

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 1x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	99-UFBGA, WLCSP
Supplier Device Package	99-WLCSP (5.19x5.94)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c5288fni-lp213t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The details of the PSoC power modes are covered in the "Power System" section on page 26 of this datasheet.

PSoC uses JTAG (4-wire) or SWD (2-wire) interfaces for programming, debug, and test. Using these standard interfaces you can debug or program the PSoC with a variety of hardware solutions from Cypress or third party vendors. The Cortex-M3 debug and trace modules include FPB, DWT, ETM, and ITM. These modules have many features to help solve difficult debug and trace problems. Details of the programming, test, and debugging interfaces are discussed in the "Programming, Debug Interfaces, Resources" section on page 55 of this datasheet.

2. Pinouts

Each VDDIO pin powers a specific set of I/O pins. (The USBIOs are powered from VDDD.) Using the VDDIO pins, a single PSoC can support multiple voltage levels, reducing the need for off-chip level shifters. The black lines drawn on the pinout diagrams in Figure 2-3 and Figure 2-4, as well as Table 2-1, show the pins that are powered by each VDDIO.

Each VDDIO may source up to 100 mA total to its associated I/O pins, as shown in Figure 2-1.

Figure 2-1. VDDIO Current Limit

Conversely, for the 100-pin and 68-pin devices, the set of I/O pins associated with any VDDIO may sink up to 100 mA total, as shown in Figure 2-2.

Figure 2-2. I/O Pins Current Limit

Table 2-2. CSP Pinout

Table 2-2 shows the pinout for the 99-pin CSP package. Since there are four V_{DDIO} pins, the set of I/O pins associated with any V_{DDIO} may sink up to 100 mA total, same as for the 100-pin and 68-pin devices.

Ball	Name	Ball	Name	Ball	Name	Ball	Name
E5	P2[5]	L2	VIO1	B2	P3[6]	C8	VIO0
G6	P2[6]	K2	P1[6]	B3	P3[7]	D7	P0[4]
G5	P2[7]	C9	P4[2]	C3	P12[0]	E7	P0[5]
H6	P12[4]	E8	P4[3]	C4	P12[1]	B9	P0[6]
K7	P12[5]	K1	P1[7]	E3	P15[2]	D8	P0[7]
L8	P6[4]	H2	P12[6]	E4	P15[3]	D9	P4[4]
J6	P6[5]	F4	P12[7]	A1	NC	F8	P4[5]
H5	P6[6]	J1	P5[4]	A9	NC	F7	P4[6]
J5	P6[7]	H1	P5[5]	L1	NC	E6	P4[7]
L7	VSSB	F3	P5[6]	L9	NC	E9	VCCD
K6	Ind	G1	P5[7]	A3	VCCA	F9	VSSD
L6	VBOOST	G2	P15[6]	A4	VSSA	G9	VDDD
K5	VBAT	F2	P15[7]	B7	VSSA	H9	P6[0]
L5	VSSD	E2	VDDD	B8	VSSA	G8	P6[1]
L4	XRES	F1	VSSD	C7	VSSA	H8	P6[2]
J4	P5[0]	E1	VCCD	A5	VDDA	J9	P6[3]
K4	P5[1]	D1	P15[0]	A6	VSSD	G7	P15[4]
K3	P5[2]	D2	P15[1]	B5	P12[2]	F6	P15[5]
L3	P5[3]	C1	P3[0]	A7	P12[3]	F5	P2[0]
H4	P1[0]	C2	P3[1]	C5	P4[0]	J7	P2[1]
J3	P1[1]	D3	P3[2]	D5	P4[1]	J8	P2[2]
H3	P1[2]	D4	P3[3]	B6	P0[0]	K9	P2[3]
J2	P1[3]	B4	P3[4]	C6	P0[1]	H7	P2[4]
G4	P1[4]	A2	P3[5]	A8	P0[2]	K8	VIO2
G3	P1[5]	B1	VIO3	D6	P0[3]		

Figure 2-5 and Figure 2-6 show an example schematic and an example PCB layout, for the 100-pin TQFP part, for optimal analog performance on a 2-layer board.

The two pins labeled VDDD must be connected together.

