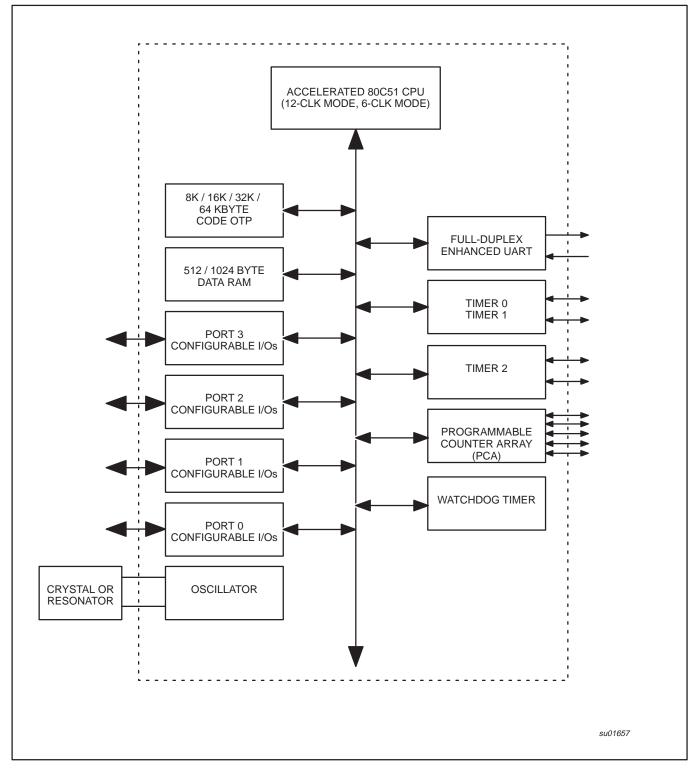


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

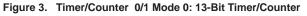
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Detailo	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	<u> </u>
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c51rc2bbd-157

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

BLOCK DIAGRAM 1

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

OSC ÷ d* $C/\overline{T} = 0$ TLn (5 Bits) THn TFn Interrupt (8 Bits) $C/\overline{T} = 1$ Control Tn Pin TRn. Timer n Gate bit INTn Pin d = 6 in 6-clock mode; d = 12 in 12-clock mode. SU01618

Bit A	Addressable									
		7	6	5	4	3	2	1	0	
		TF1	TR1	TF0	TR0	IE1	IT1	IE0	ITO	
BIT	SYMBOL	FUNC	TION							
TCON.7	TF1				t by hardv en proces					ing the bit in software.
TCON.6	TR1	Timer	1 Run co	ntrol bit. S	Set/cleared	d by softw	are to turr	n Timer/Co	ounter on/	off.
TCON.5	TF0				t by hardw en proces					earing the bit in software
TCON.4	TR0	Timer	0 Run co	ntrol bit. S	Set/cleared	d by softw	are to turr	Timer/Co	ounter on/	off.
TCON.3	IE1				t by hardw rocessed.	are when	external i	nterrupt e	dge detec	ted.
TCON.2	IT1		upt 1 type nal interru		it. Set/clea	red by so	ftware to s	specify fal	ling edge/	low level triggered
TCON.1	IE0				t by hardw rocessed.	are when	external i	nterrupt e	dge detec	ted.
TCON.0	IT0			e control b nal interru	oit. Set/clea pts.	ared by so	oftware to	specify fa	lling edge	low level
										SU01516

Figure 4. Timer/Counter 0/1 Control (TCON) Register

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Table 3. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	Х	1	Baud rate generator
Х	Х	0	(off)

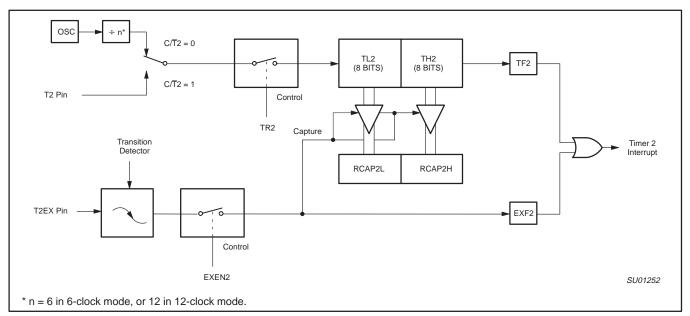


Figure 2. Timer 2 in Capture Mode

	Not Dit	Addressat								
		Audressa	Jie		1					
		—	—	—	_	—	_	T2OE	DCEN	
	Bit	7	6	5	4	3	2	1	0	
Symbol	Functi	on								
_	Not im	plemented	d, reserved f	or future use	э.*					
T2OE	Timer	2 Output E	nable bit.							
	Down	Count Ena	able bit. Whe	en set, this a	llows Timer	2 to be con	figured as a	n up/down c	ounter.	
DCEN										

