

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	UART/USART
Peripherals	WDT
Number of I/O	32
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89s51-24pu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

nal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{II}) because of the pull-ups.

Port 3 receives some control signals for Flash programming and verification.

Port 3 also serves the functions of various special features of the AT89S51, as shown in the following table.

Port Pin	Alternate Functions
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (timer 0 external input)
P3.5	T1 (timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

4.7 RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 98 oscillator periods after the Watchdog times out. The DIS-RTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.

4.8 ALE/PROG

Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.

In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

4.9 PSEN

Program Store Enable (PSEN) is the read strobe to external program memory.

When the AT89S51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

4.10 **EA**/VPP

External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.

 $\overline{\text{EA}}$ should be strapped to V_{CC} for internal program executions.

This pin also receives the 12-volt programming enable voltage (V_{PP}) during Flash programming.

4.11 XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

4.12 XTAL2

Output from the inverting oscillator amplifier

5. Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 5-1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

AT89S51

0F8H									0FFH
0F0H	B 00000000								0F7H
0E8H									0EFH
0E0H	ACC 00000000								0E7H
0D8H									0DFH
0D0H	PSW 00000000								0D7H
0C8H									0CFH
0C0H									0C7H
0B8H	IP XX000000								0BFH
0B0H	P3 11111111								0B7H
0A8H	IE 0X000000								0AFH
0A0H	P2 11111111		AUXR1 XXXXXXX0				WDTRST XXXXXXXX		0A7H
98H	SCON 00000000	SBUF XXXXXXXX							9FH
90H	P1 11111111								97H
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000	AUXR XXX00XX0		8FH
80H	P0 11111111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000		PCON 0XXX0000	87H

 Table 5-1.
 AT89S51 SFR Map and Reset Values

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the five interrupt sources in the IP register.

AUXR	Address = 8EH Reset Value = XXX00XX0B							
Not Bit /	Address	able						
	-	-	_	WDIDLE	DISRTO	_	-	DISALE
Bit	7	6	5	4	3	2	1	0
-	Reserved for future expansion							
DISALE	Disabl	e/Enabl	e ALE					
	DISAL	.E ting Mov	ho					
	Opera							
	0	ALE	is emitte	ed at a const	ant rate of 1/	6 the oscil	lator frequ	iency
	1	ALE	is active	e only during	a MOVX or N	/IOVC inst	ruction	
DISRTO	Disabl	e/Enabl	e Reset	-out				
	DISRT	0						
	0	Rese	et pin is	driven High a	after WDT tim	nes out		
	1	Rese	et pin is	input only				
WDIDLE	Disabl	e/Enabl	e WDT i	n IDLE mode	e			
WDIDLE								
0	WDT	continu	es to co	unt in IDLE n	node			
1	WDT	halts co	ounting i	n IDLE mode)			

Table 5-2. AUXR: Auxiliary Register

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should **ALWAYS** initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.

Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and rest under software control and is not affected by reset.

AUXR1	Address = A2H Reset Value = XXXXXX0B								
Not E	Not Bit Addressable								
	_	-	-	_	_	-	_	DPS	
Bit	7	6	5	4	3	2	1	0	
-	Reserve	d for futur	e expansi	on					
DPS	Data Poi	nter Regis	ter Selec	t					
	DPS	DPS							
	0	0 Selects DPTR Registers DP0L, DP0H							
	1	Select	s DPTR F	Registers [DP1L, DP1	Н			

Table 5-3. AUXR1: Auxiliary Register 1

6. Memory Organization

MCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.

6.1 Program Memory

If the EA pin is connected to GND, all program fetches are directed to external memory.

On the AT89S51, if \overline{EA} is connected to V_{CC}, program fetches to addresses 0000H through FFFH are directed to internal memory and fetches to addresses 1000H through FFFH are directed to external memory.

6.2 Data Memory

The AT89S51 implements 128 bytes of on-chip RAM. The 128 bytes are accessible via direct and indirect addressing modes. Stack operations are examples of indirect addressing, so the 128 bytes of data RAM are available as stack space.

7. Watchdog Timer (One-time Enabled with Reset-out)

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 14-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.

