
E·XFL

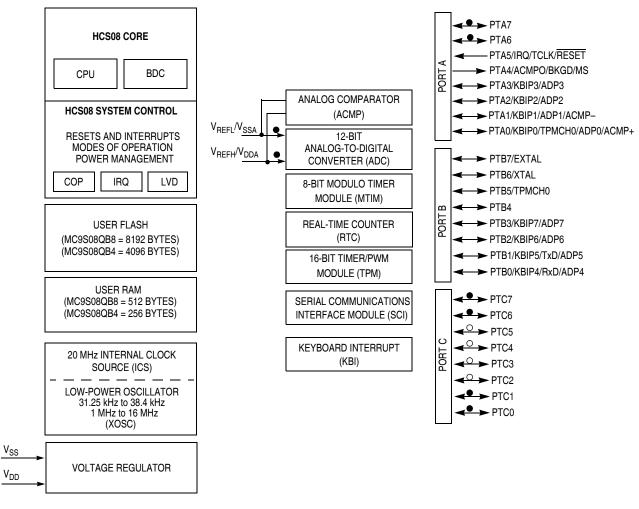
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, SCI
Peripherals	LVD, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qb4ctg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCU Block Diagram

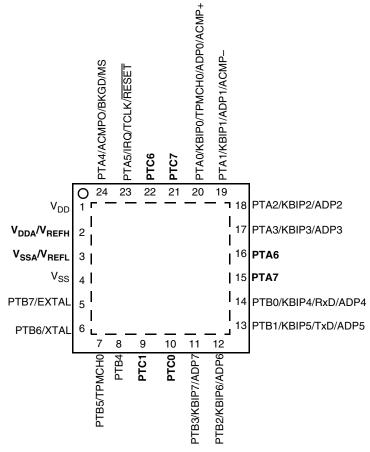
The block diagram shows the structure of the MC9S08QB8 MCU.

- $\, \odot \,$ pins not available on 24-pin or 16-pin packages
- pins not available on 16-pin package

 1 V_{DDA}/V_{REFH} and V_{SSA}/V_{REFL} are double bonded to V_{DD} and V_{SS} respectively in16-pin package.

Figure 1. MC9S08QB8 Series Block Diagram

2 Pin Assignments


This chapter shows the pin assignments for the MC9S08QB8 series devices.

Pir	n Num	ber		< Lowes	< Lowest Priority		
28	24	16	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	_		PTC5				
2	_		PTC4				
3	23	1	PTA5	IRQ	TCLK	RESET	
4	24	2	PTA4	ACMPO	BKGD	MS	
5	1	3					V _{DD}
6	2						V_{DDA}/V_{REFH}
7	3						V_{SSA}/V_{REFL}
8	4	4					V _{SS}
9	5	5	PTB7				EXTAL
10	6	6	PTB6				XTAL
11	7	7	PTB5	TPMCH0 ¹			
12	8	8	PTB4				
13			PTC3				
14			PTC2				
15	9		PTC1				
16	10		PTC0				
17	11	9	PTB3	KBIP7		ADP7	
18	12	10	PTB2	KBIP6		ADP6	
19	13	11	PTB1	KBIP5	TxD	ADP5	
20	14	12	PTB0	KBIP4	RxD	ADP4	
21	15		PTA7				
22	16		PTA6				
23	17	13	PTA3	KBIP3		ADP3	
24	18	14	PTA2	KBIP2		ADP2	
25	19	15	PTA1	KBIP1		ADP1 ²	ACMP-2
26	20	16	PTA0	KBIP0	TPMCH0	ADP0 ²	ACMP+ ²
27	21	_	PTC7				
28	22	—	PTC6				

Table 1. Pin Availability by Package Pin-Count

¹ TPMCH0 pin can be repositioned using at PTB5 TPMCH0PS in SOPT2, default reset location is PTA0.

 $^2\,$ If ADC and ACMP are enabled, both modules will have access to the pin.

Pins shown in bold type are lost in the next lower pin count package.