The two pins labeled VCCD must be connected together, with capacitance added, as shown in Figure 2-5 and Power System on page 26. The trace between the two VCCD pins should be as short as possible.

The two pins labeled VSSD must be connected together.

For information on circuit board layout issues for mixed signals, refer to the application note AN57821 - Mixed Signal Circuit Board Layout Considerations for PSoC® 3 and PSoC 5.

5.5 Nonvolatile Latches (NVLs)

PSoC has a 4-byte array of nonvolatile latches (NVLs) that are used to configure the device at reset. The NVL register map is shown in Table 5-3.

Table 5-2.	Device	Configuration	NVL	Register	Мар
------------	--------	---------------	-----	----------	-----

Register Address	7	6	5	4	3	2	1	0
0x00	PRT3RE	DM[1:0]	PRT2R	DM[1:0]	PRT1R	DM[1:0]	PRT0	RDM[1:0]
0x01	PRT12R	PRT12RDM[1:0]		DM[1:0]	PRT5RDM[1:0]		PRT4	RDM[1:0]
0x02	XRESMEN	DBGEN					PRT15	5RDM[1:0]
0x03		DIG_PHS_DLY[3:0]			ECCEN	DPS	[1:0]	CFGSPEED

The details for individual fields and their factory default settings are shown in Table 5-3:.

Table 5-3. Fields and Factory Default Settings

Field	Description	Settings
PRTxRDM[1:0]	Controls reset drive mode of the corresponding IO port. See "Reset Configuration" on page 38. All pins of the port are set to the same mode.	00b (default) - high impedance analog 01b - high impedance digital 10b - resistive pull up 11b - resistive pull down
XRESMEN	Controls whether pin P1[2] is used as a GPIO or as an external reset. P1[2] is generally used as a GPIO, and not as an external reset.	0 (default) - GPIO 1 - external reset
DBGEN	Debug Enable allows access to the debug system, for third-party programmers.	0 - access disabled 1 (default) - access enabled
CFGSPEED	Controls the speed of the IMO-based clock during the device boot process, for faster boot or low-power operation.	0 (default) - 12-MHz IMO 1 - 48-MHz IMO
DPS[1:0]	Controls the usage of various P1 pins as a debug port. See "Programming, Debug Interfaces, Resources" on page 55.	00b - 5-wire JTAG 01b (default) - 4-wire JTAG 10b - SWD 11b - debug ports disabled
ECCEN	Controls whether ECC flash is used for ECC or for general configuration and data storage. See "Flash Program Memory" on page 19.	0 - ECC disabled 1 (default) - ECC enabled
DIG_PHS_DLY[3:0]	Selects the digital clock phase delay.	See the TRM for details.

Although PSoC Creator provides support for modifying the device configuration NVLs, the number of NVL erase/write cycles is limited – see "Nonvolatile Latches (NVL)" on page 94.

5.7 Memory Map

The Cortex-M3 has a fixed address map, which allows peripherals to be accessed by simple memory access instructions.

5.7.1 Address Map

The 4-GB address space is divided into the ranges shown in Table 5-4:

Table 5-4. Address Map

Address Range	Size	Use
0x0000000- 0x1FFFFFF	0.5 GB	Program code. This includes the exception vector table at power up, which starts at address 0.
0x2000000- 0x3FFFFFF	0.5 GB	Static RAM. This includes a 1 MByte bit-band region starting at 0x20000000 and a 32 Mbyte bit-band alias region starting at 0x22000000.
0x40000000– 0x5FFFFFFF	0.5 GB	Peripherals.
0x60000000– 0x9FFFFFF	1 GB	External RAM.
0xA0000000– 0xDFFFFFF	1 GB	External peripherals.
0xE0000000– 0xFFFFFFF	0.5 GB	Internal peripherals, including the NVIC and debug and trace modules.

