

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	XCore
Core Size	32-Bit 32-Core
Speed	4000MIPS
Connectivity	RGMII, USB
Peripherals	-
Number of I/O	176
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1M x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	374-LFBGA
Supplier Device Package	374-FBGA (18x18)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xe232-1024-fb374-c40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	xCORE Multicore Microcontrollers	2
2	XE232-1024-FB374 Features	5
3	Pin Configuration	6
4	Signal Description	7
5	Example Application Diagram	3
6	Product Overview	4
7	PLL	7
8	Boot Procedure	8
9	Memory	1
10	USB PHÝ	2
11	RGMII	4
12	TAG	6
13	Board Integration	7
14	DC and Switching Characteristics	1
15	Package Information	5
16	Ordering Information 3	6
App	endices	7
A	Configuration of the XF232-1024-FB374	7
B	Processor Status Configuration 4	0
c	Tile Configuration 5	ĩ
D	Node Configuration	ġ
F	ISB Node Configuration	7
Ē	ISB PHY Configuration	q
Ċ	TAC xSCOPF and Debugging 7	6
н	Schematics Design Chack List	, 8
Π.	PCR Lavout Design Check List	21
1	Associated Design Documentation	2
J	Polated Documentation	2
N I	Pavision History	2
L		S

TO OUR VALUED CUSTOMERS

It is our intention to provide you with accurate and comprehensive documentation for the hardware and software components used in this product. To subscribe to receive updates, visit http://www.xmos.com/.

XMOS Ltd. is the owner or licensee of the information in this document and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd. makes no representation that the information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other countries, and may not be used without written permission. Company and product names mentioned in this document are the trademarks or registered trademarks of their respective owners.

1 xCORE Multicore Microcontrollers

The xCORE-200 Series is a comprehensive range of 32-bit multicore microcontrollers that brings the low latency and timing determinism of the xCORE architecture to mainstream embedded applications. Unlike conventional microcontrollers, xCORE multicore microcontrollers execute multiple real-time tasks simultaneously and communicate between tasks using a high speed network. Because xCORE multicore microcontrollers are completely deterministic, you can write software to implement functions that traditionally require dedicated hardware.

Figure 1: XE232-1024-FB374 block diagram

Key features of the XE232-1024-FB374 include:

- ► **Tiles**: Devices consist of one or more xCORE tiles. Each tile contains between five and eight 32-bit xCOREs with highly integrated I/O and on-chip memory.
- Logical cores Each logical core can execute tasks such as computational code, DSP code, control software (including logic decisions and executing a state machine) or software that handles I/O. Section 6.1
- xTIME scheduler The xTIME scheduler performs functions similar to an RTOS, in hardware. It services and synchronizes events in a core, so there is no requirement for interrupt handler routines. The xTIME scheduler triggers cores

4 Signal Description

This section lists the signals and I/O pins available on the XE232-1024-FB374. The device provides a combination of 1 bit, 4bit, 8bit and 16bit ports, as well as wider ports that are fully or partially (gray) bonded out. All pins of a port provide either output or input, but signals in different directions cannot be mapped onto the same port.

Pins may have one or more of the following properties:

- PD/PU: The IO pin has a weak pull-down or pull-up resistor. The resistor is enabled during and after reset. Enabling a link or port that uses the pin disables the resistor. Thereafter, the resistor can be enabled or disabled under software control. The resistor is designed to ensure defined logic input state for unconnected pins. It should not be used to pull external circuitry. Note that the resistors are highly non-linear and only a maximum pull current is specified in Section 14.2.
- ST: The IO pin has a Schmitt Trigger on its input.
- ▶ IOT: The IO pin is powered from VDDIOT (X1) or VDDIOT_2 (X3), not VDDIO

