 1   | t <sub>JCYC</sub> | СС | D | TCK cycle time         | 64  | —   | —    | ns   |
| 2   | t <sub>TDIS</sub> | СС | D | TDI setup time         | 15  | —   | —    | ns   |
| 3   | t <sub>TDIH</sub> | CC | D | TDI hold time          | 5   | —   | —    | ns   |
| 4   | t <sub>TMSS</sub> | СС | D | TMS setup time         | 15  | —   | —    | ns   |
| 5   | t <sub>TMSH</sub> | СС | D | TMS hold time          | 5   | —   | —    | ns   |
| 6   | t <sub>TDOV</sub> | CC | D | TCK low to TDO valid   | —   | —   | 33   | ns   |
| 7   | t <sub>TDOI</sub> | СС | D | TCK low to TDO invalid | 6   | —   | —    | ns   |

#### Table 50. JTAG characteristics

## Figure 32. Timing diagram — JTAG boundary scan





| Cumhal |       | mm    |       |        | inches <sup>(1)</sup> |        | Natas |
|--------|-------|-------|-------|--------|-----------------------|--------|-------|
| Symbol | Min   | Тур   | Мах   | Min    | Тур                   | Мах    | Notes |
| D      | 16.80 | 17.00 | 17.20 | 0.6614 | 0.6693                | 0.6772 | —     |
| D1     | —     | 15.00 | —     | —      | 0.5906                | —      | —     |
| E      | 16.80 | 17.00 | 17.20 | 0.6614 | 0.6693                | 0.6772 | —     |
| E1     | —     | 15.00 | —     | —      | 0.5906                | —      | —     |
| е      | —     | 1.00  | —     | —      | 0.0394                | —      | —     |
| F      | —     | 1.00  | —     | —      | 0.0394                | —      | —     |
| ddd    | —     | —     | 0.20  | —      | —                     | 0.0079 |       |
| eee    | —     | —     | 0.25  | —      | —                     | 0.0098 | (4)   |
| fff    | —     | —     | 0.10  | —      | —                     | 0.0039 | (5)   |

#### Table 54. LBGA208 mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

LBGA stands for Low profile Ball Grid Array.

 Low profile: The total profile height (Dim A) is measured from the seating plane to the top of the component
 The maximum total package height is calculated by the following methodology:
 A2 (Typ) + A1 (Typ) + √ (A1<sup>2</sup> + A3<sup>2</sup> + A4<sup>2</sup> tolerance values)
 Low profile: 1.20 mm < A ≤ 1.70 mm</li>

3. The typical ball diameter before mounting is 0.60mm.

4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.

5. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones.

