

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c51rc2fa-512

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product data

P87C51RA2/RB2/RC2/RD2

SELECTION TABLE

Туре		Mem	ory	_		Tim	ers		II	Ser nterf	ial aces	5										
	RAM	ROM	ОТР	Flash	# of Timers	PWM	PCA	DW	UART	12C	CAN	SPI	ADC bits/ch.	I/O Pins	Interrupts (Ext.)/Levels	Program Security	Default Clock Rate	Optional Clock Rate	Reset active Iow/high?	Max. Freq. at 6-clk / 12-clk (MHz)	Freq. Range at 3V (MHz)	Freq. Range at 5V (MHz)
P87C51RD2	1K	-	64K	-	4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	32	7(2)/4	\checkmark	12-clk	6-clk	н	30/33	0-16	0-30/33
P87C51RC2	512B	-	32K	-	4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	32	7(2)/4	\checkmark	12-clk	6-clk	н	30/33	0-16	0-30/33
P87C51RB2	512B	-	16K	-	4	\checkmark	\checkmark	\checkmark	V	-	-	-	-	32	7(2)/4	\checkmark	12-clk	6-clk	н	30/33	0-16	0-30/33
P87C51RA2	512B	-	8K	-	4	\checkmark	V	V	V	-	-	-	-	32	7(2)/4	V	12-clk	6-clk	Н	30/33	0-16	0-30/33

ORDERING INFORMATION

PHILIPS (EXCEPT NORTH AMERICA)	МЕМС	ORY			DWG #	
PART ORDER NUMBER	OTP	RAM	AND PACKAGE	VOLIAGE RANGE		
P87C51RA2BA	8 KB	512B	0 to +70, PLCC	2.7 to 5.5 V	SOT187-2	
P87C51RA2FA	8 KB	512B	-40 to +85, PLCC	2.7 to 5.5 V	SOT187-2	
P87C51RA2BBD	8 KB	512B	0 to +70, LQFP	2.7 to 5.5 V	SOT389-1	
P87C51RB2BA	16 KB	512B	0 to +70, PLCC	2.7 to 5.5 V	SOT187-2	
P87C51RB2FA	16 KB	512B	-40 to +85, PLCC	2.7 to 5.5 V	SOT187-2	
P87C51RB2BBD	16 KB	512B	0 to +70, LQFP	2.7 to 5.5 V	SOT389-1	
P87C51RB2BN	16 KB	512B	0 to +70, DIP40	2.7 to 5.5 V	SOT129-1	
P87C51RB2FN	16 KB	512B	-40 to +85, DIP40	2.7 to 5.5 V	SOT129-1	
P87C51RC2BA	32 KB	512B	0 to +70, PLCC	2.7 to 5.5 V	SOT187-2	
P87C51RC2FA	32 KB	512B	-40 to +85, PLCC	2.7 to 5.5 V	SOT187-2	
P87C51RC2BBD	32 KB	512B	0 to +70, LQFP	2.7 to 5.5 V	SOT389-1	
P87C51RC2BN	32 KB	512B	0 to +70, DIP40	2.7 to 5.5 V	SOT129-1	
P87C51RC2FN	32 KB	512B	-40 to +85, DIP40	2.7 to 5.5 V	SOT129-1	
P87C51RD2BA	64 KB	1 KB	0 to +70, PLCC	2.7 to 5.5 V	SOT187-2	
P87C51RD2FA	64 KB	1 KB	-40 to +85, PLCC	2.7 to 5.5 V	SOT187-2	
P87C51RD2BBD	64 KB	1 KB	0 to +70, LQFP	2.7 to 5.5 V	SOT389-1	
P87C51RD2FBD	64 KB	1 KB	-40 to +85, LQFP	2.7 to 5.5 V	SOT389-1	
P87C51RD2BN	64 KB	1 KB	0 to +70, DIP40	2.7 to 5.5 V	SOT129-1	