Table 5-5. Peripheral Data Address Map

Address Range	Purpose
0x00000000-0x0003FFFF	256 K Flash
0x1FFF8000–0x1FFFFFF	32 K SRAM in Code region
0x20000000-0x20007FFF	32 K SRAM in SRAM region
0x40004000-0x400042FF	Clocking, PLLs, and oscillators
0x40004300-0x400043FF	Power management
0x40004500-0x400045FF	Ports interrupt control
0x40004700–0x400047FF	Flash programming interface
0x40004800-0x400048FF	Cache controller
0x40004900-0x400049FF	I ² C controller

Table 5-5. Peripheral Data Address Map (continued)

Address Range	Purpose
0x40004E00-0x40004EFF	Decimator
0x40004F00-0x40004FFF	Fixed timer/counter/PWMs
0x40005000-0x400051FF	I/O ports control
0x40005400–0x400054FF	External Memory Interface (EMIF) control registers
0x40005800-0x40005FFF	Analog Subsystem Interface
0x40006000-0x400060FF	USB Controller
0x40006400-0x40006FFF	UDB Working Registers
0x40007000-0x40007FFF	PHUB Configuration
0x40008000-0x400087FF	EEPROM
0x4000A000-0x4000A400	Reserved
0x40010000-0x4001FFFF	Digital Interconnect Configuration
0x48000000-0x48007FFF	Flash ECC Bytes
0x60000000-0x60FFFFF	External Memory Interface (EMIF)
0xE0000000-0xE00FFFF	Cortex-M3 PPB Registers, including NVIC, debug, and trace

The bit-band feature allows individual bits in SRAM to be read or written as atomic operations. This is done by reading or writing bit 0 of corresponding words in the bit-band alias region. For example, to set bit 3 in the word at address 0x20000000, write a 1 to address 0x2200000C. To test the value of that bit, read address 0x2200000C and the result is either 0 or 1 depending on the value of the bit.

Most memory accesses done by the Cortex-M3 are aligned, that is, done on word (4-byte) boundary addresses. Unaligned accesses of words and 16-bit half-words on nonword boundary addresses can also be done, although they are less efficient.

5.7.2 Address Map and Cortex-M3 Buses

The ICode and DCode buses are used only for accesses within the Code address range, 0–0x1FFFFFF.

The system bus is used for data accesses and debug accesses within the ranges 0x2000000–0xDFFFFFF and 0xE0100000–0xFFFFFFF. Instruction fetches can also be done within the range 0x20000000–0x3FFFFFFF, although these can be slower than instruction fetches via the ICode bus.

The private peripheral bus (PPB) is used within the Cortex-M3 to access system control registers and debug and trace module registers.

6.2.1 Power Modes

PSoC 5LP devices have four different power modes, as shown in Table 6-2 and Table 6-3. The power modes allow a design to easily provide required functionality and processing power while simultaneously minimizing power consumption and maximizing battery life in low power and portable devices.

PSoC 5LP power modes, in order of decreasing power consumption are:

- Active
- Alternate Active
- Sleep
- Hibernate

Table 6-2. Power Modes

Active is the main processing mode. Its functionality is configurable. Each power controllable subsystem is enabled or disabled by using separate power configuration template registers. In alternate active mode, fewer subsystems are enabled, reducing power. In sleep mode most resources are disabled regardless of the template settings. Sleep mode is optimized to provide timed sleep intervals and Real Time Clock functionality. The lowest power mode is hibernate, which retains register and SRAM state, but no clocks, and allows wakeup only from I/O pins. Figure 6-5 illustrates the allowable transitions between power modes. Sleep and hibernate modes should not be entered until all VDDIO supplies are at valid voltage levels.

Power Modes	Description	Entry Condition	Wakeup Source	Active Clocks	Regulator
Active	Primary mode of operation, all peripherals available (program- mable)	Wakeup, reset, manual register entry	Any interrupt	Any (program- mable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Alternate Active	Similar to Active mode, and is typically configured to have fewer peripherals active to reduce power. One possible configuration is to use the UDBs for processing, with the CPU turned off	Manual register entry	Any interrupt	Any (program- mable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Sleep	All subsystems automatically disabled	Manual register entry	Comparator, PICU, I ² C, RTC, CTW, LVD	ILO/kHzECO	Both digital and analog regulators buzzed. Digital and analog regulators can be disabled if external regulation used.
Hibernate	All subsystems automatically disabled Lowest power consuming mode with all peripherals and internal regulators disabled, except hibernate regulator is enabled Configuration and memory contents retained	Manual register entry	PICU		Only hibernate regulator active.