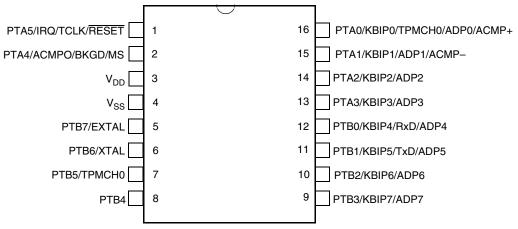


Figure 4. MC9S08QB8 Series in 16-Pin TSSOP Package

MC9S08QB8 Series MCU Data Sheet, Rev. 3

3.1 Introduction

This chapter contains electrical and timing specifications for the MC9S08QB8 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

 T_A = Ambient temperature, °C θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W $P_D = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273°C) + θ_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	—	3	
Lateb up	Minimum input voltage limit		-2.5	V
Latch-up	Maximum input voltage limit		7.5	V

Table 5. ESD and Latch-up Test Conditions

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp (°C)									
1	Ρ	Run supply current	RI _{DD}	10 MHz	_	5.60	6	mA	–40 to 85°C									
1	Т	FEI mode, all modules on	DD	1 MHz	3	0.80			-40 10 05 0									
2	Т	Run supply current	RI _{DD}	10 MHz		3.60		mA	–40 to 85°C									
2	Т	FEI mode, all modules off	סטייי	1 MHz	3	0.75		110.0	+0 10 00 0									
3	т	Run supply current LPRS=0, all modules off	Ы	16 kHz FBILP	3	165	—	μA	–40 to 85°C									
5	Т		RI _{DD}	16 kHz FBELP	3	105	_	μΑ	-40 10 03 0									
4	т	Run supply current LPRS=1, all modules off	RI _{DD}	16 kHz FBELP	3	7.3	_	μA	–40 to 85°C									
5	Т	Wait mode supply current	WI _{DD}	10 MHz	3	570		μA	–40 to 85°C									
5		FEI mode, all modules off	UD	1 MHz		290		μΛ	-+0 10 05 0									
6	т	Wait mode supply current LPRS = 1, all mods off	WI _{DD}	16 kHz FBELP	3	1	_	μA	–40 to 85°C									
	Ρ			—		0.25	0.65		-40 to 25°C									
	С													3	0.5	0.8		70°C
7	Р	Stop2 mode supply current	S2I _{DD}			1	2	μA	85°C									
'	С		DD	—		0.2	0.5	μη	–40 to 25°C									
	С			—	2	0.3	0.6	1	70°C									
	С			—		0.7	1.6		85°C									
	Ρ			—		0.45	0.80		–40 to 25°C									
	С			—	3	1	1.8		70°C									
8	Р	Stop3 mode supply current	S3I _{DD}			3	5.8	μA	85°C									
0	С	no clocks active	DD	_		0.3	0.6	μΛ	–40 to 25°C									
	С				2	0.8	1.5		70°C									
	С			—		2.5	5.0		85°C									

Table 8. Supply Current Characteristics

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

Table 9. Stop Mode Adders

Num	C Parame	Parameter	Condition	Condition			Temperature			
		Turumeter	Condition	-40 °C	25 °C	70 °C	85 °C	Units		
1	Т	LPO	_	50	75	100	150	nA		
2	Т	ERREFSTEN	RANGE = HGO = 0	1000	1000	1100	1500	nA		
3	Т	IREFSTEN ¹	_	63	70	77	81	μA		

Num	с	Parameter	Condition		Tempe	erature		Units
Nulli	U	Farameter	Condition	-40 °C	25 °C	70 °C	85 °C	Units
4	Т	RTC	Does not include clock source current	50	75	100	150	nA
5	Т	LVD ¹	LVDSE = 1	90	100	110	115	μA
6	Т	ACMP ¹	Not using the bandgap (BGBE = 0)	18	20	22	23	μA
7	Т	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0)	95	106	114	120	μΑ

Table 9. Stop Mode Adders (continued)

¹ Not available in stop2 mode.

3.8 External Oscillator (XOSC) Characteristics

Reference Figure 10 and Figure 11 for crystal or resonator circuits.

Table 10. XOSCVLP and ICS Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C _{1,} C ₂		See N See N		
3	D	Feedback resistor Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range (RANGE = 1, HGO = X)	R _F		— 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		 100 0 0 0 0	 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high gain High range, low power High range, high gain	^t CSTL ^t CSTH		600 400 5 15		ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0		20 20	MHz

- ¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.
- ² Load capacitors (C_1, C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- ³ See crystal or resonator manufacturer's recommendation.
- ⁴ Proper PC board layout procedures must be followed to achieve specifications.