	Power pins (12)					
Signal	Function	Туре	Properties			
GND	Digital ground	GND				
OTP_VCC	OTP power supply	PWR				
PLL_AGND	Analog ground for PLL	PWR				
PLL_AVDD	Analog PLL power	PWR				
USB_2_VDD	Digital tile power	PWR				
USB_2_VDD33	USB Analog power	PWR				
USB_VDD	Digital tile power	PWR				
USB_VDD33	USB Analog power	PWR				
VDD	Digital tile power	PWR				
VDDIO	Digital I/O power	PWR				
VDDIOT	Digital I/O power (top)	PWR				
	Digital I/O power (top. X3)	PWR				

▶ IO: the pin is powered from VDDIO

JTAG pins (6)						
Signal	Function	Туре	Properties			
RST_N	Global reset input	Input	IO, PU, ST			
тск	Test clock	Input	IO, PD, ST			
TDI	Test data input	Input	IO, PU			
TDO	Test data output	Output	IO, PD			
TMS	Test mode select	Input	IO, PU			

(continued)

Signal	Function						Type	Properties
X2D50	X2L5 ³					32A ¹	1/0	IO. PD
X2D51	X ₂ L5 ²					32A ²	1/0	IO. PD
X2D52	X2L51					32A ³	1/0	IO. PD
X2D53	X2L50					32A ⁴	1/0	IO. PD
X2D54	X ₂ L5 ⁰					32A ⁵	1/0	IO, PD
X2D55	$X_2L5^1_{out}$					32A ⁶	1/0	IO, PD
X2D56	$X_2L5^2_{out}$					32A ⁷	1/0	IO, PD
X2D57	$X_2L5_{out}^3$					32A ⁸	1/0	IO, PD
X2D58	X ₂ L5 ⁴					32A ⁹	I/O	IO, PD
X2D61	X ₂ L6 ⁴ _{in}					32A ¹⁰	1/0	IO, PD
X2D62	X ₂ L6 ³ _{in}					32A ¹¹	1/0	IO, PD
X2D63	$X_2L6_{in}^2$					32A ¹²	1/0	IO, PD
X2D64	X ₂ L6 ¹					32A ¹³	I/O	IO, PD
X2D65	X ₂ L6 ⁰					32A ¹⁴	I/O	IO, PD
X2D66	X ₂ L6 ⁰ _{0ut}					32A ¹⁵	1/0	IO, PD
X2D67	X ₂ L6 ¹					32A ¹⁶	1/0	IO, PD
X2D68	$X_2L6_{out}^2$					32A ¹⁷	1/0	IO, PD
X2D69	$X_2L6_{out}^3$					32A ¹⁸	I/0	IO, PD
X2D70	$X_2L6_{out}^4$					32A ¹⁹	I/O	IO, PD
X3D00	$X_2L7_{in}^2$	1A ⁰					I/O	IO, PD
X3D01	X ₂ L7 ¹	1B ⁰					1/0	IO, PD
X3D02	X ₂ L4 ⁰		4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	IO, PD
X3D03	X ₂ L4 ⁰		4A ¹	8A ¹	16A ¹	32A ²¹	1/0	IO, PD
X3D04	X ₂ L4 ¹		4B ⁰	8A ²	16A ²	32A ²²	I/O	IO, PD
X3D05	X ₂ L4 ²		4B ¹	8A ³	16A ³	32A ²³	1/0	IO, PD
X3D06	X ₂ L4 ³ _{out}		4B ²	8A ⁴	16A ⁴	32A ²⁴	1/0	IO, PD
X3D07	X ₂ L4 ⁴		4B ³	8A ⁵	16A ⁵	32A ²⁵	I/O	IO, PD
X3D08	X ₂ L7 ⁴		4A ²	8A ⁶	16A ⁶	32A ²⁶	I/0	IO, PD
X3D09	X ₂ L7 ³		4A ³	8A ⁷	16A ⁷	32A ²⁷	I/O	IO, PD
X3D10		1C ⁰					I/0	IOT, PD
X3D11		1D ⁰					I/O	IOT, PD
X3D12		1E ⁰					I/O	IO, PD
X3D13		1F ⁰					I/O	IO, PD
X3D14			4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/O	IO, PD
X3D15			4C ¹	8B1	16A ⁹	32A ²⁹	I/O	IO, PD
X3D20			4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IO, PD
X3D21			4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/O	IO, PD
X3D23		1H ⁰					I/O	IO, PD
X3D24		110					I/O	IO, PD
X3D25		1J ⁰					I/O	IO, PD
X3D26	tx_clk (rgmii)		4E ⁰	8C ⁰	16B ⁰		I/O	IOT, PD
X3D27	tx_ctl (rgmii)		4E ¹	8C1	16B ¹		I/O	IOT, PD
X3D28	rx_clk (rgmii)		4F ⁰	8C ²	16B ²		I/O	IOT, PD
								(continued)