Figure 3. Timer 2 Mode (T2MOD) Control Register

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

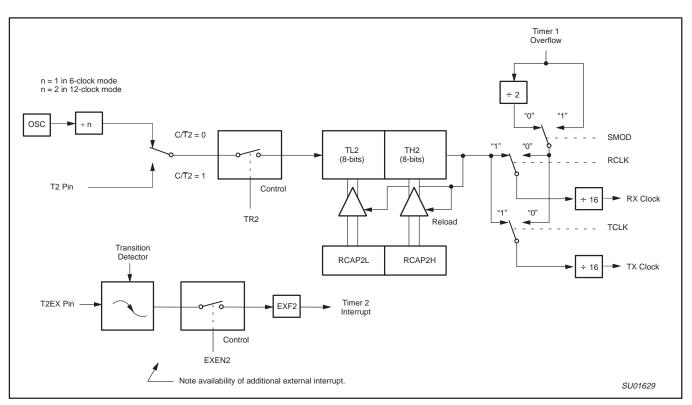


Figure 6. Timer 2 in Baud Rate Generator Mode

	Baud Rate			
Baud	Rate		Tim	er 2
12-clock mode	6-clock mode	Osc Freq	RCAP2H	RCAP2L
375 k	750 k	12 MHz	FF	FF
9.6 k	19.2 k	12 MHz	FF	D9
4.8 k	9.6 k	12 MHz	FF	B2
2.4 k	4.8 k	12 MHz	FF	64
1.2 k	2.4 k	12 MHz	FE	C8

12 MHz

12 MHz

6 MHz

6 MHz

FB

F2

FD

F9

1E

AF

8F

57

Table 4.	Timer 2 Generated Commonly Used
	Baud Rates

Baud Rate Generator Mode

600

220

600

220

Bits TCLK and/or RCLK in T2CON (Table 4) allow the serial port transmit and receive baud rates to be derived from either Timer 1 or Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit baud rate generator. When TCLK= 1, Timer 2 is used as the serial port transmit baud rate generator. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates – one generated by Timer 1, the other by Timer 2.

Figure 6 shows the Timer 2 in baud rate generation mode. The baud rate generation mode is like the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in modes 1 and 3 are determined by Timer 2's overflow rate given below:

Modes 1 and 3 Baud Rates = $\frac{\text{Timer 2 Overflow Rate}}{16}$

The timer can be configured for either "timer" or "counter" operation. In many applications, it is configured for "timer" operation (C/T2=0). Timer operation is different for Timer 2 when it is being used as a baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e., 1_{6} the oscillator frequency in 6-clock mode, 1_{12} the oscillator frequency in 12-clock mode). As a baud rate generator, it increments at the oscillator frequency in 6-clock mode ($^{OSC}/_{2}$ in 12-clock mode). Thus the baud rate formula is as follows:

Modes 1 and 3 Baud Rates =

	Oscillator Frequency
[n*	× [65536 – (RCAP2H, RCAP2L)]]
* n =	16 in 6-clock mode 32 in 12-clock mode

Where: (RCAP2H, RCAP2L)= The content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

The Timer 2 as a baud rate generator mode shown in Figure 6, is valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Thus, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Also if the EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2). Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.