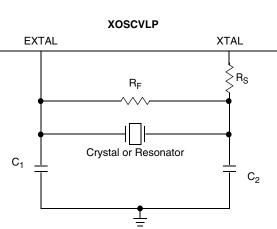


Figure 10. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

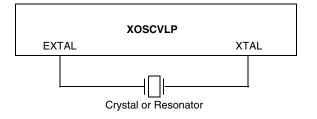


Figure 11. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.9 Internal Clock Source (ICS) Characteristics

Table 11. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Charac	cteristic	Symbol	Min.	Typical ¹	Max.	Unit
1	Ρ	Average internal reference frequency — factory trimmed at V_{DD} = 3.6 V and temperature = 25 °C		f _{int_t}	_	32.768	_	kHz
2	Ρ	Internal reference frequency —	user trimmed	f _{int_ut}	31.25	_	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}	_	60	100	μs
4	Ρ	DCO output frequency range — trimmed ²	Low range (DRS = 00)	f _{dco_t}	16	_	20	MHz
5	Ρ	DCO output frequency ² Reference = 32768 Hz and DMX32 = 1		f _{dco_DMX32}	_	19.92	_	MHz
6	С	Resolution of trimmed DCO out and temperature (using FTRIM)		$\Delta f_{dco_res_t}$		±0.1	±0.2	%f _{dco}

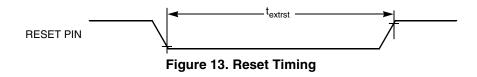
3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

3.10.1 Control Timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC		10	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	_	1300	μS
3	D	External reset pulse width ²	t _{extrst}	100	—	_	ns
4	D	Reset low drive	t _{rstdrv}	34 x t _{cyc}	_	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	—	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	—	_	μs
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}		_	ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
9	D	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁵ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		16 23	_	ns
3		Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) ⁵ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		5 9		ns
10	D	Voltage regulator recovery time	t _{VRR}	—	4	—	μS

Table 12. Control Timing


¹ Typical values are based on characterization data at V_{DD} = 3.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

³ To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD} .

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.

 $^5~$ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 85°C.

3.11 Analog Comparator (ACMP) Electricals

Table 14. Analog Comparator Electrical Specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V _{PWR}	1.8	_	3.6	V
D	Supply current (active)	I _{DDAC}	—	20	35	μA
D	Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD}	V
Р	Analog input offset voltage	V _{AIO}	—	20	40	mV
С	Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Р	Analog input leakage current	I _{ALKG}	—	_	1.0	μA
С	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μs

3.12 ADC Characteristics

Table 15. 12-Bit ADC Operating Conditions

Characteristic	Conditions	Symbol	Min	Typical ¹	Max	Unit	Comment
	Absolute	V _{DDA}	1.8	_	3.6	V	
Supply voltage	Delta to $V_{DD} (V_{DD} - V_{DDA})^2$	ΔV_{DDA}	-100	0	100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV_{SSA}	-100	0	100	mV	
Supply Current	Stop, Reset, Module Off	I _{DDAD}	_	0.007	0.8	μA	
Input Voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input Resistance		R _{ADIN}	_	5	7	kΩ	
	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz				2 5		
Analog Source Resistance	10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			5 10	kΩ	External to MCU
	8 bit mode (all valid f _{ADCK})		_	—	10		
ADC	High Speed (ADLPC = 0)	4	0.4	—	8.0	N 41 1_	
Conversion Clock Freq.	Low Power (ADLPC = 1)	f _{ADCK}	0.4	_	4.0	MHz	

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

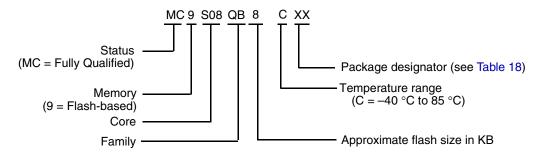
² DC potential difference.