7.1 Using the WDT

To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least

10. Interrupts

The AT89S51 has a total of five interrupt vectors: two external interrupts (INT0 and INT1), two timer interrupts (Timers 0 and 1), and the serial port interrupt. These interrupts are all shown in Figure 10-1.

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.

Note that Table 10-1 shows that bit positions IE.6 and IE.5 are unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle.

 Table 10-1.
 Interrupt Enable (IE) Register

(M	(MSB) (LSB)										
	EA	_	-	ES		ET1	EX1	ET0	EX0		
E	nable Bit = 1 e	enables the i	nterrupt.								
E	nable Bit = 0 d	disables the i	nterrupt.								
Symb	lool	Posit	ion		Funct	ion					
EA		IE.7 Disables all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing enable bit.					ipt is ource is or clearing i	ts			
_		IE.6			Reserved						
_		IE.5			Reser	ved					
ES		IE.4			Serial	Port interrup	ot enable bit				
ET1		IE.3			Timer	1 interrupt e	enable bit				
EX1		IE.2	IE.2			al interrupt	1 enable bit				
ET0		IE.1			Timer	0 interrupt e	enable bit				
EX0		IE.0			External interrupt 0 enable bit						
User software should never write 1s to reserved bits, because they may be used in future AT89 products.											

Figure 10-1. Interrupt Sources

11. Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 11-1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 11-2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clock-ing circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Figure 11-1. Oscillator Connections

Note: C1, C2 = $30 \text{ pF} \pm 10 \text{ pF}$ for Crystals = $40 \text{ pF} \pm 10 \text{ pF}$ for Ceramic Resonators

<u>Á**I**MEL</u>

14. Program Memory Lock Bits

The AT89S51 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in Table 14-1.

	Program	Lock Bits		
LB1 LB2 LB3			LB3	Protection Type
1	U	U	U	No program lock features
2	Ρ	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the Flash memory is disabled
3	Р	Р	U	Same as mode 2, but verify is also disabled
4	Р	Р	Р	Same as mode 3, but external execution is also disabled

 Table 14-1.
 Lock Bit Protection Modes

When lock bit 1 is programmed, the logic level at the \overline{EA} pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of \overline{EA} must agree with the current logic level at that pin in order for the device to function properly.

15. Programming the Flash – Parallel Mode

The AT89S51 is shipped with the on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.

The AT89S51 code memory array is programmed byte-by-byte.

Programming Algorithm: Before programming the AT89S51, the address, data, and control signals should be set up according to the Flash Programming Modes table (Table 17-1) and Figure 17-1 and Figure 17-2. To program the AT89S51, take the following steps:

- 1. Input the desired memory location on the address lines.
- 2. Input the appropriate data byte on the data lines.
- 3. Activate the correct combination of control signals.
- 4. Raise \overline{EA}/V_{PP} to 12V.
- 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The bytewrite cycle is self-timed and typically takes no more than 50 μs. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.

Data Polling: The AT89S51 features Data Polling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.

AT89S51

Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. **The status of the individual lock bits can be verified directly by reading them back.**

Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.

(000H) = 1EH indicates manufactured by Atmel (100H) = 51H indicates AT89S51 (200H) = 06H

Chip Erase: In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulsing ALE/PROG low for a duration of 200 ns - 500 ns.

In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 500 ms.

During chip erase, a serial read from any address location will return 00H at the data output.

16. Programming the Flash – Serial Mode

The Code memory array can be programmed using the serial ISP interface while RST is pulled to V_{cc} . The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required.

The Chip Erase operation turns the content of every memory location in the Code array into FFH.

Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than 1/16 of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz.

16.1 Serial Programming Algorithm

To program and verify the AT89S51 in the serial programming mode, the following sequence is recommended:

- 1. Power-up sequence:
 - a. Apply power between VCC and GND pins.
 - b. Set RST pin to "H".

If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.

- 2. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 16.
- 3. The Code array is programmed one byte at a time in either the Byte or Page mode. The write cycle is self-timed and typically takes less than 0.5 ms at 5V.
- 4. Any memory location can be verified by using the Read instruction that returns the content at the selected address at serial output MISO/P1.6.