300

110

300

110

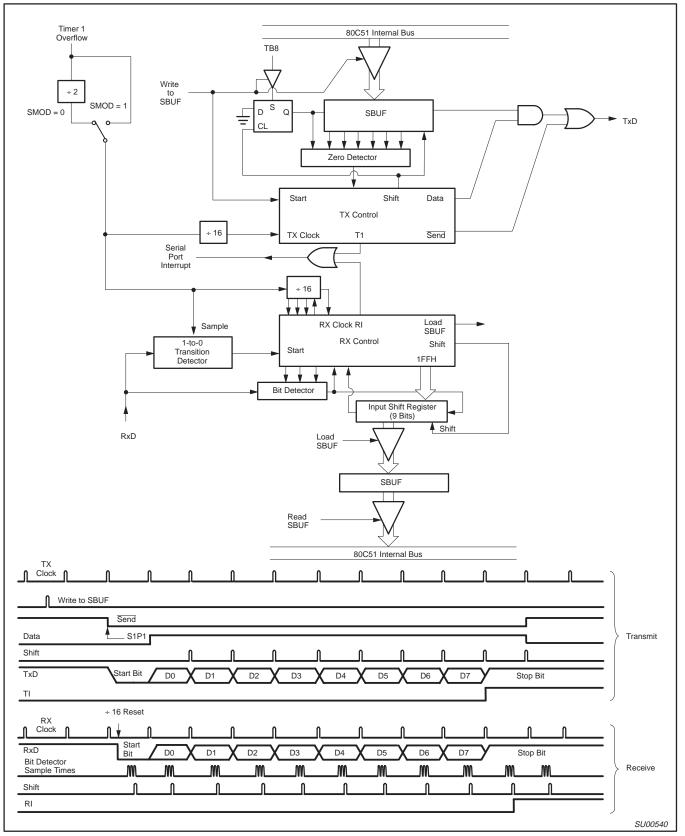


Figure 10. Serial Port Mode 1

P87C51RA2/RB2/RC2/RD2

		7	6	5	4	3	2	1	0
	IP (0B8H)	-	PPC	PT2	PS	PT1	PX1	PT0	PX0
	Priority Bit = 1 assigns high priority Priority Bit = 0 assigns low priority								
BIT	SYMBOL	FUNC	TION						
IP.7	-	-							
IP.6	PPC	PCA ir	nterrupt pr	iority bit					
IP.5	PT2	Timer	2 interrup	priority b	it.				
IP.4	PS	Serial	Port interi	upt priorit	y bit.				
IP.3	PT1	Timer	1 interrup	priority b	it.				
IP.2	PX1	Extern	al interrup	ot 1 priority	y bit.				
IP.1	PT0	Timer	0 interrup	priority b	it.				
IP.0	PX0	Extern	al interrup	ot 0 priority	y bit.				SU0129

Figure 16. IP Registers

	_	7	6	5	4	3	2	1	0
IPH	IPH (B7H)		PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
			Bit = 1 ass Bit = 0 ass						
BIT	SYMBOL	FUNC	TION						
IPH.7	-	-							
IPH.6	PPCH	PCA ir	nterrupt pr	iority bit					
IPH.5	PT2H	Timer	2 interrupt	priority b	it high.				
IPH.4	PSH	Serial	Port interr	upt priorit	y bit high.				
IPH.3	PT1H	Timer	1 interrupt	priority b	it high.				
IPH.2	PX1H	Extern	al interrup	t 1 priority	/ bit high.				
IPH.1	PT0H	Timer	0 interrupt	priority b	it high.				
IPH.0	PX0H	Extern	al interrup	ot 0 priority	/ bit high.				SU012

Figure 17. IPH Registers

Reduced EMI Mode

The AO bit (AUXR.0) in the AUXR register when set disables the ALE output unless the CPU needs to perform an off-chip memory access.

Reduced EMI Mode

AUXR (8EH)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	EXTRAM	AO
AUXR.1 AUXR.0		EXTRAN AO	1				

See more detailed description in Figure 32.

Dual DPTR

The dual DPTR structure (see Figure 18) is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 that allows the program code to switch between them.

- New Register Name: AUXR1#
- SFR Address: A2H
- Reset Value: xxxxxx0B

DPTR1

AUXR1 (A2H)

7	6	5	4	3	2	1	0	
-	-	-	-	GF2	0	-	DPS	
Where: DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.								
	Select Reg DPS							
DPTR0 0								

1

The DPS bit status should be saved by software when switching between DPTR0 and DPTR1.

The GF2 bit is a general purpose user-defined flag. Note that bit 2 is not writable and is always read as a zero. This allows the DPS bit to be quickly toggled simply by executing an INC AUXR1 instruction without affecting the GF2 bit.

P87C51RA2/RB2/RC2/RD2

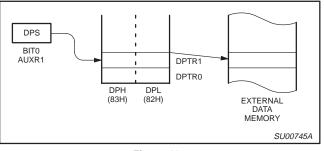
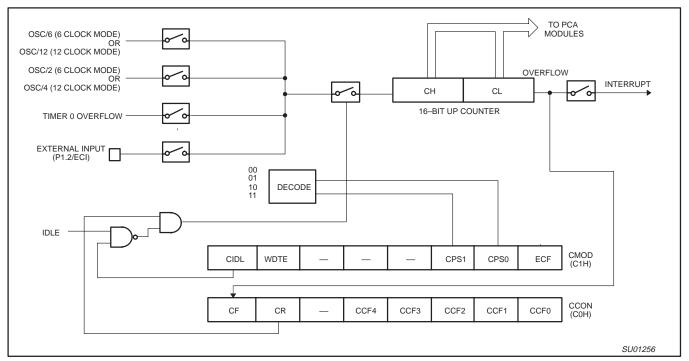


Figure 18.