Characteristic	Conditions	С	Symbol	Min	Typical ¹	Max	Unit	Comment
Integral Non-Linearity	12-bit mode	Т		_	±1.5	_		
	10-bit mode		INL	_	±0.5	_	LSB ²	
Non Encanty	8-bit mode	C		_	±0.3	_	-	
	12-bit mode	С		_	±1.5	_		For 28-pin and 24-pin packages only.
Zero-Scale Error	10-bit mode	Р	E _{zs}	_	±0.5	±1.5		
	8-bit mode	Т		_	±0.5	±0.5		$V_{ADIN} = V_{SSA}$
Zero-Scale	10-bit mode	Р		_	±1.5	±2.1		For 16-pin
Error	8-bit mode T E _{ZS} —		±0.5	±0.7	LSB ²	package only. V _{ADIN} = V _{SSA}		
	12-bit mode	Т		_	±1	_	LSB ²	For 28-pin and 24-pin packages only. V _{ADIN} = V _{DDA}
Full-Scale Error	10-bit mode	Р	E _{FS}	_	±0.5	±1		
	8-bit mode	Т		_	±0.5	±0.5		
Full-Scale	10-bit mode	Т		_	±1	±1.5	LSB ²	For 16-pin package only. V _{ADIN} = V _{DDA}
Error	8-bit mode	Т	E _{FS}		±0.5	±0.5		
	12-bit mode			_	-1 to 0	_		
Quantization Error	10-bit mode	D	EQ	_	—	±0.5	LSB ²	
	8-bit mode			_	—	±0.5		
	12-bit mode			_	±1			-
Input Leakage Error	10-bit mode	D	EIL	0	±0.2	±4	LSB ²	Pad leakage ³ * R _{AS}
	8-bit mode			0	±0.1	±1.2		''AS
Temp Sensor	–40°C– 25°C			—	1.646	_		
Slope	25°C– 85°C	— D	m		1.769	_	mV/°C	
Temp Sensor Voltage	25°C	D	V _{TEMP25}	_	701.2		mV	

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^{N}$

³ Based on input pad leakage current. Refer to pad electricals.


3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

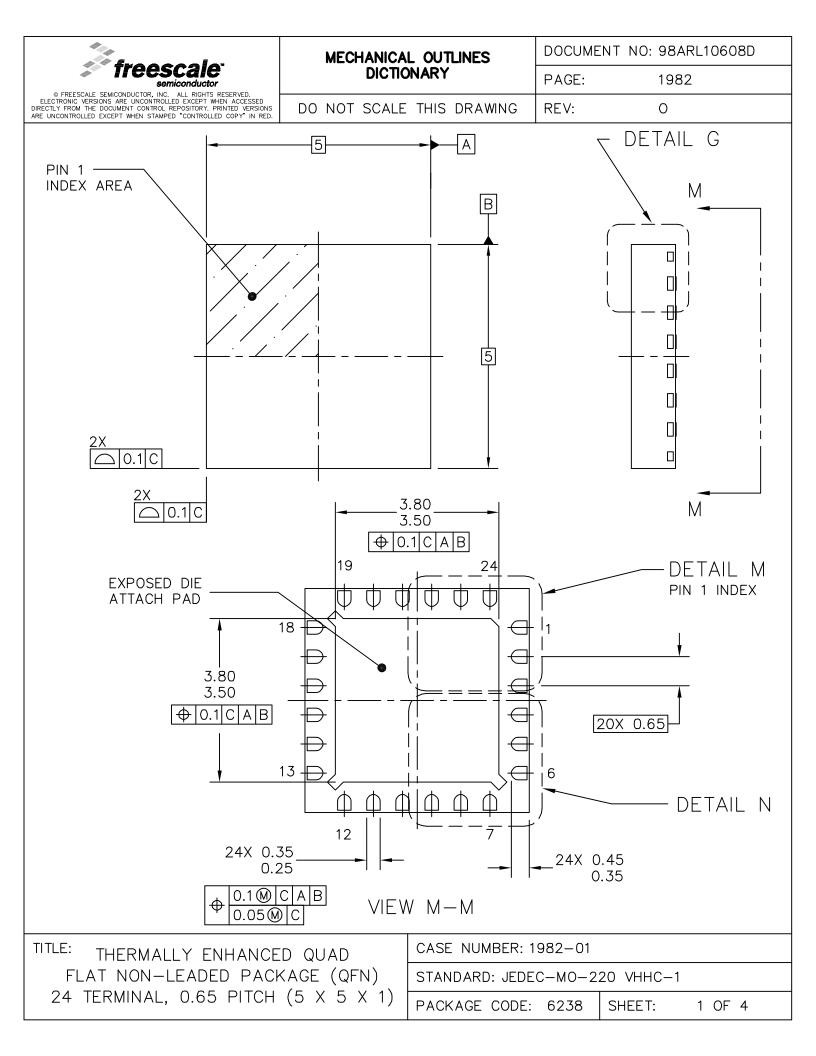
4 Ordering Information

This section contains ordering information for the device numbering system.