5. At the end of a programming session, RST can be set low to commence normal device operation.

Power-off sequence (if needed):

- 1. Set XTAL1 to "L" (if a crystal is not used).
- 2. Set RST to "L".
- 3. Turn V_{CC} power off.

Data Polling: The Data Polling feature is also available in the serial mode. In this mode, during a write cycle an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

16.2 Serial Programming Instruction Set

The Instruction Set for Serial Programming follows a 4-byte protocol and is shown in the "Serial Programming Instruction Set" on page 20.

17. Programming Interface – Parallel Mode

Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

Most major worldwide programming vendors offer worldwide support for the Atmel AT89 microcontroller series. Please contact your local programming vendor for the appropriate software revision.

				ALE/	EA/						P0.7-0	P2.3-0	P1.7-0
Mode	V _{cc}	RST	PSEN	PROG	V _{PP}	P2.6	P2.7	P3.3	P3.6	P3.7	7 Data Addre		ress
Write Code Data	5V	н	L	(2)	12V	L	Н	Н	Н	Н	D _{IN}	A11-8	A7-0
Read Code Data	5V	н	L	Н	н	L	L	L	н	н	D _{OUT}	A11-8	A7-0
Write Lock Bit 1	5V	н	L	(3)	12V	н	Н	Н	Н	Н	х	х	х
Write Lock Bit 2	5V	н	L	(3)	12V	Н	Н	Н	L	L	х	х	х
Write Lock Bit 3	5V	н	L	(3)	12V	Н	L	Н	Н	L	х	х	х
Read Lock Bits 1, 2, 3	5V	н	L	н	Н	н	н	L	Н	L	P0.2, P0.3, P0.4	х	х
Chip Erase	5V	н	L	(1)	12V	н	L	Н	L	L	х	х	х
Read Atmel ID	5V	н	L	Н	Н	L	L	L	L	L	1EH	0000	00H
Read Device ID	5V	н	L	Н	Н	L	L	L	L	L	51H	0001	00H
Read Device ID	5V	Н	L	Н	Н	L	L	L	L	L	06H	0010	00H

 Table 17-1.
 Flash Programming Modes

Notes: 1. Each PROG pulse is 200 ns - 500 ns for Chip Erase.

2. Each PROG pulse is 200 ns - 500 ns for Write Code Data.

3. Each PROG pulse is 200 ns - 500 ns for Write Lock Bits.

4. RDY/BSY signal is output on P3.0 during programming.

5. X = don't care.

16 **AT89S51**

Figure 17-1. Programming the Flash Memory (Parallel Mode)

Figure 17-2. Verifying the Flash Memory (Parallel Mode)

18. Flash Programming and Verification Characteristics (Parallel Mode)

 $T_A = 20^{\circ}C$ to $30^{\circ}C$, $V_{CC} = 4.5$ to 5.5V

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Supply Voltage	11.5	12.5	V
I _{PP}	Programming Supply Current		10	mA
I _{CC}	V _{CC} Supply Current		30	mA
1/t _{CLCL}	Oscillator Frequency	3	33	MHz
t _{AVGL}	Address Setup to PROG Low	48 t _{CLCL}		
t _{GHAX}	Address Hold After PROG	48 t _{CLCL}		
t _{DVGL}	Data Setup to PROG Low	48 t _{CLCL}		
t _{GHDX}	Data Hold After PROG	48 t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) High to V _{PP}	48 t _{CLCL}		
t _{SHGL}	V _{PP} Setup to PROG Low	10		μs
t _{GHSL}	V _{PP} Hold After PROG	10		μs
t _{GLGH}	PROG Width	0.2	1	μs
t _{AVQV}	Address to Data Valid		48t _{CLCL}	
t _{ELQV}	ENABLE Low to Data Valid		48t _{CLCL}	
t _{EHQZ}	Data Float After ENABLE	0	48t _{CLCL}	
t _{GHBL}	PROG High to BUSY Low		1.0	μs
t _{WC}	Byte Write Cycle Time		50	μs