DPTR Instructions

The instructions that refer to DPTR refer to the data pointer that is currently selected using the AUXR1/bit 0 register. The six instructions that use the DPTR are as follows:

INC DPTR	Increments the data pointer by 1
MOV DPTR, #data16	Loads the DPTR with a 16-bit constant
MOV A, @ A+DPTR	Move code byte relative to DPTR to ACC
MOVX A, @ DPTR	Move external RAM (16-bit address) to ACC
MOVX @ DPTR , A	Move ACC to external RAM (16-bit address)
JMP @ A + DPTR	Jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by specifying the low or high byte in an instruction which accesses the SFRs. See *Application Note AN458* for more details.

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Figure 20. PCA Timer/Counter

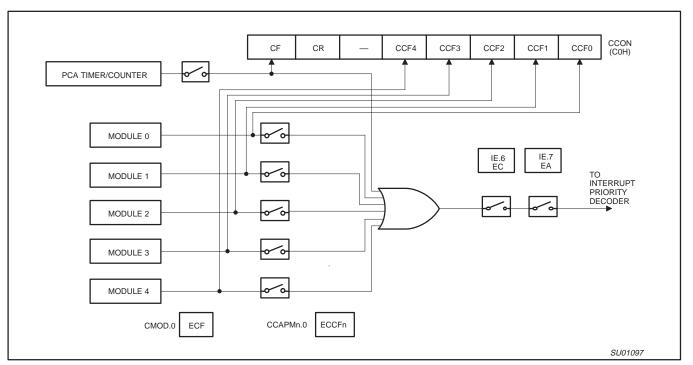


Figure 21. PCA Interrupt System

Expanded Data RAM Addressing

The P87C51RA2/RB2/RC2/RD2 has internal data memory that is mapped into four separate segments: the lower 128 bytes of RAM, upper 128 bytes of RAM, 128 bytes Special Function Register (SFR), and 256 bytes expanded RAM (ERAM) (768 bytes for the RD2).

The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.
- The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.
- 3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only.
- The 256/768-bytes expanded RAM (ERAM, 00H 1FFH/2FFH) are indirectly accessed by move external instruction, MOVX, and with the EXTRAM bit cleared, see Figure 32.

The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example:

MOV 0A0H,#data

accesses the SFR at location 0A0H (which is P2). Instructions that use indirect addressing access the Upper 128 bytes of data RAM.

For example:

MOV @R0,acc

where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).

P87C51RA2/RB2/RC2/RD2

The ERAM can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory is physically located on-chip, logically occupies the first 256/768 bytes of external data memory in the P87C51RA2/RB2/RC2/RD2.

With EXTRAM = 0, the ERAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to ERAM will not affect ports P0, P3.6 (WR#) and P3.7 (RD#). P2 SFR is output during external addressing. For example, with EXTRAM = 0,

MOVX @R0,acc

where R0 contains 0A0H, accesses the ERAM at address 0A0H rather than external memory. An access to external data memory locations higher than the ERAM will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals. Refer to Figure 33.

With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX @ Ri will provide an 8-bit address multiplexed with data on Port 0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a 16-bit address. Port 2 outputs the high-order eight address bits (the contents of DPH) while Port 0 multiplexes the low-order eight address bits (DPL) with data. MOVX @Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the ERAM.

AUXR	Addres	s = 8EH							I	Reset Value = xxxx	xx00B
	Not Bit	Addressat	ble								
		_	_	_	_	_	_	EXTRAM	AO		
	Bit:	7	6	5	4	3	2	1	0		
Symbol	Fund	tion									
AO	Disal	ole/Enable	ALE								
	AO		Operating	Mode							
	0 ALE is emitted at a constant rate of $1/_6$ the oscillator frequency (12-clock mode; $1/_3$ f _{OSC} in 6-clock mode).						le; ¹ / ₃ f _{OSC}				
	1			,	ring off-chip	memory ad	cess.				
EXTRAM	Interi	nal/Externa	I RAM acces	s using M	OVX @Ri/@	DPTR					
	EXTI 0 1	RAM									
	Not i	mplemente	d, reserved f	or future u	ise*.						
			served bits. The lue will be 1. The					ke new features. I	n that case,	the reset or inactive value	
											SU0161