-XMOS[®]-

5 Example Application Diagram

- ▶ see Section 10 for details on the USB PHY
- see Section 11 for details on RGMII integration
- see Section 13 for details on the power supplies and PCB design

ports are available. All pins of a port provide either output or input. Signals in different directions cannot be mapped onto the same port.

The port logic can drive its pins high or low, or it can sample the value on its pins, optionally waiting for a particular condition. Ports are accessed using dedicated instructions that are executed in a single processor cycle. xCORE-200 IO pins can be used as *open collector* outputs, where signals are driven low if a zero is output, but left high impedance if a one is output. This option is set on a per-port basis.

Data is transferred between the pins and core using a FIFO that comprises a SERDES and transfer register, providing options for serialization and buffered data.

Each port has a 16-bit counter that can be used to control the time at which data is transferred between the port value and transfer register. The counter values can be obtained at any time to find out when data was obtained, or used to delay I/O until some time in the future. The port counter value is automatically saved as a timestamp, that can be used to provide precise control of response times.

The ports and xCONNECT links are multiplexed onto the physical pins. If an xConnect Link is enabled, the pins of the underlying ports are disabled. If a port is enabled, it overrules ports with higher widths that share the same pins. The pins on the wider port that are not shared remain available for use when the narrower port is enabled. Ports always operate at their specified width, even if they share pins with another port.

6.4 Clock blocks

xCORE devices include a set of programmable clocks called clock blocks that can be used to govern the rate at which ports execute. Each xCORE tile has six clock blocks: the first clock block provides the tile reference clock and runs at a default frequency of 100MHz; the remaining clock blocks can be set to run at different frequencies.

-XM()S

A clock block can use a 1-bit port as its clock source allowing external application clocks to be used to drive the input and output interfaces. xCORE-200 clock blocks optionally divide the clock input from a 1-bit port.

In many cases I/O signals are accompanied by strobing signals. The xCORE ports can input and interpret strobe (known as readyIn and readyOut) signals generated by external sources, and ports can generate strobe signals to accompany output data.

On reset, each port is connected to clock block 0, which runs from the xCORE Tile reference clock.

6.5 Channels and Channel Ends

Logical cores communicate using point-to-point connections, formed between two channel ends. A channel-end is a resource on an xCORE tile, that is allocated by the program. Each channel-end has a unique system-wide identifier that comprises a unique number and their tile identifier. Data is transmitted to a channel-end by an output-instruction; and the other side executes an input-instruction. Data can be passed synchronously or asynchronously between the channel ends.

6.6 xCONNECT Switch and Links

XMOS devices provide a scalable architecture, where multiple xCORE devices can be connected together to form one system. Each xCORE device has an xCONNECT interconnect that provides a communication infrastructure for all tasks that run on the various xCORE tiles on the system.

The interconnect relies on a collection of switches and XMOS links. Each xCORE device has an on-chip switch that can set up circuits or route data. The switches are connected by xConnect Links. An XMOS link provides a physical connection between two switches. The switch has a routing algorithm that supports many different topologies, including lines, meshes, trees, and hypercubes.

The links operate in either 2 wires per direction or 5 wires per direction mode, depending on the amount of bandwidth required. Circuit switched, streaming

8.2 Boot from SPI master

If set to boot from SPI master, the processor enables the four pins specified in Figure 11, and drives the SPI clock at 2.5 MHz (assuming a 400 MHz core clock). A READ command is issued with a 24-bit address 0x000000. The clock polarity and phase are 0 / 0.

