E·XFL

NXP USA Inc. - P87C51RB2BN,112 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-DIP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c51rb2bn-112

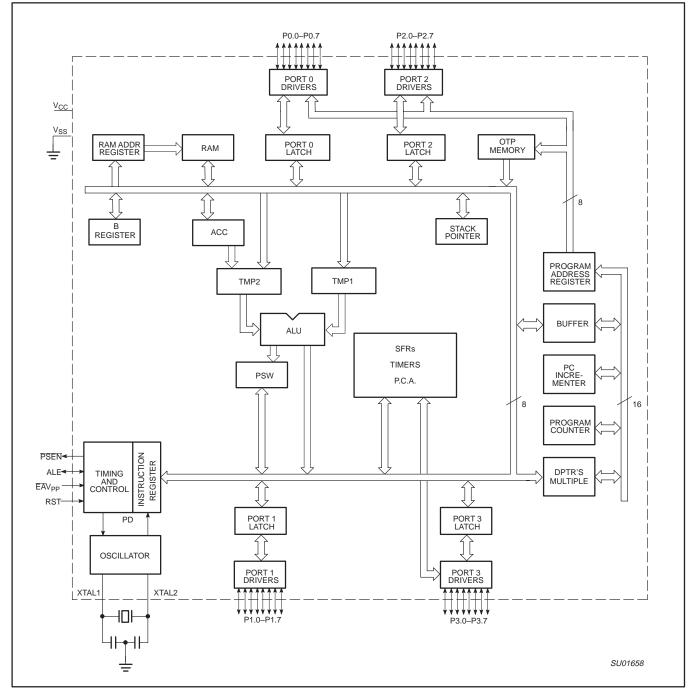
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

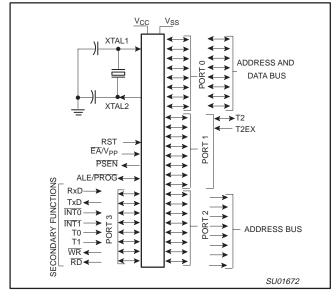
Product data

P87C51RA2/RB2/RC2/RD2

SELECTION TABLE

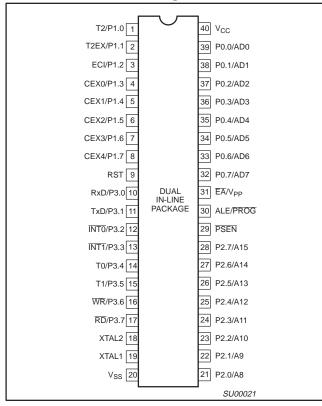

Туре		Mem	ory			Tim	ers		II	Sei nterf		5										
	RAM	ROM	ОТР	Flash	# of Timers	PWM	PCA	MD	UART	12C	CAN	SPI	ADC bits/ch.	I/O Pins	Interrupts (Ext.)/Levels	Program Security	Default Clock Rate	Optional Clock Rate	Reset active Iow/high?	Max. Freq. at 6-clk / 12-clk (MHz)	Freq. Range at 3V (MHz)	Freq. Range at 5V (MHz)
P87C51RD2	1K	-	64K	-	4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	32	7(2)/4	\checkmark	12-clk	6-clk	Н	30/33	0-16	0-30/33
P87C51RC2	512B	-	32K	-	4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	32	7(2)/4	V	12-clk	6-clk	Н	30/33	0-16	0-30/33
P87C51RB2	512B	-	16K	-	4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	32	7(2)/4	\checkmark	12-clk	6-clk	Н	30/33	0-16	0-30/33
P87C51RA2	512B	-	8K	-	4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	32	7(2)/4	\checkmark	12-clk	6-clk	Н	30/33	0-16	0-30/33