Figure 32. AUXR: Auxiliary Register

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0$ °C to +70 °C or -40 °C to +85 °C; $V_{CC} = 5 V \pm 10\%$; $V_{SS} = 0 V$ (30/33 MHz max. CPU clock)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS	UNIT		
			MIN	TYP ¹	MAX	1
V _{IL}	Input low voltage ¹¹	4.5 V < V _{CC} < 5.5 V	-0.5		0.2 V _{CC} -0.1	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)		0.2 V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST ¹¹		0.7 V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2, 3 ⁸	V _{CC} = 4.5 V; I _{OL} = 1.6 mA ²	-		0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN 7, 8	$V_{CC} = 4.5 \text{ V}; I_{OL} = 3.2 \text{ mA}^2$	-		0.4	V
V _{OH}	Output high voltage, ports 1, 2, 3 ³	V _{CC} = 4.5 V; I _{OH} = -30 μA	V _{CC} – 0.7		-	V
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	$V_{CC} = 4.5 \text{ V}; I_{OH} = -3.2 \text{ mA}$	V _{CC} – 0.7		-	V
IIL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4 V	-1		-50	μA
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0 V; See note 4	-		-650	μA
I _{LI}	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$	-		±10	μA
I _{CC}	Power supply current Active mode (see Note 5)					
	Idle mode (see Note 5)					
	Power-down mode or clock stopped (see Figure 46 for conditions)	$T_{amb} = 0 \ ^{\circ}C$ to 70 $^{\circ}C$		2	30	μA
		$T_{amb} = -40 \ ^{\circ}C \text{ to } +85 \ ^{\circ}C$		3	50	μA
V _{RAM}	RAM keep-alive voltage		1.2			V
R _{RST}	Internal reset pull-down resistor		40		225	kΩ
C _{IO}	Pin capacitance ¹⁰ (except EA)		-		15	pF

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.

2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V_{OL}s of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I_{OL} can exceed these conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions.

 Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC}-0.7 specification when the address bits are stabilizing.

 Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2 V.

5. See Figures 43 through 46 for I_{CC} test conditions and Figure 41 for I_{CC} vs. Frequency.

12-clock mode characteristics:

Active mode (operating):	I _{CC} = 1.0 mA + 1.1 mA × FREQ.[MHz]
Active mode (reset):	$I_{CC} = 7.0 \text{ mA} + 0.6 \text{ mA} \times \text{FREQ}.[\text{MHz}]$
Idle mode:	I_{CC} = 1.0 mA + 0.22 mA × FREQ.[MHz]

Idle mode: $I_{CC} = 1.0 \text{ mA} + 0.22 \text{ mA} \times \text{FREQ.}[\text{MHz}]$ 6. This value applies to $T_{amb} = 0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$. For $T_{amb} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $I_{TL} = -750 \text{ }\mu\text{A}$.

7. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.

8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 15 mA (*NOTE: This is 85 °C specification.)

- Maximum I_{OL} per 8-bit port: 26 mA