P87C51RA2/RB2/RC2/RD2

PIN DESCRIPTIONS

PIN NUMBER			NAME AND FUNCTION				
	PDIP	PLCC	LQFP	ITPE	NAME AND FUNCTION		
V _{SS}	20	22	16	1	Ground: 0 V reference.		
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle, and power-down operation.		
P0.0-0.7	39–32	43–36	37–30	I/O	Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s.		
P1.0–P1.7	1–8	2–9	40–44, 1–3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups on all pins. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I_{IL}).		
					Alternate functions for P87C51RA2/RB2/RC2/RD2 Port 1 include:		
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout (see Programmable Clock-Out)		
	2	3	41	1	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control		
	3	4	42	1	ECI (P1.2): External Clock Input to the PCA		
	4	5	43	I/O	CEX0 (P1.3): Capture/Compare External I/O for PCA module 0		
	5	6	44	I/O	CEX1 (P1.4): Capture/Compare External I/O for PCA module 1		
	6	7	1	I/O	CEX2 (P1.5): Capture/Compare External I/O for PCA module 2		
	7	8	2	I/O	CEX3 (P1.6): Capture/Compare External I/O for PCA module 3		
	8	9	3	I/O	CEX4 (P1.7): Capture/Compare External I/O for PCA module 4		
P2.0-P2.7	21–28	24–31	18–25	I/O	Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I_{IL}). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register.		
P3.0–P3.7	10–17	11, 13–19	5, 7–13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I_{IL}). Port 3 also serves the special features of the P87C51RA2/RB2/RC2/RD2, as listed below:		
	10	11	5	1	RxD (P3.0): Serial input port		
	11	13	7	0	TxD (P3.1): Serial output port		
	12	14	8	1	INT0 (P3.2): External interrupt		
	13	15	9	1	INT1 (P3.3): External interrupt		
	14	16	10	1	T0 (P3.4): Timer 0 external input		
	15	17	11	1	T1 (P3.5): Timer 1 external input		
	16	18	12	0	WR (P3.6): External data memory write strobe		
	17	19	13	0	RD (P3.7): External data memory read strobe		
RST	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .		
ALE	30	33	27	0	Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted twice every machine cycle, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. ALE can be disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.		

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0)

Figure 5. Timer 2 Auto Reload Mode (DCEN = 1)

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Figure 6. Timer 2 in Baud Rate Generator Mode

	Baud Rate	S				
Baud	Rate		Timer 2			
12-clock mode	6-clock mode	Osc Freq	RCAP2H	RCAP2L		
375 k	750 k	12 MHz	FF	FF		
9.6 k	19.2 k	12 MHz	FF	D9		
4.8 k	9.6 k	12 MHz	FF	B2		
2.4 k	4.8 k	12 MHz	FF	64		

12 MHz

12 MHz

12 MHz

6 MHz

6 MHz

FE

FB

F2

FD

F9

C8

1E

AF

8F

57

Table 4. Timer 2 Generated Commonly Used Baud Rates

Baud Rate Generator Mode

2.4 k

600

220

600

220

Bits TCLK and/or RCLK in T2CON (Table 4) allow the serial port transmit and receive baud rates to be derived from either Timer 1 or Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit baud rate generator. When TCLK= 1, Timer 2 is used as the serial port transmit baud rate generator. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates – one generated by Timer 1, the other by Timer 2.

Figure 6 shows the Timer 2 in baud rate generation mode. The baud rate generation mode is like the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in modes 1 and 3 are determined by Timer 2's overflow rate given below:

Modes 1 and 3 Baud Rates = $\frac{\text{Timer 2 Overflow Rate}}{16}$

The timer can be configured for either "timer" or "counter" operation. In many applications, it is configured for "timer" operation (C/T2=0). Timer operation is different for Timer 2 when it is being used as a baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e., 1_{6} the oscillator frequency in 6-clock mode, 1_{12} the oscillator frequency in 12-clock mode). As a baud rate generator, it increments at the oscillator frequency in 6-clock mode (^{OSC}/₂ in 12-clock mode). Thus the baud rate formula is as follows:

Modes 1 and 3 Baud Rates =

	Oscillator Frequency
[n*×	[65536 - (RCAP2H, RCAP2L)]]
* n =	16 in 6-clock mode 32 in 12-clock mode

Where: (RCAP2H, RCAP2L)= The content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

The Timer 2 as a baud rate generator mode shown in Figure 6, is valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Thus, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Also if the EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2). Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.