ORDERING INFORMATION

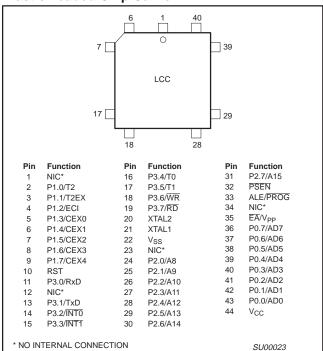

PHILIPS (EXCEPT NORTH AMERICA)	МЕМС	DRY	TEMPERATURE RANGE	VOLTAGE RANGE	DWG #
PART ORDER NUMBER	OTP	RAM	(°C) AND PACKAGE		DWG #
P87C51RA2BA	8 KB	512B	0 to +70, PLCC	2.7 to 5.5 V	SOT187-2
P87C51RA2FA	8 KB	512B	-40 to +85, PLCC	2.7 to 5.5 V	SOT187-2
P87C51RA2BBD	8 KB	512B	0 to +70, LQFP	2.7 to 5.5 V	SOT389-1
P87C51RB2BA	16 KB	512B	0 to +70, PLCC	2.7 to 5.5 V	SOT187-2
P87C51RB2FA	16 KB	512B	-40 to +85, PLCC	2.7 to 5.5 V	SOT187-2
P87C51RB2BBD	16 KB	512B	0 to +70, LQFP	2.7 to 5.5 V	SOT389-1
P87C51RB2BN	16 KB	512B	0 to +70, DIP40	2.7 to 5.5 V	SOT129-1
P87C51RB2FN	16 KB	512B	-40 to +85, DIP40	2.7 to 5.5 V	SOT129-1
P87C51RC2BA	32 KB	512B	0 to +70, PLCC	2.7 to 5.5 V	SOT187-2
P87C51RC2FA	32 KB	512B	-40 to +85, PLCC	2.7 to 5.5 V	SOT187-2
P87C51RC2BBD	32 KB	512B	0 to +70, LQFP	2.7 to 5.5 V	SOT389-1
P87C51RC2BN	32 KB	512B	0 to +70, DIP40	2.7 to 5.5 V	SOT129-1
P87C51RC2FN	32 KB	512B	-40 to +85, DIP40	2.7 to 5.5 V	SOT129-1
P87C51RD2BA	64 KB	1 KB	0 to +70, PLCC	2.7 to 5.5 V	SOT187-2
P87C51RD2FA	64 KB	1 KB	-40 to +85, PLCC	2.7 to 5.5 V	SOT187-2
P87C51RD2BBD	64 KB	1 KB	0 to +70, LQFP	2.7 to 5.5 V	SOT389-1
P87C51RD2FBD	64 KB	1 KB	-40 to +85, LQFP	2.7 to 5.5 V	SOT389-1
P87C51RD2BN	64 KB	1 KB	0 to +70, DIP40	2.7 to 5.5 V	SOT129-1

P87C51RA2/RB2/RC2/RD2

BLOCK DIAGRAM (CPU-ORIENTED)

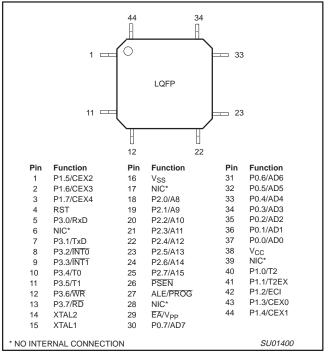


LOGIC SYMBOL



PINNING

Plastic Dual In-Line Package



Plastic Leaded Chip Carrier

P87C51RA2/RB2/RC2/RD2

Plastic Quad Flat Pack

P87C51RA2/RB2/RC2/RD2

MNEMONIC	Р	IN NUMBE	R	ТҮРЕ	NAME AND FUNCTION
WINEMONIC	PDIP	PLCC	LQFP		NAME AND FUNCTION
PSEN	29	32	26	0	Program Store Enable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
EA/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations. If EA is held high, the device executes from internal program memory. The value on the EA pin is latched when RST is released and any subsequent changes have no effect. This pin also receives the programming supply voltage (V _{PP}) during programming.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier.

NOTE:

To avoid "latch-up" effect at power-on, the voltage on any pin (other than V_{PP}) must not be higher than V_{CC} + 0.5 V or less than V_{SS} – 0.5 V.

Product data

SPECIAL FUNCTION REGISTERS

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT MSB	ADDRES	S, SYMB	OL, OR A	LTERNAT	IVE POR	T FUNCT	ION LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
AUXR#	Auxiliary	8EH	-	-	-	-	-	-	EXTRAM	AO	xxxxxx00B
AUXR1#	Auxiliary 1	A2H	_	_	-	-	GF2	0	_	DPS	xxxxxxx0B
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
CCAP0H#	Module 0 Capture High	FAH									хххххххВ
CCAP1H#	Module 1 Capture High	FBH									хххххххВ
CCAP2H#	Module 2 Capture High	FCH									xxxxxxxB
CCAP3H# CCAP4H#	Module 3 Capture High	FDH FEH									xxxxxxxB
CCAP4H# CCAP0L#	Module 4 Capture High Module 0 Capture Low	EAH									xxxxxxxxB xxxxxxxxB
CCAP1L#	Module 1 Capture Low	EBH									xxxxxxxB
CCAP2L#	Module 2 Capture Low	ECH									xxxxxxxB
CCAP3L#	Module 3 Capture Low	EDH									xxxxxxxB
CCAP4L#	Module 4 Capture Low	EEH									хххххххВ
CCAPM0#	Module 0 Mode	DAH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM1#	Module 1 Mode	DBH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM2#	Module 2 Mode	DCH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM3#	Module 3 Mode	DDH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM4#	Module 4 Mode	DEH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x000000B
			DF	DE	DD	DC	DB	DA	D9	D8	
CCON*#	PCA Counter Control	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	00x00000B
CH#	PCA Counter High	F9H									00H
CKCON# CL#	Clock control PCA Counter Low	8FH E9H	_	-	-	-	_	_	-	X2	x0000000B 00H
CMOD#	PCA Counter Mode	D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF	00xxx000B
DPTR: DPH DPL	Data Pointer (2 bytes) Data Pointer High Data Pointer Low	83H 82H	AF	AE	AD	AC	AB	AA	A9	A8	00H 00H
IE*	Interrupt Enable 0	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
			BF	BE	BD	BC	BB	BA	B9	B8	1
IP*	Interrupt Priority	B8H	_	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000B
			B7	B6	B5	B4	B3	B2	B1	B0	1
IPH#	Interrupt Priority High	B7H	_	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000B
			87	86	85	84	83	82	81	80	
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	
P1*	Port 1	90H	CEX4	CEX3	CEX2	CEX1	CEX0	ECI	T2EX	T2	FFH
			A7	A6	A5	A4	A3	A2	A1	A0	1
P2*	Port 2	A0H	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	1
P3*	Port 3	B0H	RD	WR	T1	T0	INT1	INTO	TxD	RxD	FFH
											1
PCON# ¹	Power Control	87H	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	00xxx000B

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

Reserved bits.