Table 6-3. Power Modes Wakeup Time and Power Consumption

Sleep Modes	Wakeup Time	Current (Typ)	Code Execution	Digital Resources	Analog Resources	Clock Sources Available	Wakeup Sources	Reset Sources
Active	-	3.1 mA ^[7]	Yes	All	All	All	-	All
Alternate Active	-	-	User defined	All	All	All	_	All
Sleep	<25 µs	2 µA	No	l ² C	Comparator	ILO/kHzECO	Comparator, PICU, I ² C, RTC, CTW, LVD	XRES, LVD, WDR
Hibernate	<200 µs	300 nA	No	None	None	None	PICU	XRES

Note

7. Bus clock off. Execute from CPU instruction buffer at 6 MHz. See Table 11-2 on page 61

Figure 7-4. Datapath Top Level

7.2.2.1 Working Registers

The datapath contains six primary working registers, which are accessed by CPU firmware or DMA during normal operation.

Table 7-1.	Working	Datapath	Registers
------------	---------	----------	-----------

Name	Function	Description
A0 and A1	Accumulators	These are sources and sinks for the ALU and also sources for the compares.
D0 and D1	Data Registers	These are sources for the ALU and sources for the compares.
F0 and F1	FIFOs	These are the primary interface to the system bus. They can be a data source for the data registers and accumulators or they can capture data from the accumu- lators or ALU. Each FIFO is four bytes deep.

7.2.2.2 Dynamic Configuration RAM

Dynamic configuration is the ability to change the datapath function and internal configuration on a cycle-by-cycle basis, under sequencer control. This is implemented using the 8-word × 16-bit configuration RAM, which stores eight unique 16-bit wide configurations. The address input to this RAM controls the sequence, and can be routed from any block connected to the UDB routing matrix, most typically PLD logic, I/O pins, or from the outputs of this or other datapath blocks.

ALU

The ALU performs eight general purpose functions. They are:

- Increment
- Decrement
- Add
- Subtract
- Logical AND
- Logical OR
- Logical XOR
- Pass, used to pass a value through the ALU to the shift register, mask, or another UDB register

Independent of the ALU operation, these functions are available:

- Shift left
- Shift right
- Nibble swap
- Bitwise OR mask

8. Analog Subsystem

The analog programmable system creates application specific combinations of both standard and advanced analog signal processing blocks. These blocks are then interconnected to each other and also to any pin on the device, providing a high level of design flexibility and IP security. The features of the analog subsystem are outlined here to provide an overview of capabilities and architecture.

Flexible, configurable analog routing architecture provided by analog globals, analog mux bus, and analog local buses

- Successive approximation (SAR) ADC
- One 8-bit DAC that provides either voltage or current output
- Two comparators with optional connection to configurable LUT outputs
- CapSense subsystem to enable capacitive touch sensing
- Precision reference for generating an accurate analog voltage for internal analog blocks

Figure 8-1. Analog Subsystem Block Diagram

Figure 8-2. CY8C52LP Analog Interconnect

To preserve detail of this image, this image is best viewed with a PDF display program or printed on 11" × 17" paper.

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

9.8 CSP Package Bootloader

A factory-installed bootloader program is included in all devices with CSP packages. The bootloader is compatible with PSoC Creator 3.0 bootloadable project files, and has the following features:

- I2C-based
- SCLK and SDAT available at P1[6] and P1[7], respectively
- External pull-up resistors required
- I2C slave, address 4, data rate = 100 kbps
- Single application
- Wait 2 seconds for bootload command
- Other bootloader options are as set by the PSoC Creator 3.0 Bootloader Component default
- Occupies the bottom 9 Kbytes of flash

For more information on this bootloader, see the following Cypress application notes:

AN73854, PSoC 3 and PSoC 5 LP Introduction to Bootloaders

AN60317, PSoC 3 and PSoC 5 LP I2C Bootloader

Note that a PSoC Creator bootloadable project must be associated with .hex and .elf files for a bootloader project that is configured for the target device. Bootloader .hex and .elf files can be found at www.cypress.com/go/PSoC5LPdatasheet.