Figure 11: SPI master pins

	Description	
X0D00 MISO Master In Slave Out (Data)		
X0D01 SS Slave Select		
X0D10 SCLK Clock		
X0D11 MOSI Master Out Slave In (Data)		

The xCORE Tile expects each byte to be transferred with the *least-significant bit first*. Programmers who write bytes into an SPI interface using the most significant bit first may have to reverse the bits in each byte of the image stored in the SPI device.

If a large boot image is to be read in, it is faster to first load a small boot-loader that reads the large image using a faster SPI clock, for example 50 MHz or as fast as the flash device supports.

The pins used for SPI boot are hardcoded in the boot ROM and cannot be changed. If required, an SPI boot program can be burned into OTP that uses different pins.

8.3 Boot from SPI slave

If set to boot from SPI slave, the processor enables the three pins specified in Figure 12 and expects a boot image to be clocked in. The supported clock polarity and phase are 0/0 and 1/1.

	Pin	Signal	Description
	X0D00	SS	Slave Select
Figure 12:	X0D10	SCLK	Clock
SPI slave pins	X0D11	MOSI	Master Out Slave In (Data)

The xCORE Tile expects each byte to be transferred with the *least-significant bit first*. The pins used for SPI boot are hardcoded in the boot ROM and cannot be changed. If required, an SPI boot program can be burned into OTP that uses different pins.

8.4 Boot from xConnect Link

If set to boot from an xConnect Link, the processor enables its link(s) around 2 us after the boot process starts. Enabling the Link switches off the pull-down resistors on the link, drives all the TX wires low (the initial state for the Link), and monitors the RX pins for boot-traffic; they must be low at this stage. If the internal pull-down is too weak to drain any residual charge, external pull-downs of 10K may be required on those pins.

and data is communicated through ports on the digital node. A library, XUD, is provided to implement USB-device functionality.

The USB PHY is connected to the ports on Tile 0 and Tile 1 as shown in Figure 14. When the USB PHY is enabled on Tile 0, the ports shown can on Tile 0 only be used with the USB PHY. When the USB PHY is enabled on Tile 1, then the ports shown can on Tile 1 only be used with the USB PHY. All other IO pins and ports are unaffected. The USB PHY should not be enabled on both tiles. Two clock blocks can be used to clock the USB ports. One clock block for the TXDATA path, and one clock block for the RXDATA path. Details on how to connect those ports are documented in an application note on USB for xCORE-200.

An external resistor of 43.2 ohm (1% tolerance) should connect USB_RTUNE to ground, as close as possible to the device.

10.1 USB VBUS

USB_VBUS need not be connected if the device is wholly powered by USB, and the device is used to implement a USB-device.

If you use the USB PHY to design a self-powered USB-device, then the device must be able detect the presence of VBus on the USB connector (so the device can disconnect its pull-up resistors from D+/D- to ensure the device does not have any voltage on the D+/D- pins when VBus is not present, "USB Back Voltage Test"). This requires USB VBUS to be connected to the VBUS pin of the USB connector as is shown in Figure 15.

When connecting a USB cable to the device it is possible an overvoltage transient will be present on VBus due to the inductance of the USB cable combined with the required input capacitor on VBus. The circuit in Figure 15 ensures that the transient does not damage the device. The 10k series resistor and 0.1 uF capacitor ensure than any input transient is filtered and does not reach the device. The 47k resistor to ground is a bleeder resistor to discharge the input capacitor when VBus is not present. The 1-10 uF input capacitor is required as part of the USB specification. A typical value would be 2.2 uF to ensure the 1 uF minimum requirement is met even under voltage bias conditions.

In any case, extra components (such as a ferrite bead and diodes) may be required for EMC compliance and ESD protection. Different wiring is required for USB-host and USB-OTG.