1.2 k

300

110 300

110

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

S	CON	Addres	ss = 98H									Reset Value = 00H
		Bit Add	ressable	7	6	5	4	3	2	1	0	1
				SM0	SM1	SM2	REN	TB8	RB8	ТΙ	RI	
Wher	e SM0,	SM1 spe	cify the serial po	ort mode	e, as foll	ows:						
SM0	SM1	Mode	Description	E	Baud Ra	ate						
0	0	0	shift register		f _{OSC} /12	2 (12-cl	ock mod	le) or f _C	_{SC} /6 (6-	clock m	node)	
0	1	1	8-bit UART		variable	Э						
1	0	0 2 9-bit UART $f_{OSC}/64$ or $f_{OSC}/32$ (12-clock mode) or $f_{OSC}/32$ or $f_{OSC}/16$ (6-clock mode)										
1	1	3	9-bit UART		variabl	Э						
SM2	Ena acti rec	ables the vated if the eived. In I	multiprocessor on the received 9th of Mode 0, SM2 should be the second state of the se	commur data bit ould be	iication (RB8) is 0.	feature s 0. In N	in Mode lode 1, i	es 2 and if SM2=	3. In M 1 then F	ode 2 o RI will no	r 3, if Sl ot be ac	M2 is set to 1, then RI will not be tivated if a valid stop bit was not
REN	Ena	ables seri	al reception. Se	t by soft	ware to	enable	receptio	on. Clea	r by sof	tware to	disable	e reception.
TB8	The	e 9th data	bit that will be t	ransmitt	ed in M	odes 2	and 3. S	Set or cl	ear by s	oftware	as desi	red.
RB8	In N RB	In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, it SM2=0, RB8 is the stop bit that was received. In Mode 0, RB8 is not used.										
ті	Tra mo	Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.										
RI	Reo mo	Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in the other modes, in any serial reception (except see SM2). Must be cleared by software.										

SU01626

	Baud Rate		4	CMOD	Timer 1				
Mode	12-clock mode	6-clock mode	TOSC	SWOD	C/T	Mode	Reload Value		
Mode 0 Max	1.67 MHz	3.34 MHz	20 MHz	Х	Х	Х	Х		
Mode 2 Max	625 k	1250 k	20 MHz	1	Х	Х	Х		
Mode 1, 3 Max	104.2 k	208.4 k	20 MHz	1	0	2	FFH		
Mode 1, 3	19.2 k	38.4 k	11.059 MHz	1	0	2	FDH		
	9.6 k	19.2 k	11.059 MHz	0	0	2	FDH		
	4.8 k	9.6 k	11.059 MHz	0	0	2	FAH		
	2.4 k	4.8 k	11.059 MHz	0	0	2	F4H		
	1.2 k	2.4 k	11.059 MHz	0	0	2	E8H		
	137.5	275	11.986 MHz	0	0	2	1DH		
	110	220	6 MHz	0	0	2	72H		
	110	220	12 MHz	0	0	1	FEEBH		

Figure 7. Serial Port Control (SCON) Register

Figure 8. Timer 1 Generated Commonly Used Baud Rates

More About Mode 0

Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed a 1/12 the oscillator frequency (12-clock mode) or 1/6 the oscillator frequency (6-clock mode).

Figure 9 shows a simplified functional diagram of the serial port in Mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF" and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P3.0 and also enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1, and S2. At

S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift are shifted to the right one position.

As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control block to do one last shift and then deactivate SEND and set T1. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF."

Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 1111110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are

P87C51RA2/RB2/RC2/RD2

P87C51RA2/RB2/RC2/RD2

Figure 10. Serial Port Mode 1

Enhanced Features

The UART operates in all of the usual modes that are described in the first section of *Data Handbook IC20, 80C51-Based 8-Bit Microcontrollers.* In addition the UART can perform framing error detect by looking for missing stop bits, and automatic address recognition. The UART also fully supports multiprocessor communication as does the standard 80C51 UART.

When used for framing error detect the UART looks for missing stop bits in the communication. A missing bit will set the FE bit in the SCON register. The FE bit shares the SCON.7 bit with SM0 and the function of SCON.7 is determined by PCON.6 (SMOD0) (see Figure 7). If SMOD0 is set then SCON.7 functions as FE. SCON.7 functions as SM0 when SMOD0 is cleared. When used as FE SCON.7 can only be cleared by software. Refer to Figure 13.

Automatic Address Recognition

Automatic Address Recognition is a feature which allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be automatically set when the received byte contains either the "Given" address or the "Broadcast" address. The 9-bit mode requires that the 9th information bit is a 1 to indicate that the received information is an address and not data. Automatic address recognition is shown in Figure 14.

The 8 bit mode is called Mode 1. In this mode the RI flag will be set if SM2 is enabled and the information received has a valid stop bit following the 8 address bits and the information is either a Given or Broadcast address.

Mode 0 is the Shift Register mode and SM2 is ignored.

Using the Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the Given slave address or addresses. All of the slaves may be contacted by using the Broadcast address. Two special Function Registers are used to define the slave's address, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to b used and which bits are "don't care". The SADEN mask can be logically ANDed with the SADDR to create the "Given" address which the master will use for addressing each of the slaves. Use of the Given address allows multiple slaves to be recognized while excluding others. The following examples will help to show the versatility of this scheme:

Slave 0	SADDR	=	1100 0000	
	SADEN	=	<u>1111 1101</u>	
	Given	=	1100 00X0	

Slave 1	SADDR	=	1100	0000
	SADEN	=	<u>1111</u>	1110
	Given	=	1100	000X

In the above example SADDR is the same and the SADEN data is used to differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for Slave 0 would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address for slave 1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0 = 0 (for slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000.

P87C51RA2/RB2/RC2/RD2

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:

Slave 0	SADDR	=	1100	0000
	SADEN	=	<u>1111</u>	<u>1001</u>
	Given	=	1100	0XX0
Slave 1	SADDR	=	1110	0000
	SADEN	=	<u>1111</u>	<u>1010</u>
	Given	=	1110	0X0X
Slave 2	SADDR	=	1110	0000
	SADEN	=	<u>1111</u>	<u>1100</u>
	Given	=	1110	00XX

In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0 and 1 and exclude Slave 2 use address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are trended as don't-cares. In most cases, interpreting the don't-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H) are leaded with 0s. This produces a given address of all "don't cares" as well as a Broadcast address of all "don't cares". This effectively disables the Automatic Addressing mode and allows the microcontroller to use standard 80C51 type UART drivers which do not make use of this feature.

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Figure 13. UART Framing Error Detection