The factory-installed bootloader can be overwritten using JTAG or SWD programming.

10. Development Support

The CY8C52LP family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit psoc.cypress.com/getting-started to find out more.

10.1 Documentation

A suite of documentation, to ensure that you can find answers to your questions quickly, supports the CY8C52LP family. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC

Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component datasheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: PSoC Creator makes designing with PSoC as easy as dragging a peripheral onto a schematic, but, when low level details of the PSoC device are required, use the technical reference manual (TRM) as your guide.

Note Visit www.arm.com for detailed documentation about the Cortex-M3 CPU.

10.2 Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

10.3 Tools

With industry standard cores, programming, and debugging interfaces, the CY8C52LP family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 11-2. DC Specifications (continued)

Parameter	Description	Condition	S	Min	Тур	Max	Units
I _{DD} ^[21]	Sleep Mode ^[22]	l					
		V _{DD} = V _{DDIO} =	T = -40 °C	_	1.9	3.1	μA
	CPU = OFF RTC = ON (= ECO32K ON in low-power	4.5–5.5 V	T = 25 °C	Ι	2.4	3.6	
	mode)		T = 85 °C	Ι	5	16	
	Sleep timer = ON (= ILO ON at 1 kHz) ^[23]	V _{DD} = V _{DDIO} =	T = -40 °C	Ι	1.7	3.1	
	I ² C Wake = OFF	2.7–3.6 V	T = 25 °C	Ι	2	3.6	
	Comparator = OFF		T = 85 °C	I	4.2	16	
	Boost = OFF	V _{DD} = V _{DDIO} =	T = -40 °C	I	1.6	3.1	
	SIO pins in single ended input, unregulated output mode	1.71–1.95 V	T = 25 °C	I	1.9	3.6	
			T = 85 °C	I	4.2	16	
	Comparator = ON CPU = OFF RTC = OFF Sleep timer = OFF WDT = OFF I2C Wake = OFF POR = ON Boost = OFF SIO pins in single ended input, unregulated output mode	V _{DD} = V _{DDA} = 2.7-3.6 V ^[24]	T = 25 °C	_	3	4.2	μA
	I2C Wake = ON CPU = OFF RTC = OFF Sleep timer = OFF WDT = OFF Comparator = OFF POR = ON Boost = OFF SIO pins in single ended input, unregulated output mode	V _{DD} = V _{D24} 2.7-3.6 V ²⁴	T = 25 °C	_	1.7	3.6	μA
	Hibernate Mode	1					
		$V_{DD} = V_{DDIO} =$	T = -40 °C	-	0.2	2	μA
		4.5-5.5 V	T = 25 °C	-	0.24	2	
	Hibernate mode current		T = 85 °C	-	2.6	15	
	SRAM retention	$V_{DD} = V_{DDIO} =$	T = -40 °C	-	0.11	2	
	GPIO interrupts are active	2.7-3.0 V	T = 25 °C	-	0.3	2	
	SIO pins in single ended input, unregulated		T = 85 °C	-	2	15	
	output mode	$V_{DD} = V_{DDIO} =$	T = –40 °C	-	0.9	2	
		1.7 1-1.55 V	T = 25 °C	-	0.11	2	
[0,4]			T = 85 °C	-	1.8	15	
DDAR ^[24]	Analog current consumption while device is reset	$V_{DDA} \le 3.6 V$		-	0.3	0.6	mA
[0.4]		V _{DDA} > 3.6 V		-	1.4	3.3	mA
DDDR ^{L24]}	Digital current consumption while device is	$V_{DDD} \le 3.6 V$		_	1.1	3.1	mA
. [04]		V _{DDD} > 3.6 V		_	0.7	3.1	mA
I _{DD_PROG} ^[24]	Current consumption while device programming. Sum of digital, analog, and I/Os: IDDD + IDDA + IDDIOX			-	15	21	mA

Notes

^{21.} The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in PSoC Creator, the integrated design environment. To estimate total current, find CPU current at frequency of interest and add peripheral currents for your particular system from the device datasheet and component datasheets.

^{22.} If V_{CCD} and V_{CCA} are externally regulated, the voltage difference between V_{CCD} and V_{CCA} must be less than 50 mV.