- Maximum total I_{OL} for all outputs: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

9. ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF (except EA is 25 pF).

11. To improve noise rejection a nominal 100 ns glitch rejection circuitry has been added to the RST pin, and a nominal 15 ns glitch rejection circuitry has been added to the INT0 and INT1 pins. Previous devices provided only an inherent 5 ns of glitch rejection.

P87C51RA2/RB2/RC2/RD2

AC ELECTRICAL CHARACTERISTICS (6-CLOCK MODE, 2.7 V TO 5.5 V OPERATION)

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$; $V_{CC}=2.7 \lor$ to 5.5 V, $V_{SS} = 0 \lor V^{1,2,3,4,5}$

Symbol	Figure	Parameter	Limits		16 MHz (Unit	
			MIN	MIN	MAX	1	
I/t _{CLCL}	38	Oscillator frequency	0	16			MHz
LHLL	34	ALE pulse width	t _{CLCL} -10		52.5		ns
AVLL	34	Address valid to ALE low	0.5 t _{CLCL} –15		16.25		ns
LLAX	34	Address hold after ALE low	0.5 t _{CLCL} –25		6.25		ns
t _{LLIV}	34	ALE low to valid instruction in		2 t _{CLCL} –55		70	ns
LLPL	34	ALE low to PSEN low	0.5 t _{CLCL} –15		16.25		ns
PLPH	34	PSEN pulse width	1.5 t _{CLCL} –15		78.75		ns
t _{PLIV}	34	PSEN low to valid instruction in		1.5 t _{CLCL} –55		38.75	ns
PXIX	34	Input instruction hold after PSEN	0		0		ns
PXIZ	34	Input instruction float after PSEN		0.5 t _{CLCL} –10		21.25	ns
taviv	34	Address to valid instruction in		2.5 t _{CLCL} -50		101.25	ns
t _{PLAZ}	34	PSEN low to address float		10		10	ns
Data Men	nory						
RLRH	35	RD pulse width	3 t _{CLCL} –25		162.5		ns
twlwh	36	WR pulse width	3 t _{CLCL} –25		162.5		ns
RLDV	35	RD low to valid data in		2.5 t _{CLCL} -50		106.25	ns
RHDX	35	Data hold after RD	0		0		ns
RHDZ	35	Data float after RD		t _{CLCL} –20		42.5	ns
LLDV	35	ALE low to valid data in		4 t _{CLCL} –55		195	ns
t _{avdv}	35	Address to valid data in		4.5 t _{CLCL} -50		231.25	ns
tLLWL	35, 36	ALE low to RD or WR low	1.5 t _{CLCL} –20	1.5 t _{CLCL} +20	73.75	113.75	ns
t _{avwl}	35, 36	Address valid to WR low or RD low	2 t _{CLCL} –20		105		ns
tqvwx	36	Data valid to WR transition	0.5 t _{CLCL} -30		1.25		ns
twhox	36	Data hold after WR	0.5 t _{CLCL} –20		11.25		ns
t _{QVWH}	36	Data valid to WR high	3.5 t _{CLCL} –10		208.75		ns
t _{RLAZ}	35	RD low to address float		0		0	ns
twhlh	35, 36	RD or WR high to ALE high	0.5 t _{CLCL} –15	0.5 t _{CLCL} +15	16.25	46.25	ns
External	Clock		0101	0202			_
tснсх	38	High time	0.4 t _{CLCL}	t _{CLCL} - t _{CLCX}			ns
CLCX	38	Low time	0.4 t _{CLCL}	t _{CLCL} - t _{CHCX}			ns
CLCH	38	Rise time		5			ns
CHCL	38	Fall time		5			ns
Shift regi	ster						
XLXL	37	Serial port clock cycle time	6 t _{CLCL}		375		ns
QVXH	37	Output data setup to clock rising edge	5 t _{CLCL} –25		287.5		ns
XHQX	37	Output data hold after clock rising edge	t _{CLCL} –15		47.5		ns
XHDX	37	Input data hold after clock rising edge	0		0		ns
t _{XHDV}	37	Clock rising edge to input data valid ⁶		5 t _{CLCL} –133	1	179.5	ns