Figure 14. UART Multiprocessor Communication, Automatic Address Recognition

P87C51RA2/RB2/RC2/RD2

	СМС	D Addres	ss = D9H					Reset Value = 00XX X000B				
		CIDL	WDTE	-	_	_	CPS1	CPS0	ECF			
	Bit:	7	6	5	4	3	2	1	0	-		
Symbol	Func	tion										
CIDL	Coun it to b	ter Idle cor e gated off	ntrol: CIDL : during idle	= 0 progran	ns the PCA	Counter to	continue fur	nctioning du	iring idle M	ode. CIDL = 1 programs		
WDTE	Watc	hdog Time	r Enable: W	/DTE = 0 di	sables Wate	chdog Time	r function o	n PCA Mod	ule 4. WDT	E = 1 enables it.		
-	Not ir	nplemente	d, reserved	for future u	ISE.*							
CPS1	PCA	Count Puls	se Select bi	t 1.								
CPS0	PCA CPS1	Count Puls	e Select bi Select	t 0. ed PCA Inp	out**							
	0	0	0	Intern	al clock, f _{OS}	_C /6 in 6-clo	ck mode (f _c	_{DSC} /12 in 12	2-clock mod	le)		
	0	1	1	Interna	al clock, f _{OS}	_C /2 in 6-clo	ck mode (f	_{DSC} /4 in 12-	clock mode	e)		
	1	0	2	Timer	0 overflow							
	1	1	3	Exterr	al clock at l	ECI/P1.2 pi	n					
				(ma	x. rate = f _{OS}	_{SC} /4 in 6-clo	ock mode, fo	_{OCS} /8 in 12-	-clock mode	e)		
ECF	PCA that f	Enable Co unction of (unter Overf CF.	low interrup	ot: ECF = 1	enables CF	bit in CCO	N to genera	ite an interr	upt. ECF = 0 disables		
NOTE: * User softwar value of the ** fosc = osci	are should r e new bit wi llator freque	not write 1s to Il be 0, and its ency	reserved bits. ⁻ active value w	These bits may ill be 1. The val	be used in futu ue read from a	re 8051 family reserved bit is	products to invo indeterminate.	oke new feature	es. In that case	, the reset or inactive		

Figure 22. CMOD: PCA Counter Mode Register

	Bit Ado	dressable			•					_
		CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	
	Bit:	7	6	5	4	3	2	1	0	
Symbol	Funct	ion								
	PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but can only be cleared by software.									
CF	PCA 0 set. C	Counter Ov F may be	verflow flag set by eithe	. Set by ha	rdware whe	n the counte but can on	er rolls over ly be cleare	CF flags and by softward	in interrupt are.	if bit ECF in CMOD is
CF CR	PCA 0 set. C PCA 0 counte	Counter Ov F may be s Counter Ru er off.	verflow flag set by eithe un control b	i. Set by ha er hardware bit. Set by s	rdware whe or software oftware to tu	n the counte but can on urn the PCA	er rolls over ly be cleare counter or	CF flags a d by softwa . Must be c	in interrupt are. leared by s	if bit ECF in CMOD is oftware to turn the PCA
CF CR -	PCA C set. C PCA C counte Not im	Counter O F may be s Counter Ru er off. aplemente	verflow flag set by eithe un control b d, reserved	i. Set by ha er hardware bit. Set by s I for future i	rdware whe or software oftware to tu use*.	n the counte but can on urn the PCA	er rolls over ly be cleare counter or	. CF flags a d by softwa . Must be c	in interrupt are. leared by s	if bit ECF in CMOD is oftware to turn the PCA
CF CR - CCF4	PCA (set. C PCA (counte Not im PCA N	Counter O F may be : Counter Ru er off. plementer Module 4 ir	verflow flag set by eithe un control b d, reserved nterrupt flag	i. Set by ha er hardware bit. Set by s I for future o g. Set by ha	rdware when or software oftware to tu use*. ardware when	n the counte but can on urn the PCA en a match o	er rolls over ly be cleare counter or or capture c	CF flags a d by softwa . Must be c occurs. Mus	in interrupt are. leared by s t be cleared	if bit ECF in CMOD is oftware to turn the PCA d by software.
CF CR - CCF4 CCF3	PCA (set. C PCA (counte Not im PCA N PCA N	Counter O F may be : Counter Ru er off. nplementer Aodule 4 in Aodule 3 in	verflow flag set by eithe un control b d, reserved nterrupt flag nterrupt flag	i. Set by ha er hardware bit. Set by s I for future i g. Set by ha g. Set by ha	rdware whe or software oftware to tu use*. ardware whe ardware whe	n the counte but can on urn the PCA en a match o en a match o	er rolls over ly be cleare counter or or capture c or capture c	CF flags a d by softwa . Must be c occurs. Mus occurs. Mus	in interrupt are. leared by s t be cleared t be cleared	if bit ECF in CMOD is oftware to turn the PCA d by software. d by software.
CF CR - CCF4 CCF3 CCF2	PCA (set. C PCA (counte Not im PCA N PCA N	Counter O F may be : Counter Ru er off. nplementer Module 4 ir Module 3 ir Module 2 ir	verflow flag set by eithe un control b d, reserved nterrupt flag nterrupt flag nterrupt flag	I. Set by ha er hardware bit. Set by s I for future f g. Set by ha g. Set by ha g. Set by ha	rdware whe or software oftware to tu use*. ardware whe ardware whe ardware whe	n the counte but can on urn the PCA en a match o en a match o en a match o	er rolls over ly be cleare a counter or or capture c or capture c or capture c	CF flags a d by softwa . Must be c ccurs. Mus ccurs. Mus ccurs. Mus	in interrupt are. leared by s t be cleared t be cleared t be cleared	if bit ECF in CMOD is oftware to turn the PCA d by software. d by software. d by software.
CF CR - CCF4 CCF3 CCF2 CCF1	PCA (set. C PCA (counte Not im PCA N PCA N PCA N	Counter Ov F may be : Counter Ru er off. nplementer Aodule 4 ir Aodule 3 ir Aodule 2 ir Aodule 1 ir	verflow flag set by eithe un control b d, reserved nterrupt flag nterrupt flag nterrupt flag nterrupt flag	b). Set by ha er hardware bit. Set by s I for future i g. Set by ha g. Set by ha g. Set by ha g. Set by ha g. Set by ha	rdware when or software oftware to tu use*. ardware when ardware when ardware when ardware when ardware when	n the counte but can on urn the PCA en a match o en a match o en a match o en a match o	er rolls over ly be cleare counter or or capture c or capture c or capture c or capture c	CF flags a d by softwa . Must be c ccurs. Mus iccurs. Mus iccurs. Mus iccurs. Mus	n interrupt are. leared by s t be cleared t be cleared t be cleared t be cleared t be cleared	if bit ECF in CMOD is oftware to turn the PCA d by software. d by software. d by software. d by software. d by software.