10.2 Logical Core Requirements

The XMOS XUD software component runs in a single logical core with endpoint and application cores communicating with it via a combination of channel communication and shared memory variables.

Each IN (host requests data from device) or OUT (data transferred from host to device) endpoint requires one logical core.

11 RGMII

This device comes with two RGMII interfaces; one that is connected to Tile 1, and one that is connected to Tile 3.

The device has a series of pins that are dedicated to communicate with an RGMII PHY, as per the RGMII v1.3 spec. This can be used to communicate with GBit Ethernet PHYs. The pins and functions are listed in Figure 16. When RGMII mode is enabled (using processor status register 2) these pins can no longer be used as GPIO pins, and will instead be driven directly from an RGMII block that provides DDR to SDR conversion, which in turn is interfaced to a set of ports on Tile 1 (and Tile 3).

The RGMII block is connected to the ports on Tile 1 (and Tile 3) as shown in Figure 17. When the RGMII block is enabled, the ports shown can only be used with the RGMII block, and IO pins X1D26..X1D33/X1D40..X1D43 can only be used with the RGMII block. Ports and pins not used in Figure 17 can be used as normal.

The RGMII block generates a clock (configured using processor status register 2), and has the facility to delay the outgoing clock edge, putting it out of phase with the data. The RGMII block translates the double data-rate 4-wire data signals and 1-wire control signal into single-data rate 8-wire TX and DX signals and two control signals. Figure 17 shows how four clock blocks can be used to clock the RGMII ports. One clock block for the TXDATA path, one clock block to delay the TX_CLK, and one clock block clocked on a negative valid signal to enable mode switching between 10/100/1000 speeds. Details on how to connect those ports are documented in an application note on RGMII for

14.5 Power Consumption

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
I(DDCQ)	Quiescent VDD current		90		mA	A, B, C
PD	Tile power dissipation		325		µW/MIPS	A, D, E, F
IDD	Active VDD current		1140	1400	mA	A, G
I(ADDPLL)	PLL_AVDD current		5	7	mA	Н
I(VDD33)	VDD33 current		53.4		mA	I
I(USB_VDD)	USB_VDD current		16.6		mA	J

Figure 28: xCORE Tile currents

A Use for budgetary purposes only.

- B Assumes typical tile and I/O voltages with no switching activity.
- C Includes PLL current.
- D Assumes typical tile and I/O voltages with nominal switching activity.
- E Assumes 1 MHz = 1 MIPS.
- F PD(TYP) value is the usage power consumption under typical operating conditions.
- G Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 500 MHz, average device resource usage.
- H PLL_AVDD = 1.0 V
- I HS mode transmitting while driving all 0's data (constant JKJK on DP/DM). Loading of 10 pF. Transfers do not include any interpacket delay.
- J HS receive mode; no traffic.

The tile power consumption of the device is highly application dependent and should be used for budgetary purposes only.

More detailed power analysis can be found in the XS1-UE Power Consumption document,

1							
	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
	f	Frequency	3.25	24	100	MHz	
	SR	Slew rate	0.10			V/ns	
	TJ(LT)	Long term jitter (pk-pk)			2	%	А
	f(MAX)	Processor clock frequency			500	MHz	В

14.6 Clock

Figure 29: Clock

A Percentage of CLK period.

B Assumes typical tile and I/O voltages with nominal activity.

Further details can be found in the XS1-UE Clock Frequency Control document,

15 Package Information

-XMOS

15.1 Part Marking

16 Ordering Information

Figure 34:	Product Code	Marking	Qualification	Speed Grade
Orderable	XE232-1024-FB374-C40	E032A0C40	Commercial	2000 MIPS
part numbers	XE232-1024-FB374-I40	E032A0I40	Industrial	2000 MIPS

B.1 RAM base address: 0x00

This register contains the base address of the RAM. It is initialized to 0x00040000.

0x00: RAM base address

-).	Bits	Perm	Init	Description
e.	31:2	RW		Most significant 16 bits of all addresses.
s	1:0	RO	-	Reserved

B.2 Vector base address: 0x01

Base address of event vectors in each resource. On an interrupt or event, the 16 most significant bits of the destination address are provided by this register; the least significant 16 bits come from the event vector.