1. Reset value depends on reset source.

SPECIAL FUNCTION REGISTERS (Continued)

SYMBOL	DESCRIPTION	DIRECT	BIT	ADDRES	S, SYMB	OL, OR A	LTERNAT	VE POR	T FUNCT	ION	RESET
STIVIBOL	DESCRIPTION	ADDRESS	MSB							LSB	VALUE
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	P	00000000B
RCAP2H#	Timer 2 Capture High	СВН	01	710	10		1100	01			00H
RCAP2L#	Timer 2 Capture Low	CAH									00H
SADDR#	Slave Address	A9H									00H
SADEN#	Slave Address Mask	B9H									00H
SBUF	Serial Data Buffer	99H									хххххххВ
			9F	9E	9D	9C	9B	9A	99	98	
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SP	Stack Pointer	81H									07H
			8F	8E	8D	8C	8B	8A	89	88	
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
			CF	CE	CD	СС	СВ	CA	C9	C8	
T2CON*	Timer 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	—	-	-	-	-	-	T2OE	DCEN	xxxxxx00B
тно	Timer High 0	8CH									00H
TH1	Timer High 1	8DH									00H
TH2#	Timer High 2	CDH									00H
TL0	Timer Low 0	8AH									00H
TL1 TL2#	Timer Low 1 Timer Low 2	8BH CCH									00H 00H
			GATE	C/T	M1	MO	GATE	сл	M1	MO	00H
			JAIL .	0/1	1011	INIO	UNIL	0/1	1011	INIO	0011
TL2# TMOD WDTRST	Timer Low 2 Timer Mode Watchdog Timer Reset	CCH 89H A6H	GATE	C/T	M1	MO	GATE	C/T	M1	MO	C

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

Reserved bits.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. Minimum and maximum high and low times specified in the data sheet must be observed.

This device is configured at the factory to operate using 12 clock periods per machine cycle, referred to in this datasheet as "12-clock mode". It may be optionally configured on commercially available parallel programming equipment or via software to operate at 6 clocks per machine cycle, referred to in this datasheet as "6-clock mode". (This yields performance equivalent to twice that of standard 80C51 family devices). Also see next page.

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

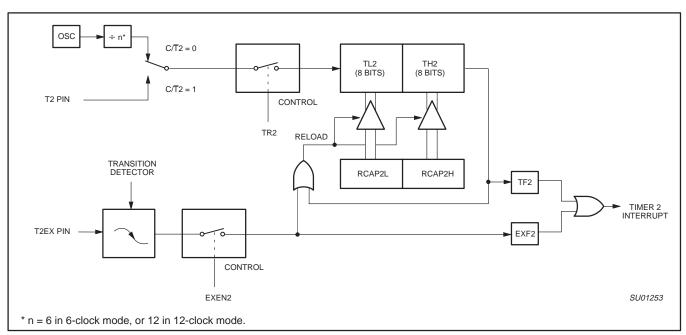


Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0)

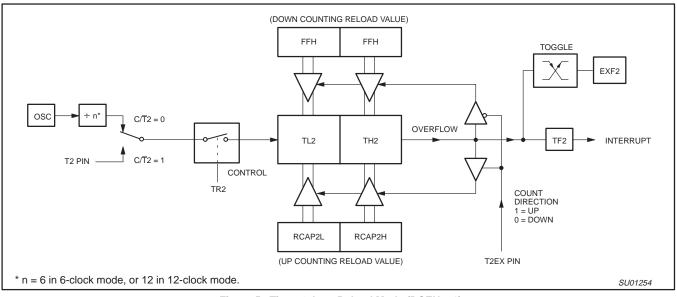


Figure 5. Timer 2 Auto Reload Mode (DCEN = 1)

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

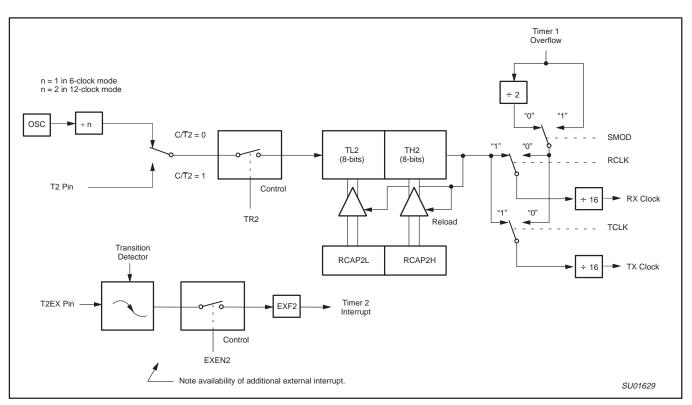


Figure 6. Timer 2 in Baud Rate Generator Mode

	Baud Rate			
Baud	Rate		Tim	er 2
12-clock mode	6-clock mode	Osc Freq	RCAP2H	RCAP2L
375 k	750 k	12 MHz	FF	FF
9.6 k	19.2 k	12 MHz	FF	D9
4.8 k	9.6 k	12 MHz	FF	B2
2.4 k	4.8 k	12 MHz	FF	64
1.2 k	2.4 k	12 MHz	FE	C8

12 MHz

12 MHz

6 MHz

6 MHz

FB

F2

FD

F9

1E

AF

8F

57

Table 4.	Timer 2 Generated Commonly Used
	Baud Rates

Baud Rate Generator Mode

600

220

600

220

Bits TCLK and/or RCLK in T2CON (Table 4) allow the serial port transmit and receive baud rates to be derived from either Timer 1 or Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit baud rate generator. When TCLK= 1, Timer 2 is used as the serial port transmit baud rate generator. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates – one generated by Timer 1, the other by Timer 2.