^{23.} Sleep timer generates periodic interrupts to wake up the CPU. This specification applies only to those times that the CPU is off.

^{24.} Based on device characterization (Not production tested). USBIO pins tied to ground (VSSD).

Figure 11-1. Active Mode Current vs $F_{CPU},\,V_{DD}$ = 3.3 V, Temperature = 25 $^\circ\text{C}$

CYPRESS

Figure 11-3. Active Mode Current vs Temperature and $F_{CPU},\ V_{DD}$ = 3.3 V

Table 11-3. AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{CPU}	CPU frequency	$1.71~V \leq V_{DDD} \leq 5.5~V$	DC	-	80.01	MHz
F _{BUSCLK}	Bus frequency	$1.71~V \leq V_{DDD} \leq 5.5~V$	DC	-	80.01	MHz
S _{VDD}	V _{DD} ramp rate			-	0.066	V/µs
T _{IO_INIT} ^[25]	Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge IPOR$ to I/O ports set to their reset states		Ι	-	10	μs
T _{STARTUP} ^[25]	Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge PRES$ to	V_{CCA}/V_{DDA} = regulated from V_{DDA}/V_{DDD} , no PLL used, fast IMO boot mode (48 MHz typ.)	_	-	33	μs
	CPU executing code at reset vector	V_{CCA}/V_{CCD} = regulated from V_{DDA}/V_{DDD} , no PLL used, IMO boot mode (12 MHz typ.)	_	-	66	μs
T _{SLEEP} ^[25]	Wakeup from sleep mode – Application of non-LVD interrupt to beginning of execution of next CPU instruction		-	-	25	μs
T _{HIBERNATE} ^[25]	Wakeup form hibernate mode – Application of external interrupt to beginning of execution of next CPU instruction		_	_	150	μs

Note

25. Based on device characterization (not production tested).

Figure 11-2. I_{DD} vs Frequency at 25 °C

Figure 11-11. Efficiency vs V_{BAT}, L_{BOOST} = 4.7 μ H ^[30]

Figure 11-13. Efficiency vs V_{BAT}, L_{BOOST} = 22 µH ^[30]

Figure 11-12. Efficiency vs V_{BAT} , L_{BOOST} = 10 μ H ^[30]

Figure 11-14. V_{RIPPLE} vs V_{BAT} ^[30]

Note

30. Typical example. Actual values may vary depending on external component selection, PCB layout, and other design parameters.

Table 11-11. SIO AC Specifications^[36]

Parameter	Description	Conditions	Min	Тур	Max	Units
TriseF	Rise time in Fast Strong Mode (90/10%)	Cload = 25 pF, V _{DDIO} = 3.3 V	-	-	12	ns
TfallF	Fall time in Fast Strong Mode (90/10%)	Cload = 25 pF, V _{DDIO} = 3.3 V	-	-	12	ns
TriseS	Rise time in Slow Strong Mode (90/10%)	Cload = 25 pF, V _{DDIO} = 3.0 V	_	-	75	ns
TfallS	Fall time in Slow Strong Mode (90/10%)	Cload = 25 pF, V_{DDIO} = 3.0 V	-	-	60	ns
	SIO output operating frequency					•
	$2.7 V < V_{DDIO} < 5.5 V$, Unregulated output (GPIO) mode, fast strong drive mode	90/10% V _{DDIO} into 25 pF	-	-	33	MHz
	1.71 V < V _{DDIO} < 2.7 V, Unregu- lated output (GPIO) mode, fast strong drive mode	90/10% V _{DDIO} into 25 pF	-	_	16	MHz
Esisout	3.3 V < V _{DDIO} < 5.5 V, Unregulated output (GPIO) mode, slow strong drive mode	90/10% V _{DDIO} into 25 pF	-	-	5	MHz
FSIOOUL	1.71 V < V _{DDIO} < 3.3 V, Unregu- lated output (GPIO) mode, slow strong drive mode	90/10% V _{DDIO} into 25 pF	-	-	4	MHz
	2.7 V < V _{DDIO} < 5.5 V, Regulated output mode, fast strong drive mode	Output continuously switching into 25 pF	-	-	20	MHz
	1.71 V < V _{DDIO} < 2.7 V, Regulated output mode, fast strong drive mode	Output continuously switching into 25 pF	-	-	10	MHz
	$1.71 \text{ V} < \text{V}_{\text{DDIO}} < 5.5 \text{ V}$, Regulated output mode, slow strong drive mode	Output continuously switching into 25 pF	-	-	2.5	MHz
Esioin	SIO input operating frequency					*
	1.71 V ≤ V _{DDIO} ≤ 5.5 V	90/10% V _{DDIO}	_	-	33	MHz