Figure 18-1. Flash Programming and Verification Waveforms – Parallel Mode

18 **AT89S51**

21. Serial Programming Characteristics

Figure 21-1. Serial Programming Timing

Symbol	Parameter	Min	Тур	Мах	Units
1/t _{CLCL}	Oscillator Frequency	3		33	MHz
t _{CLCL}	Oscillator Period	30			ns
t _{SHSL}	SCK Pulse Width High	8 t _{CLCL}			ns
t _{SLSH}	SCK Pulse Width Low	8 t _{CLCL}			ns
t _{OVSH}	MOSI Setup to SCK High	t _{CLCL}			ns
t _{SHOX}	MOSI Hold after SCK High	2 t _{CLCL}			ns
t _{SLIV}	SCK Low to MISO Valid	10	16	32	ns
t _{ERASE}	Chip Erase Instruction Cycle Time			500	ms
t _{swc}	Serial Byte Write Cycle Time			64 t _{CLCL} + 400	μs

22. Absolute Maximum Ratings*

Operating Temperature
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground1.0V to +7.0V
Maximum Operating Voltage
DC Output Current 15.0 mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

23. DC Characteristics

The values shown in this table are valid for $T_A = -40^{\circ}$ C to 85°C and $V_{CC} = 4.0$ V to 5.5V, unless otherwise noted.

Symbol	Parameter	Condition	Min	Мах	Units
V _{IL}	Input Low Voltage	(Except EA)	-0.5	0.2 V _{CC} -0.1	V
V _{IL1}	Input Low Voltage (EA)		-0.5	0.2 V _{CC} -0.3	V
V _{IH}	Input High Voltage	(Except XTAL1, RST)	0.2 V _{CC} +0.9	V _{CC} +0.5	V
V _{IH1}	Input High Voltage	(XTAL1, RST)	0.7 V _{CC}	V _{CC} +0.5	V
V _{OL}	Output Low Voltage ⁽¹⁾ (Ports 1,2,3)	I _{OL} = 1.6 mA		0.45	V
V _{OL1}	Output Low Voltage ⁽¹⁾ (Port 0, ALE, PSEN)	I _{OL} = 3.2 mA		0.45	V
		I_{OH} = -60 $\mu A,V_{CC}$ = 5V $\pm10\%$	2.4		V
V _{OH}	Output High Voltage	Ι _{OH} = -25 μΑ	0.75 V _{CC}		V
	(, , , , , , , , , , , , , , , , , , ,	Ι _{OH} = -10 μΑ	0.9 V _{CC}		V
		I_{OH} = -800 $\mu A,V_{CC}$ = 5V $\pm 10\%$	2.4		V
V _{OH1}	Output High Voltage (Port 0 in External Bus Mode)	Ι _{OH} = -300 μA	0.75 V _{CC}		V
	(,	Ι _{ΟΗ} = -80 μΑ	0.9 V _{CC}		V
I _{IL}	Logical 0 Input Current (Ports 1,2,3)	$V_{IN} = 0.45V$		-50	μA
I _{TL}	Logical 1 to 0 Transition Current (Ports 1,2,3)	$V_{\rm IN}=2V,V_{\rm CC}=5V\pm10\%$		-300	μA
ILI	Input Leakage Current (Port 0, \overline{EA})	$0.45 < V_{IN} < V_{CC}$		±10	μA
RRST	Reset Pulldown Resistor		50	300	KΩ
C _{IO}	Pin Capacitance	Test Freq. = 1 MHz, $T_A = 25^{\circ}C$		10	pF
	Power Supply Current	Active Mode, 12 MHz		25	mA
I _{CC}		Idle Mode, 12 MHz		6.5	mA
	Power-down Mode ⁽²⁾	$V_{CC} = 5.5V$		50	μA

Notes: 1. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 10 mA

Maximum I_{OL} per 8-bit port:

Port 0: 26 mA Ports 1, 2, 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Minimum V_{CC} for Power-down is 2V.

24. AC Characteristics

Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.