Figure 6 shows the Timer 2 in baud rate generation mode. The baud rate generation mode is like the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in modes 1 and 3 are determined by Timer 2's overflow rate given below:

Modes 1 and 3 Baud Rates = $\frac{\text{Timer 2 Overflow Rate}}{16}$

The timer can be configured for either "timer" or "counter" operation. In many applications, it is configured for "timer" operation (C/T2=0). Timer operation is different for Timer 2 when it is being used as a baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e., 1_{6} the oscillator frequency in 6-clock mode, 1_{12} the oscillator frequency in 12-clock mode). As a baud rate generator, it increments at the oscillator frequency in 6-clock mode ($^{OSC}/_{2}$ in 12-clock mode). Thus the baud rate formula is as follows:

Modes 1 and 3 Baud Rates =

	Oscillator Frequency
[n*	× [65536 – (RCAP2H, RCAP2L)]]
* n =	16 in 6-clock mode 32 in 12-clock mode

Where: (RCAP2H, RCAP2L)= The content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

The Timer 2 as a baud rate generator mode shown in Figure 6, is valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Thus, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Also if the EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2). Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.

300

110

300

110

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

S	CON	Addres	s = 98H									Reset Value = 00H
		Bit Add	ressable	7	6	5	4	3	2	1	0	_
				SM0	SM1	SM2	REN	TB8	RB8	ΤI	RI	
Where	e SM0,	SM1 spe	cify the serial po	ort mode	e, as foll	ows:						
SM0	SM1	Mode	Description	E	Baud Ra	ate						
0	0	0	shift register		f _{OSC} /12	2 (12-clo	ock mod	le) or f _O	_{SC} /6 (6-	clock m	node)	
0	1	1	8-bit UART		variable	Э						
1	0	2	9-bit UART	f_{OSC} /64 or f_{OSC} /32 (12-clock mode) or f_{OSC} /32 or f_{OSC} /16 (6-clock mode)								
1	1	3	9-bit UART	9-bit UART variable								
SM2	acti	vated if th		data bit	(RB8) is							M2 is set to 1, then RI will not be tivated if a valid stop bit was not
REN	Ena	bles seri	al reception. Se	t by soft	ware to	enable	receptio	on. Clea	r by soft	ware to	disable	e reception.
B8	The	9th data	bit that will be t	ransmitt	ed in M	odes 2	and 3. S	Set or cl	ear by s	oftware	as desi	ired.
RB8		In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, it SM2=0, RB8 is the stop bit that was received. In Mode 0, RB8 is not used.										
ГІ	Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.											
RI			rrupt flag. Set by ny serial reception								halfway	v through the stop bit time in the othe

SU01626

	Baud Rate		4	CHOD		Timer 1				
Mode	12-clock mode	6-clock mode	fosc	SMOD	С/Т	Mode	Reload Value			
Mode 0 Max	1.67 MHz	3.34 MHz	20 MHz	Х	Х	Х	Х			
Mode 2 Max	625 k	1250 k	20 MHz	1	X	X	Х			
Mode 1, 3 Max	104.2 k	208.4 k	20 MHz	1	0	2	FFH			
Mode 1, 3	19.2 k	38.4 k	11.059 MHz	1	0	2	FDH			
	9.6 k	19.2 k	11.059 MHz	0	0	2	FDH			
	4.8 k	9.6 k	11.059 MHz	0	0	2	FAH			
	2.4 k	4.8 k	11.059 MHz	0	0	2	F4H			
	1.2 k	2.4 k	11.059 MHz	0	0	2	E8H			
	137.5	275	11.986 MHz	0	0	2	1DH			
	110	220	6 MHz	0	0	2	72H			
	110	220	12 MHz	0	0	1	FEEBH			

Figure 7. Serial Port Control (SCON) Register

Figure 8. Timer 1 Generated Commonly Used Baud Rates

More About Mode 0

Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed a 1/12 the oscillator frequency (12-clock mode) or 1/6 the oscillator frequency (6-clock mode).

Figure 9 shows a simplified functional diagram of the serial port in Mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF" and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P3.0 and also enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1, and S2. At

S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift are shifted to the right one position.

As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control block to do one last shift and then deactivate SEND and set T1. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF."

Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 1111110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are

P87C51RA2/RB2/RC2/RD2

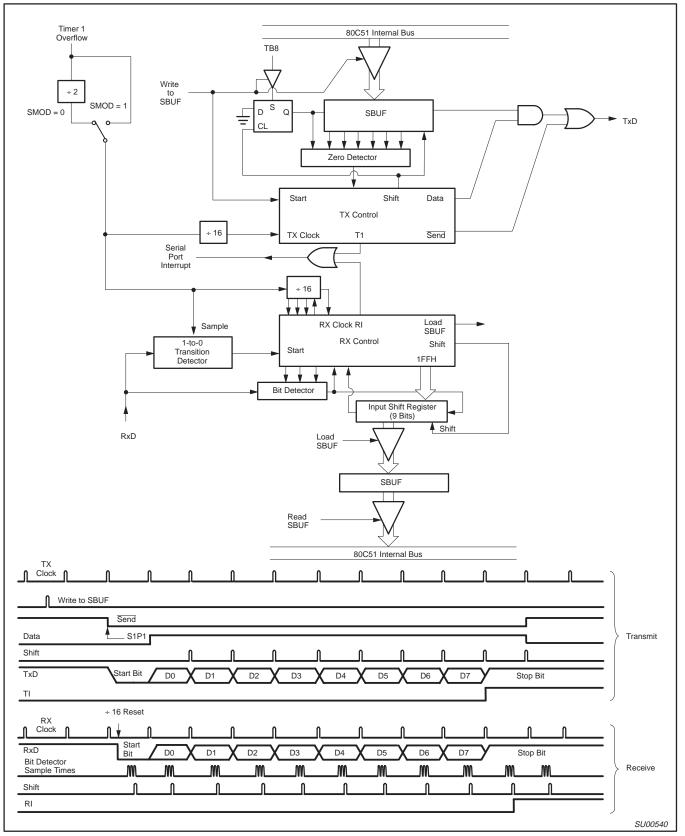


Figure 10. Serial Port Mode 1

Enhanced Features

The UART operates in all of the usual modes that are described in the first section of *Data Handbook IC20, 80C51-Based 8-Bit Microcontrollers.* In addition the UART can perform framing error detect by looking for missing stop bits, and automatic address recognition. The UART also fully supports multiprocessor communication as does the standard 80C51 UART.

When used for framing error detect the UART looks for missing stop bits in the communication. A missing bit will set the FE bit in the SCON register. The FE bit shares the SCON.7 bit with SM0 and the function of SCON.7 is determined by PCON.6 (SMOD0) (see Figure 7). If SMOD0 is set then SCON.7 functions as FE. SCON.7 functions as SM0 when SMOD0 is cleared. When used as FE SCON.7 can only be cleared by software. Refer to Figure 13.

Automatic Address Recognition

Automatic Address Recognition is a feature which allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be automatically set when the received byte contains either the "Given" address or the "Broadcast" address. The 9-bit mode requires that the 9th information bit is a 1 to indicate that the received information is an address and not data. Automatic address recognition is shown in Figure 14.

The 8 bit mode is called Mode 1. In this mode the RI flag will be set if SM2 is enabled and the information received has a valid stop bit following the 8 address bits and the information is either a Given or Broadcast address.

Mode 0 is the Shift Register mode and SM2 is ignored.

Using the Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the Given slave address or addresses. All of the slaves may be contacted by using the Broadcast address. Two special Function Registers are used to define the slave's address, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to b used and which bits are "don't care". The SADEN mask can be logically ANDed with the SADDR to create the "Given" address which the master will use for addressing each of the slaves. Use of the Given address allows multiple slaves to be recognized while excluding others. The following examples will help to show the versatility of this scheme:

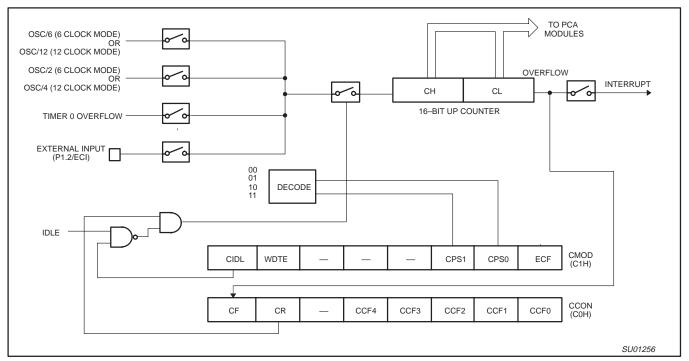
Slave 0	SADDR	=	1100 0000
	SADEN	=	<u>1111 1101</u>
	Given	=	1100 00X0

Slave 1	SADDR	=	1100	0000
	SADEN	=	<u>1111</u>	1110
	Given	=	1100	000X

In the above example SADDR is the same and the SADEN data is used to differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for Slave 0 would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address for slave 1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0 = 0 (for slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000.

P87C51RA2/RB2/RC2/RD2

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:


Slave 0	SADDR	=	1100 0000
	SADEN	=	<u>1111 1001</u>
	Given	=	1100 0XX0
Slave 1	SADDR	=	1110 0000
	SADEN	=	<u>1111 1010</u>
	Given	=	1110 0X0X
Slave 2	SADDR	=	1110 0000
	SADEN	=	<u>1111 1100</u>
	Given	=	1110 00XX

In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0 and 1 and exclude Slave 2 use address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are trended as don't-cares. In most cases, interpreting the don't-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H) are leaded with 0s. This produces a given address of all "don't cares" as well as a Broadcast address of all "don't cares". This effectively disables the Automatic Addressing mode and allows the microcontroller to use standard 80C51 type UART drivers which do not make use of this feature.