0x01: Vector base address

Bits	Perm	Init	Description
31:18	RW		The event and interrupt vectors.
17:0	RO	-	Reserved

B.3 xCORE Tile control: 0x02

Register to control features in the xCORE tile

B.18 Debug interrupt data: 0x16

On a data watchpoint, this register contains the effective address of the memory operation that triggered the debugger. On a resource watchpoint, it countains the resource identifier.

0x16: Debug interrupt data

l6: ug	Bits	Perm	Init	Description
ata	31:0	DRW		Value.

B.19 Debug core control: 0x18

This register enables the debugger to temporarily disable logical cores. When returning from the debug interrupts, the cores set in this register will not execute. This enables single stepping to be implemented.

0x18: Debug core control

Bits	Perm	Init	Description
31:8	RO	-	Reserved
7:0	DRW		1-hot vector defining which threads are stopped when not in debug mode. Every bit which is set prevents the respective thread from running.

B.20 Debug scratch: 0x20 .. 0x27

A set of registers used by the debug ROM to communicate with an external debugger, for example over JTAG. This is the same set of registers as the Debug Scratch registers in the xCORE tile configuration.

0x20 .. 0x27: Debug scratch

ebug	Bits	Perm	Init	Description
atch	31:0	DRW		Value.

B.21 Instruction breakpoint address: 0x30 .. 0x33

-XM()S

This register contains the address of the instruction breakpoint. If the PC matches this address, then a debug interrupt will be taken. There are four instruction breakpoints that are controlled individually.

B.25 Data breakpoint control register: 0x70 .. 0x73

This set of registers controls each of the four data watchpoints.

Bits	Perm	Init	Description
31:24	RO	-	Reserved
23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
15:3	RO	-	Reserved
2	DRW	0	When 1 the breakpoints will be be triggered on loads.
1	DRW	0	Determines the break condition: $0 = A AND B$, $1 = A OR B$.
0	DRW	0	When 1 the instruction breakpoint is enabled.

0x70 .. 0x73: Data breakpoint control register

B.26 Resources breakpoint mask: 0x80 .. 0x83

This set of registers contains the mask for the four resource watchpoints.

0x80 .. 0x83: Resources breakpoint mask

urces point	Bits	Perm	Init	Description
mask	31:0	DRW		Value.

B.27 Resources breakpoint value: 0x90 .. 0x93

This set of registers contains the value for the four resource watchpoints.

0x90 .. 0x93: Resources breakpoint value

ces oint	Bits	Perm	Init	Description
lue	31:0	DRW		Value.

B.28 Resources breakpoint control register: 0x9C .. 0x9F

This set of registers controls each of the four resource watchpoints.

-XMOS

XS2-UE32A-1024-FB374

0x04: Control PSwitch permissions to debug registers

Bits	Perm	Init	Description
31	CRW	0	When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch, XCore(PS_DBG_Scratch) and JTAG
30:1	RO	-	Reserved
0	CRW	0	When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch

C.5 Cause debug interrupts: 0x05

This register can be used to raise a debug interrupt in this xCORE tile.

0x05: Cause debug interrupts

Bits	Perm	Init	Description
31:2	RO	-	Reserved
1	CRW	0	1 when the processor is in debug mode.
0	CRW	0	Request a debug interrupt on the processor.

C.6 xCORE Tile clock divider: 0x06

This register contains the value used to divide the PLL clock to create the xCORE tile clock. The divider is enabled under control of the tile control register

0x06: xCORE Tile clock divider

Bits	Perm	Init	Description
31	CRW	0	Clock disable. Writing '1' will remove the clock to the tile.
30:16	RO	-	Reserved
15:0	CRW	0	Clock divider.

C.7 Security configuration: 0x07

Copy of the security register as read from OTP.