		12 MHz Oscillator Min Max		Variable Oscillator		
Symbol	Parameter			Min Max		Units
1/t _{CLCL}	Oscillator Frequency			0	33	MHz
t _{LHLL}	ALE Pulse Width	127		2 t _{CLCL} -40		ns
t _{AVLL}	Address Valid to ALE Low	43		t _{CLCL} -25		ns
t _{LLAX}	Address Hold After ALE Low	48		t _{CLCL} -25		ns
t _{LLIV}	ALE Low to Valid Instruction In		233		4 t _{CLCL} -65	ns
t _{LLPL}	ALE Low to PSEN Low	43		t _{CLCL} -25		ns
t _{PLPH}	PSEN Pulse Width	205		3 t _{CLCL} -45		ns
t _{PLIV}	PSEN Low to Valid Instruction In		145		3 t _{CLCL} -60	ns
t _{PXIX}	Input Instruction Hold After PSEN	0		0		ns
t _{PXIZ}	Input Instruction Float After PSEN		59		t _{CLCL} -25	ns
t _{PXAV}	PSEN to Address Valid	75		t _{CLCL} -8		ns
t _{AVIV}	Address to Valid Instruction In		312		5 t _{CLCL} -80	ns
t _{PLAZ}	PSEN Low to Address Float		10		10	ns
t _{RLRH}	RD Pulse Width	400		6 t _{CLCL} -100		ns
t _{WLWH}	WR Pulse Width	400		6 t _{CLCL} -100		ns
t _{RLDV}	RD Low to Valid Data In		252		5 t _{CLCL} -90	ns
t _{RHDX}	Data Hold After RD	0		0		ns
t _{RHDZ}	Data Float After RD		97		2 t _{CLCL} -28	ns
t _{LLDV}	ALE Low to Valid Data In		517		8 t _{CLCL} -150	ns
t _{AVDV}	Address to Valid Data In		585		9 t _{CLCL} -165	ns
t _{LLWL}	ALE Low to \overline{RD} or \overline{WR} Low	200	300	3 t _{CLCL} -50	3 t _{CLCL} +50	ns
t _{AVWL}	Address to RD or WR Low	203		4 t _{CLCL} -75		ns
t _{QVWX}	Data Valid to WR Transition	23		t _{CLCL} -30		ns
t _{QVWH}	Data Valid to WR High	433		7 t _{CLCL} -130		ns
t _{WHQX}	Data Hold After WR	33		t _{CLCL} -25		ns
t _{RLAZ}	RD Low to Address Float		0		0	ns
t _{WHLH}	RD or WR High to ALE High	43	123	t _{CLCL} -25	t _{CLCL} +25	ns

24.1 External Program and Data Memory Characteristics

30. Serial Port Timing: Shift Register Mode Test Conditions

The values in this table are valid for V_{CC} = 4.0V to 5.5V and Load Capacitance = 80 pF.

		12 MI	Iz Osc	Variable Oscillator		
Symbol	Parameter	Min	Max	Min	Мах	Units
t _{XLXL}	Serial Port Clock Cycle Time	1.0		12 t _{CLCL}		μs
t _{QVXH}	Output Data Setup to Clock Rising Edge	700		10 t _{CLCL} -133		ns
t _{XHQX}	Output Data Hold After Clock Rising Edge	50		2 t _{CLCL} -80		ns
t _{XHDX}	Input Data Hold After Clock Rising Edge	0		0		ns
t _{XHDV}	Clock Rising Edge to Input Data Valid		700		10 t _{CLCL} -133	ns

31. Shift Register Mode Timing Waveforms

32. AC Testing Input/Output Waveforms⁽¹⁾

Note: 1. AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0.

33. Float Waveforms⁽¹⁾

Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs.

34. Ordering Information

34.1 Green Package Option (Pb/Halide-free)

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
24	4.0V to 5.5V	AT89S51-24AU AT89S51-24JU AT89S51-24PU	44A 44J 40P6	Industrial (-40° C to 85° C)
33	4.5V to 5.5V	AT89S51-33AU AT89S51-33JU AT89S51-33PU	44A 44J 40P6	Industrial (-40° C to 85° C)

Package Type		
44 A	44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)	
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)	
40P6	40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)	

35. Packaging Information

35.1 44A – TQFP

AT89S51

35.2 44J – PLCC

35.3 40P6 - PDIP