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Figure 20. PCA Timer/Counter

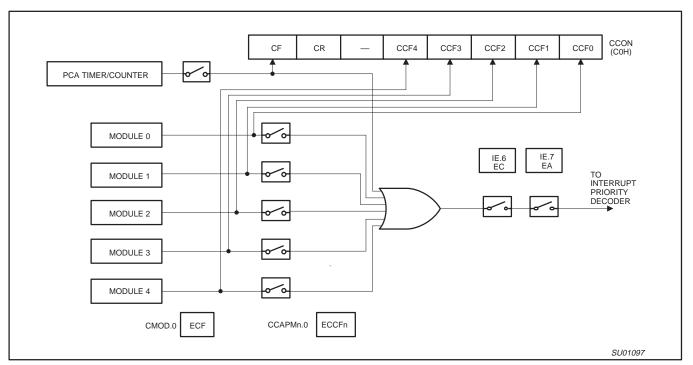


Figure 21. PCA Interrupt System

P87C51RA2/RB2/RC2/RD2

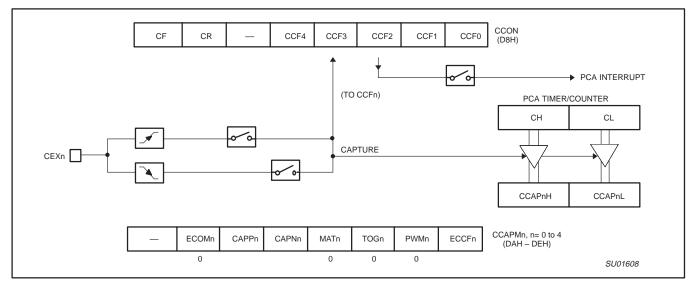


Figure 26. PCA Capture Mode

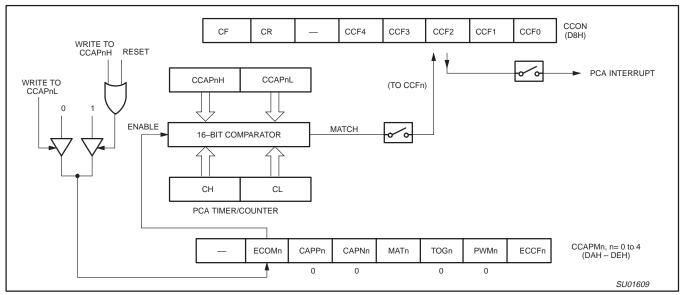


Figure 27. PCA Compare Mode

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

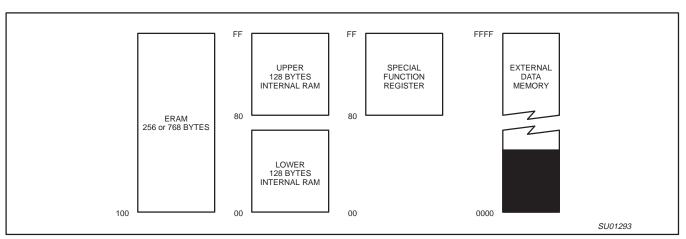


Figure 33. Internal and External Data Memory Address Space with EXTRAM = 0

HARDWARE WATCHDOG TIMER (ONE-TIME ENABLED WITH RESET-OUT FOR P87C51RA2/RB2/RC2/RD2)

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer reset (WDTRST) SFR. The WDT is disabled at reset. To enable the WDT, the user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When the WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When the WDT overflows, it will drive an output reset HIGH pulse at the RST-pin (see the note below).

Using the WDT

To enable the WDT, the user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the WDT, the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When the WDT overflows, it will generate an output RESET pulse at the reset pin (see note below). The RESET pulse duration is $98 \times T_{OSC}$ (6-clock mode; 196 in 12-clock mode), where T_{OSC} = 1/f_{OSC}. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$; $V_{CC} = 2.7 V$ to 5.5 V; $V_{SS} = 0 \lor (16 \text{ MHz max. CPU clock})$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP ¹	MAX	1
V _{IL}	Input low voltage ¹¹	4.0 V < V _{CC} < 5.5 V	-0.5		0.2 V _{CC} -0.1	V
		2.7 V < V _{CC} < 4.0 V	-0.5		0.7 V _{CC}	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)		0.2 V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST ¹¹		0.7 V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2, 8	$V_{CC} = 2.7 \text{ V}; I_{OL} = 1.6 \text{ mA}^2$	-		0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN ^{8, 7}	V _{CC} = 2.7 V; I _{OL} = 3.2 mA ²	-		0.4	V
V _{OH}	Output high voltage, ports 1, 2, 3 ³	V _{CC} = 2.7 V; I _{OH} = –20 μA	V _{CC} – 0.7		-	V
		V _{CC} = 4.5 V; I _{OH} = –30 μA	V _{CC} – 0.7		-	V
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	$V_{CC} = 2.7 \text{ V}; I_{OH} = -3.2 \text{ mA}$	V _{CC} – 0.7		-	V
IIL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4 V	-1		-50	μA
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0 V; See note 4	-		-650	μA
I _{LI}	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$	-		±10	μA
I _{CC}	Power supply current (see Figure 41 and Source Code):					
	Active mode @ 16 MHz					μA
	Idle mode @ 16 MHz					μA
	Power-down mode or clock stopped (see Figure 37 for conditions) ¹²	$T_{amb} = 0 \ ^{\circ}C$ to 70 $^{\circ}C$		2	30	μA
		$T_{amb} = -40 \ ^{\circ}C \text{ to } +85 \ ^{\circ}C$		3	50	μA
V _{RAM}	RAM keep-alive voltage		1.2			V
R _{RST}	Internal reset pull-down resistor		40		225	kΩ
C _{IO}	Pin capacitance ¹⁰ (except EA)		-		15	pF