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified.

 Load capacitance for port 0, ALE, and PSEN=100 pF, load capacitance for all outputs = 80 pF
 Interfacing the microcontroller to devices with float time up to 45ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz.

5. Data shown in the table are the best mathematical models for the set of measured values obtained in tests. If a particular parameter

calculated at a customer specified frequency has a negative value, it should be considered equal to zero.

6. Below 16 MHz this parameter is 4 t_{CLCL} - 133

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are:

- A Address
- C Clock
- D Input data
- H Logic level high
- I Instruction (program memory contents)
- L Logic level low, or ALE

- P PSEN
- Q Output data
- R RD signal
- t Time
- V Valid
- W- WR signal
- X No longer a valid logic level
- Z Float
- Examples: t_{AVLL} = Time for address valid to ALE low. t_{LLPL} =Time for ALE low to PSEN low.



Figure 34. External Program Memory Read Cycle

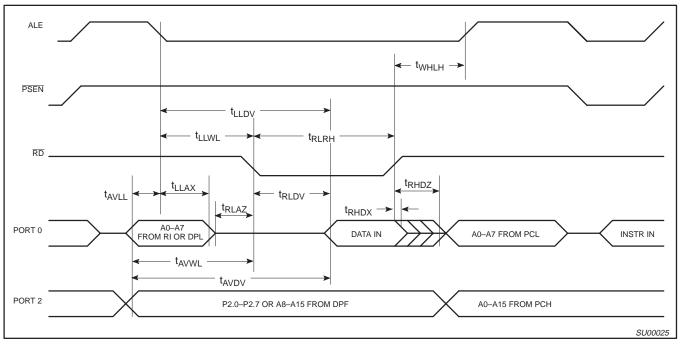


Figure 35. External Data Memory Read Cycle

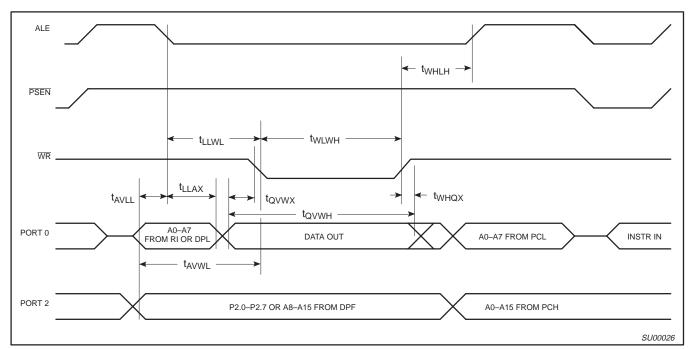


Figure 36. External Data Memory Write Cycle

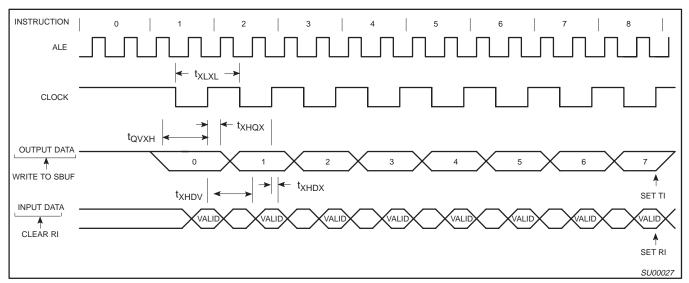


Figure 37. Shift Register Mode Timing

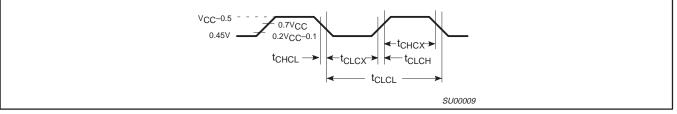


Figure 38. External Clock Drive

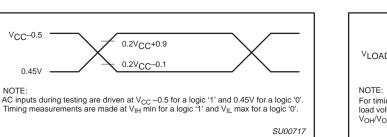
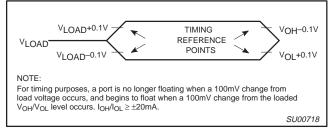



Figure 39. AC Testing Input/Output

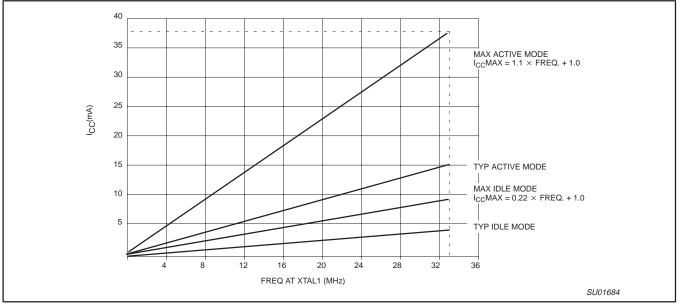


Figure 41. I_{CC} vs. FREQ for 12-clock operation Valid only within frequency specifications of the specified operating voltage

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

```
/*
##
       as31 version V2.10
                                   / *js* /
##
##
##
       source file: idd_ljmp1.asm
         list file: idd_ljmp1.lst
                                  created Fri Apr 20 15:51:40 2001
##
##
#0000
                    # AUXR equ 08Eh
#0000
                    # CKCON equ 08Fh
                    #
                    #
#0000
                    # org 0
                    #
                    # LJMP_LABEL:
                                     AUXR,#001h ; turn off ALE
LJMP_LABEL ; jump to end of address space
0000 /75;/8E;/01;
                   #
                             MOV
0003 /02;/FF;/FD;
                   #
                              LJMP
0005 /00;
                             NOP
                    #
                    #
#FFFD
                    # org Offfdh
                    #
                    # LJMP_LABEL:
                    #
FFFD /02;/FD;FF;
                    #
                              LJMP LJMP_LABEL
                    # ;
                              NOP
                    #
                    #
*/"
                                                                               SU01499
```