Figure 11-20. SIO Output Rise and Fall Times, Fast Strong Mode, V_{DDIO} = 3.3 V, 25 pF Load

Note

36. Based on device characterization (Not production tested).

11.5.4 Comparator

Table 11-23. Comparator DC Specifications^[46, 47]

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{os}	Input offset voltage in fast mode	Factory trim, V_{DDA} > 2.7 V, $V_{IN} \ge 0.5 V$	-		10	mV
	Input offset voltage in slow mode	Factory trim, $V_{IN} \ge 0.5 V$	-		9	mV
V	Input offset voltage in fast mode	Custom trim	-	-	4	mV
VOS	Input offset voltage in slow mode	Custom trim	-	-	4	mV
V _{OS}	Input offset voltage in ultra low power mode		-	±12	-	mV
TCVos	Temperature coefficient, input offset voltage	V _{CM} = V _{DDA} / 2, fast mode	-	63	85	μV/°C
		$V_{CM} = V_{DDA} / 2$, slow mode	-	15	20	
V _{HYST}	Hysteresis	Hysteresis enable mode	-	10	32	mV
V _{ICM}	Input common mode voltage	High current / fast mode	V _{SSA}	-	V _{DDA}	V
		Low current / slow mode	V _{SSA}	-	V _{DDA}	V
		Ultra low power mode	V _{SSA}	-	V _{DDA} – 1.15	V
CMRR	Common mode rejection ratio		-	50	-	dB
I _{CMP}	High current mode/fast mode		-	-	400	μA
	Low current mode/slow mode		-	-	100	μA
	Ultra low power mode		-	6	-	μA

Table 11-24. Comparator AC Specifications^[46, 47]

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{RESP}	Response time, high current mode	50 mV overdrive, measured pin-to-pin	-	75	110	ns
	Response time, low current mode	50 mV overdrive, measured pin-to-pin	-	155	200	ns
	Response time, ultra low power mode	50 mV overdrive, measured pin-to-pin	_	55	_	μs

46. The recommended procedure for using a custom trim value for the on-chip comparators are found in the TRM.

47. Based on device characterization (Not production tested).

Table 11-27. VDAC DC Specifications (continued)

Parameter	Description	Conditions	Min	Тур	Max	Units
	Monotonicity		-	_	Yes	-
V _{OS}	Zero scale error		_	0	±0.9	LSB
Eg	Gain error	1 V scale	_	-	±2.5	%
		4 V scale	_	-	±2.5	%
TC_Eg	Temperature coefficient, gain error	1 V scale	-	-	0.03	%FSR / °C
		4 V scale	-	-	0.03	%FSR / °C
I _{DD}	Operating current ^[52]	Slow mode	_	-	100	μA
		Fast mode	-	_	500	μA

Figure 11-45. VDAC INL vs Input Code, 1 V Mode

Figure 11-47. VDAC INL vs Temperature, 1 V Mode

Figure 11-46. VDAC DNL vs Input Code, 1 V Mode

Figure 11-48. VDAC DNL vs Temperature, 1 V Mode

Note 52. Based on device characterization (Not production tested).