Example of the device numbering system:

5 Package Information

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
28	Small Outline Integrated Circuit	SOIC	WL	751F	98ASB42345B
24	Quad Flat Non-Leaded	QFN	GK	1982-01	98ARL10608D
16	Thin Shrink Small Outline Package	TSSOP	TG	948F	98ASH70247A


5.1 Mechanical Drawings

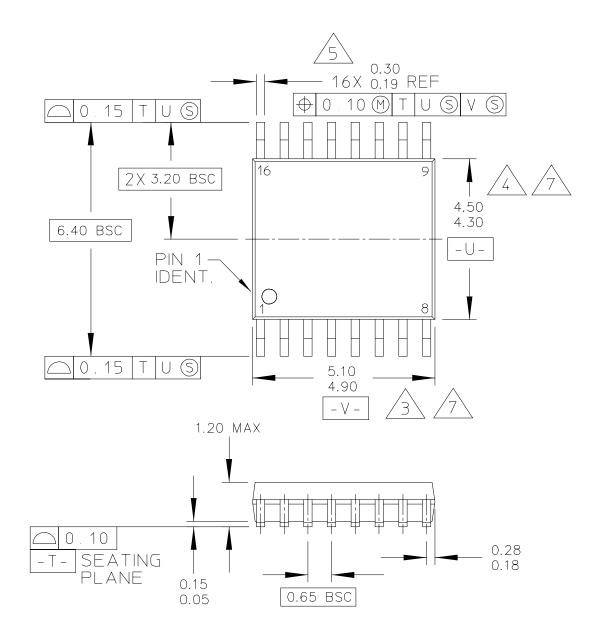
The following pages are mechanical drawings for the packages described in Table 18.

NOTES:

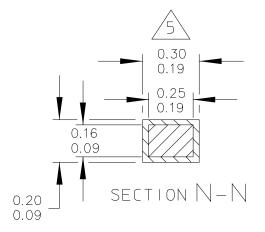
- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- 4. 751F-01 THRU -04 OBSOLETE. NEW STANDARD: 751F-05
- A. THIS DIMENSION DOES NOT INCLUDE DAM BAR PROTRUSION ALLOWABLE DAM BAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THIS DIMENSION AT MAXIMUM MATERIAL CONDITION.

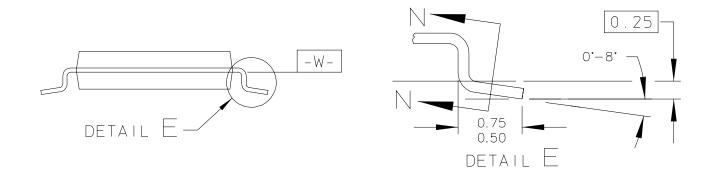
© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: SOIC, WIDE BODY, 28 LEAD CASEOUTLINE		DOCUMENT NO: 98ASB42345B REV: G		REV: G
		CASE NUMBER: 751F-05 10 MAR 20		
		STANDARD: MS	5-013AE	

	MECHANICAL OUTLINES	DOCUMENT NO: 98ARL10608D		
Treescale semiconductor	DICTIONARY	PAGE:	1982	
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE THIS DRAWING	REV:	0	


NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. THE COMPLETE JEDEC DESIGNATOR FOR THIS PACKAGE IS: HF-PQFN.


4. COPLANARITY APPLIES TO LEADS, CORNER LEADS, AND DIE ATTACH PAD.


5. MIN METAL GAP SHOULD BE 0.2MM.

TITLE: THERMALLY ENHANCED QUAD	CASE NUMBER: 1982-01
FLAT NON-LEADED PACKAGE (QFN)	STANDARD: JEDEC-MO-220 VHHC-1
24 TERMINAL, 0.65 PITCH (5 X 5 X 1)	PACKAGE CODE: 6238 SHEET: 3 OF 4

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	l outline	PRINT VERSION NO	IT TO SCALE
TITLE:	DOCUMENT NE]: 98ASH70247A	REV∶B	
16 LD TSSOP, PITCH 0.6	CASE NUMBER	19 MAY 2005		
	STANDARD: JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:		DOCUMENT NE	RE∨: B	
16 LD TSSOP. PITCH 0.	CASE NUMBER: 948F-01 19 MAY 20			
		STANDARD: JE	DEC	

NOTES:

1. CONTROLLING DIMENSION: MILLIMETER

2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.

<u>/</u>3 DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

4 DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE

5 DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 $\overline{7}$ dimensions are to be determined at datum plane $\overline{-W}$ -

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:	DOCUMENT NE	RE∨: B		
16 LD TSSOP, PITCH 0.6	CASE NUMBER: 948F-01 19 MAY 20			
	STANDARD: JE	DEC		

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9S08QB8 Rev. 3 3/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2009. All rights reserved.