-XMOS

Bits	Perm	Init	Description
31:26	RO	-	Reserved
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.
15:6	RO	-	Reserved
5:4	RW	0	Determines the network to which this link belongs, reset as 0.
3	RO	-	Reserved
2	RO		1 when the current packet is considered junk and will be thrown away.
1	RO		1 when the dest side of the link is in use.
0	RO		1 when the source side of the link is in use.

0x40 .. 0x47: PLink status and network

D.17 Link configuration and initialization: 0x80 .. 0x88

These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links 0..7.

	Bits	Perm	Init	Description
	31	RW		Write to this bit with '1' will enable the XLink, writing '0' will disable it. This bit controls the muxing of ports with overlapping xlinks.
	30	RW	0	0: operate in 2 wire mode; 1: operate in 5 wire mode
	29:28	RO	-	Reserved
	27	RO		Rx buffer overflow or illegal token encoding received.
	26	RO	0	This end of the xlink has issued credit to allow the remote end to transmit
	25	RO	0	This end of the xlink has credit to allow it to transmit.
	24	WO		Clear this end of the xlink's credit and issue a HELLO token.
	23	WO		Reset the receiver. The next symbol that is detected will be the first symbol in a token.
	22	RO	-	Reserved
י. ג ו	21:11	RW	0	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.
1	10:0	RW	0	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.

-XMOS"

0x80 .. 0x88: Link configuration and initialization **0x20:** UIFM Sticky flags

Bits	Perm	Init	Description
31:7	RO	-	Reserved
6:0	RW	0	Stickyness for each flag.

F.10 UIFM port masks: 0x24

Set of masks that identify how port 1N, port 1O and port 1P are affected by changes to the flags in FLAGS

Bits	Perm	Init	Description
31:24	RW	0	Bit mask that determines which flags in UIFM_IFM_FLAG[6:0] contribute to port 1?. If any flag listed in this bitmask is high, port 1? will be high.
23:16	RW	0	Bit mask that determines which flags in UIFM_IFM_FLAG[6:0] contribute to port 1P. If any flag listed in this bitmask is high, port 1P will be high.
15:8	RW	0	Bit mask that determines which flags in UIFM_IFM_FLAG[6:0] contribute to port 10. If any flag listed in this bitmask is high, port 10 will be high.
7:0	RW	0	Bit mask that determines which flags in UIFM_IFM_FLAG[6:0] contribute to port 1N. If any flag listed in this bitmask is high, port 1N will be high.

0x24: UIFM port masks

F.11 UIFM SOF value: 0x28

USB Start-Of-Frame counter

0x28: UIFM SOF value

Bits	Perm	Init	Description
31:11	RO	-	Reserved
10:8	RW	0	Most significant 3 bits of SOF counter
7:0	RW	0	Least significant 8 bits of SOF counter

-XMOS

F.12 UIFM PID: 0x2C

The last USB packet identifier received

G JTAG, xSCOPE and Debugging

If you intend to design a board that can be used with the XMOS toolchain and xTAG debugger, you will need an xSYS header on your board. Figure 41 shows a decision diagram which explains what type of xSYS connectivity you need. The three subsections below explain the options in detail.

G.1 No xSYS header

The use of an xSYS header is optional, and may not be required for volume production designs. However, the XMOS toolchain expects the xSYS header; if you do not have an xSYS header then you must provide your own method for writing to flash/OTP and for debugging.

G.2 JTAG-only xSYS header

The xSYS header connects to an xTAG debugger, which has a 20-pin 0.1" female IDC header. The design will hence need a male IDC header. We advise to use a boxed header to guard against incorrect plug-ins. If you use a 90 degree angled header, make sure that pins 2, 4, 6, ..., 20 are along the edge of the PCB.

Connect pins 4, 8, 12, 16, 20 of the xSYS header to ground, and then connect:

- ▶ TDI to pin 5 of the xSYS header
- TMS to pin 7 of the xSYS header
- TCK to pin 9 of the xSYS header
- DEBUG_N to pin 11 of the xSYS header

XS2-UE32A-1024-FB374