11.5.7 Temperature Sensor

Table 11-29. Temperature Sensor Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Temp sensor accuracy	Range: –40 °C to +85 °C	-	±5	_	°C

11.5.8 LCD Direct Drive

Table 11-30. LCD Direct Drive DC Specifications^[54]

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{CC}	LCD Block (no glass)	Device sleep mode with wakeup at 400Hz rate to refresh LCD, bus, clock = 3MHz, Vddio = Vdda = 3V, 8 commons, 16 segments, 1/5 duty cycle, 40 Hz frame rate, no glass connected	_	81	-	μΑ
I _{CC_SEG}	Current per segment driver	Strong drive mode	-	260	-	μA
V _{BIAS}	LCD bias range (V _{BIAS} refers to the main output voltage(V0) of LCD DAC)	$V_{DDA} \geq 3~V$ and $V_{DDA} \geq V_{BIAS}$	2	-	5	V
	LCD bias step size	$V_{DDA} \ge 3 \text{ V} \text{ and } V_{DDA} \ge V_{BIAS}$	-	$9.1 \times V_{DDA}$	-	mV
	LCD capacitance per segment/common driver	Drivers may be combined	_	500	5000	pF
	Maximum segment DC offset	Vdda \ge 3V and Vdda \ge Vbias	-	-	20	mV
IOUT	Output drive current per segment driver)	V _{DDIO} = 5.5V, strong drive mode	355	-	710	μÂ

Table 11-31. LCD Direct Drive AC Specifications^[54]

Parameter	Description	Conditions	Min	Тур	Max	Units
f _{LCD}	LCD frame rate		10	50	150	Hz

^{54.} Based on device characterization (Not production tested).

Table 11-51.	Synchronous	Write and R	ead Timing	Specifications ^[66]
	eymenn enreae	Thing and it	iouu inning	opeenneanene

Parameter	Description	Conditions	Min	Тур	Max	Units
Fbus_clock	Bus clock frequency ^[67]		-	_	33	MHz
Tbus_clock	Bus clock period ^[68]		30.3	_	-	ns
Twr_Setup	Time from EM_data valid to rising edge of EM_Clock		Tbus_clock – 10	_	_	ns
Trd_setup	Time that EM_data must be valid before rising edge of EM_OE		5	_	-	ns
Trd_hold	Time that EM_data must be valid after rising edge of EM_OE		5	_	_	ns

Notes

- 66. Based on device characterization (Not production tested).
 67. EMIF signal timings are limited by GPIO frequency limitations. See "GPIO" section on page 68.
 68. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.

11.9 Clocking

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. Unless otherwise specified, all charts and graphs show typical values.

11.9.1 Internal Main Oscillator

Table 11-60. IMO DC Specifications^[77]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Supply current					
	74.7 MHz		_	-	730	μA
	62.6 MHz		-	-	600	μA
	48 MHz		-	-	500	μA
lcc_imo	24 MHz – USB mode	With oscillator locking to USB bus	-	-	500	μA
	24 MHz – non-USB mode		-	-	300	μA
	12 MHz		-	-	200	μA
	6 MHz		-	_	180	μA
	3 MHz		-	-	150	μA

Figure 11-62. IMO Current vs. Frequency

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{IMO}	IMO frequency stability (with factory trim)					
	74.7 MHz		-7	-	7	%
	62.6 MHz		-7	_	7	%
	48 MHz		-5	_	5	%
	24 MHz – non-USB mode		-4	-	4	%
	24 MHz – USB mode	With oscillator locking to USB bus	-0.25	_	0.25	%
	12 MHz		-3	-	3	%
	6 MHz		-2	-	2	%
	3 MHz		-2	-	2	%
Tstart_imo	Startup time ^[77]	From enable (during normal system operation)	_	-	13	μs

Note

^{77.} Based on device characterization (Not production tested).

NOTES:

1. REFERENCE JEDEC Publication 95: Design Guide 4.18

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-88034 *B

15. Document Conventions

15.1 Units of Measure

Table 15-1. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibels
fF	femtofarads
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohours
kHz	kilohertz
kΩ	kilohms
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	megaohms
Msps	megasamples per second
μA	microamperes

Table 15-1. Units of Measure (continued)

Symbol	Unit of Measure
μF	microfarads
μH	microhenrys
μs	microseconds
μV	microvolts
μW	microwatts
mA	milliamperes
ms	milliseconds
mV	millivolts
nA	nanoamperes
ns	nanoseconds
nV	nanovolts
Ω	ohms
pF	picofarads
ppm	parts per million
ps	picoseconds
S	seconds
sps	samples per second
sqrtHz	square root of hertz
V	volts