NOTES:

1. Typical ratings are not guaranteed. Values listed are based on tests conducted on limited number of samples at room temperature.

2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the Vols of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IoL can exceed these conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions.

Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the VCC-0.7 specification when the 3. address bits are stabilizing.

4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when $V_{\mbox{IN}}$ is approximately 2 V.

See Figures 43 through 46 for I_{CC} test conditions and Figure 41 for I_{CC} vs. Frequency 5.

12-clock mode characteristics:

- Active mode (operating): $I_{CC} = 1.0 \text{ mA} + 1.1 \text{ mA} \times \text{FREQ.[MHz]}$ $I_{CC} = 7.0 \text{ mA} + 0.6 \text{ mA} \times \text{FREQ.[MHz]}$ $I_{CC} = 1.0 \text{ mA} + 0.22 \text{ mA} \times \text{FREQ.[MHz]}$ Active mode (reset):
- Idle mode:
- 6. This value applies to $T_{amb} = 0$ °C to +70 °C. For $T_{amb} = -40$ °C to +85 °C, $I_{TL} = -750 \mu$ A. 7. Load capacitance for port 0, ALE, and $\overrightarrow{PSEN} = 100 \text{ pF}$, load capacitance for all other outputs = 80 pF.
- Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 15 mA (*NOTE: This is 85 °C specification.) Maximum IOL per port pin:
 - Maximum IOL per 8-bit port:
 - 26 mA Maximum total I_{OI} for all outputs: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 9. ALE is tested to V_{OH1} , except when ALE is off then V_{OH} is the voltage specification.
- 10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF (except EA is 25 pF).
- 11. To improve noise rejection a nominal 100 ns glitch rejection circuitry has been added to the RST pin, and a nominal 15 ns glitch rejection circuitry has been added to the INTO and INTO pins. Previous devices provided only an inherent 5 ns of glitch rejection.
- 12. Power down mode for 3 V range: Commercial Temperature Range typ: 0.5 µA, max. 20 µA; Industrial Temperature Range typ. 1.0 µA, max. 30 µA;

P87C51RA2/RB2/RC2/RD2

P87C51RA2/RB2/RC2/RD2

AC ELECTRICAL CHARACTERISTICS (12-CLOCK MODE, 2.7 V TO 5.5 V OPERATION)

 $T_{amb} = 0 \text{ °C to } +70 \text{ °C or } -40 \text{ °C to } +85 \text{ °C}$; $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}^{1,2,3,4}$

Symbol	Figure	Parameter	Limits		16 MHz Clock		Unit
			MIN	MAX	MIN	MAX	
1/t _{CLCL}	38	Oscillator frequency	0	16			MHz
LHLL	34	ALE pulse width	2t _{CLCL} -10		115		ns
AVLL	34	Address valid to ALE low	t _{CLCL} –15		47.5		ns
t _{LLAX}	34	Address hold after ALE low	t _{CLCL} –25		37.5		ns
t _{LLIV}	34	ALE low to valid instruction in		4 t _{CLCL} –55		195	ns
t _{LLPL}	34	ALE low to PSEN low	t _{CLCL} –15		47.5		ns
t _{PLPH}	34	PSEN pulse width	3 t _{CLCL} –15		172.5		ns
t _{PLIV}	34	PSEN low to valid instruction in		3 t _{CLCL} –55		132.5	ns
t _{PXIX}	34	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	34	Input instruction float after PSEN		t _{CLCL} –10		52.5	ns
t _{AVIV}	34	Address to valid instruction in		5 t _{CLCL} –50		262.5	ns
t _{PLAZ}	34	PSEN low to address float		10		10	ns
Data Men	nory		I	•		1	
t _{RLRH}	35	RD pulse width	6 t _{CLCL} –25		350		ns
t _{WLWH}	36	WR pulse width	6 t _{CLCL} –25		350		ns
RLDV	35	RD low to valid data in		5 t _{CLCL} –50		262.5	ns
t _{RHDX}	35	Data hold after RD	0		0		ns
t _{RHDZ}	35	Data float after RD		2 t _{CLCL} –20		105	ns
t _{LLDV}	35	ALE low to valid data in		8 t _{CLCL} –55		445	ns
tavdv	35	Address to valid data in		9 t _{CLCL} –50		512.5	ns
t _{LLWL}	35, 36	ALE low to RD or WR low	3 t _{CLCL} –20	3 t _{CLCL} +20	167.5	207.5	ns
t _{AVWL}	35, 36	Address valid to WR low or RD low	4 t _{CLCL} –20		230		ns
t _{QVWX}	36	Data valid to WR transition	t _{CLCL} –30		32.5		ns
t _{WHQX}	36	Data hold after WR	t _{CLCL} –20		42.5		ns
t _{QVWH}	36	Data valid to WR high	7 t _{CLCL} –10		427.5		ns
t _{RLAZ}	35	RD low to address float		0		0	ns
t _{WHLH}	35, 36	RD or WR high to ALE high	t _{CLCL} –15	t _{CLCL} +15	47.5	77.5	ns
External	Clock	1	I	•			
tCHCX	38	High time	0.32 t _{CLCL}	t _{CLCL} - t _{CLCX}			ns
t _{CLCX}	38	Low time	0.32 t _{CLCL}	t _{CLCL} - t _{CHCX}			ns
t _{CLCH}	38	Rise time		5			ns
t _{CHCL}	38	Fall time		5			ns
Shift regi	ster		I	•		I	
t _{XLXL}	37	Serial port clock cycle time	12 t _{CLCL}		750		ns
t _{QVXH}	37	Output data setup to clock rising edge	10 t _{CLCL} –25		600		ns
tXHQX	37	Output data hold after clock rising edge	2 t _{CLCL} –15		110		ns
t _{XHDX}	37	Input data hold after clock rising edge	0		0		ns
t _{XHDV}	37	Clock rising edge to input data valid ⁵		10 t _{CLCL} –133	1	492	ns