Figure 42. Source code used in measuring I_{DD} operational

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

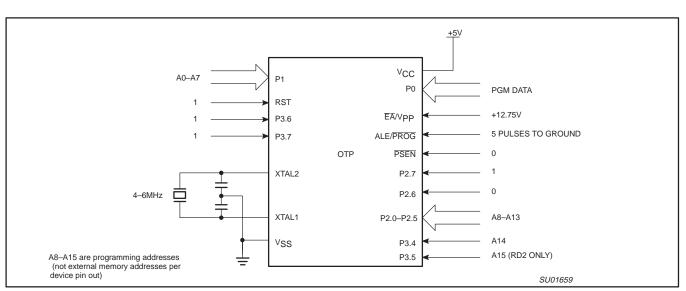


Figure 47. Programming Configuration

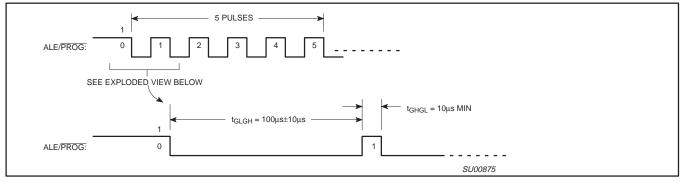


Figure 48. PROG Waveform

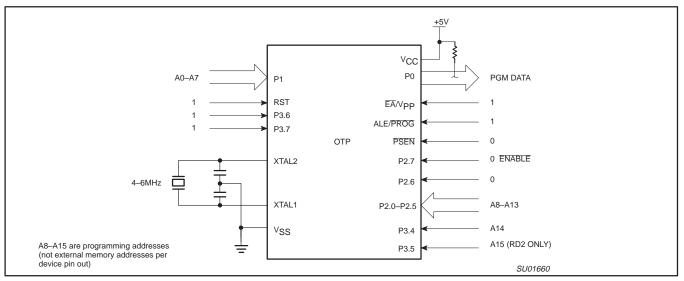
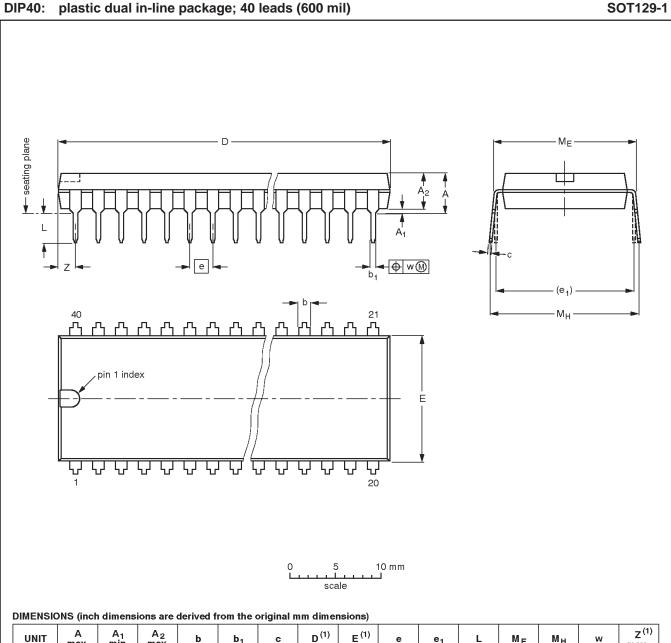
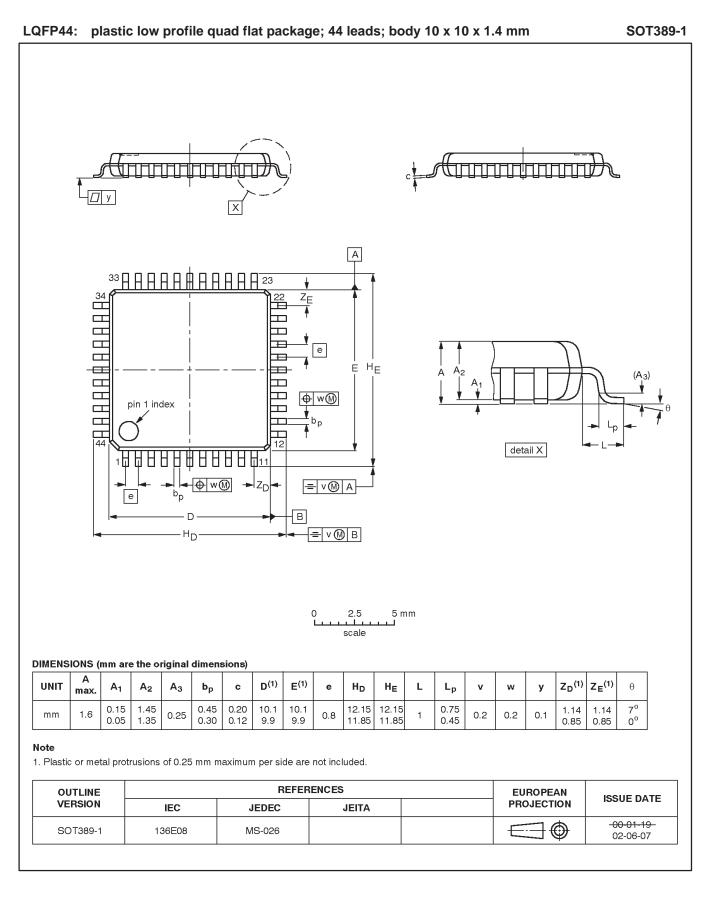



Figure 49. Program Verification



UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.7	0.51	4.0	1.70 1.14	0.53 0.38	0.36 0.23	52.50 51.50	14.1 13.7	2.54	15.24	3.60 3.05	15.80 15.24	17.42 15.90	0.254	2.25
inches	0.19	0.020	0.16	0.067 0.045	0.021 0.015	0.014 0.009	2.067 2.028	0.56 0.54	0.10	0.60	0.14 0.12	0.62 0.60	0.69 0.63	0.01	0.089

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFEF	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT129-1	051G08	MO-015	SC-511-40		-95-01-14 99-12-27	

P87C51RA2/RB2/RC2/RD2

REVISION HISTORY

Rev	Date	Description
_3	20030124	Product data (9397 750 10994); ECN 853-2391 29335 dated 07 Jan 2003.
		Modifications:
		 Updated ordering information table.
_2	20021028	Product data (9397 750 10393); ECN 853-2391 29117 dated 28 Oct 2002.

P87C51RA2/RB2/RC2/RD2

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax:

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2003 All rights reserved. Printed in U.S.A.

Date of release: 01-03

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 10994

Let's make things better.