NOTES:

Parameters are valid over operating temperature range unless otherwise specified.
Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all outputs = 80 pF

3. Interfacing the microcontroller to devices with float time up to 45 ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz. 5. Below 16 MHz this parameter is 8 t_{CLCL} – 133.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are:

- A Address
- C Clock
- D Input data
- H Logic level high
- I Instruction (program memory contents)
- L Logic level low, or ALE

- P PSEN
- Q Output data
- R RD signal
- t Time
- V Valid
- W- WR signal
- X No longer a valid logic level
- Z Float
- Examples: t_{AVLL} = Time for address valid to ALE low. t_{LLPL} =Time for ALE low to PSEN low.



Figure 34. External Program Memory Read Cycle

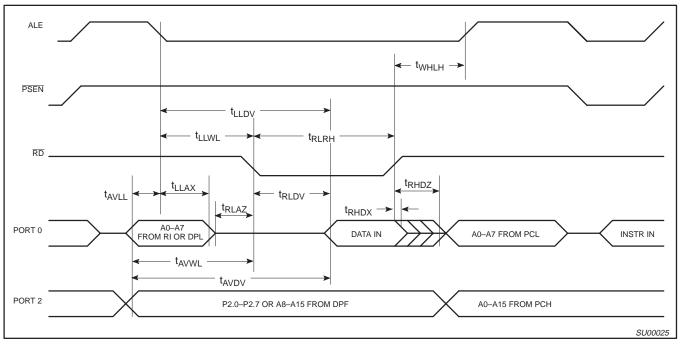


Figure 35. External Data Memory Read Cycle

P87C51RA2/RB2/RC2/RD2

MASK ROM DEVICES

Security Bits

With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 10) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes

from the internal memory, EA is latched on Reset and all further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled.

P87C51RA2/RB2/RC2/RD2

Encryption Array

64 bytes of encryption array are initially unprogrammed (all 1s).

Table 10. Program Security Bits

PROGRAM LOCK BITS ^{1, 2}		BITS ^{1, 2}		
	SB1	SB2	PROTECTION DESCRIPTION	
1	U	U	No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)	
2	Р	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.	

NOTES:

1. P - programmed. U - unprogrammed.

2. Any other combination of the security bits is not defined.

ROM CODE SUBMISSION FOR 8K ROM DEVICES (87C51RA2)

When submitting ROM code for the 8k ROM devices, the following must be specified:

1. 8 kbyte user ROM data

- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 1FFFH	DATA	7:0	User ROM Data
2000H to 203FH	KEY	7:0	ROM Encryption Key FFH = no encryption
2040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
2040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. EA is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	□ Disabled
Security Bit #2:	Enabled	□ Disabled
Encryption:	🗆 No	□ Yes If Yes, must send key file.

P87C51RA2/RB2/RC2/RD2

ROM CODE SUBMISSION FOR 16K ROM DEVICES (87C51RB2)

When submitting ROM code for the 16K ROM devices, the following must be specified:

- 1. 16 kbyte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 3FFFH	DATA	7:0	User ROM Data
4000H to 403FH	KEY	7:0	ROM Encryption Key FFH = no encryption
4040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
4040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. \overline{EA} is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	□ Enabled	□ Disabled	
Security Bit #2:	Enabled	Disabled	

Encryption: 🗆 No

□ Yes If Yes, must send key file.

P87C51RA2/RB2/RC2/RD2

ROM CODE SUBMISSION FOR 32K ROM DEVICES (87C51RC2)

When submitting ROM code for the 32K ROM devices, the following must be specified:

- 1. 32 kbyte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 7FFFH	DATA	7:0	User ROM Data
8000H to 803FH	KEY	7:0	ROM Encryption Key FFH = no encryption
8040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
8040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. \overline{EA} is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	Disabled
Security Bit #2:	Enabled	Disabled

Encryption: 🗆 No

□ Yes If Yes, must send key file.