SU01319

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Figure 28. PCA High Speed Output Mode

Figure 29. PCA PWM Mode

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Figure 30. PCA Watchdog Timer mode (Module 4 only)

PCA Watchdog Timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed.

Figure 30 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

- 1. periodically change the compare value so it will never match the PCA timer,
- 2. periodically change the PCA timer value so it will never match the compare values, or
- 3. disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for **all** modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

Figure 31 shows the code for initializing the watchdog timer. Module 4 can be configured in either compare mode, and the WDTE bit in CMOD must also be set. The user's software then must periodically change (CCAP4H,CCAP4L) to keep a match from occurring with the PCA timer (CH,CL). This code is given in the WATCHDOG routine in Figure 31.

This routine should not be part of an interrupt service routine, because if the program counter goes astray and gets stuck in an infinite loop, interrupts will still be serviced and the watchdog will keep getting reset. Thus, the purpose of the watchdog would be defeated. Instead, call this subroutine from the main program within 2^{16} count of the PCA timer.

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

DC ELECTRICAL CHARACTERISTICS

 T_{amb} = 0 °C to +70 °C or -40 °C to +85 °C; V_{CC} = 5 V ±10%; V_{SS} = 0 V (30/33 MHz max. CPU clock)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS	UNIT		
			MIN	TYP ¹	MAX	1
VIL	Input low voltage ¹¹	4.5 V < V _{CC} < 5.5 V	-0.5		0.2 V _{CC} -0.1	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)		0.2 V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST ¹¹		0.7 V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2, 3 8	$V_{CC} = 4.5 \text{ V}; I_{OL} = 1.6 \text{ mA}^2$	-		0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN 7, 8	$V_{CC} = 4.5 \text{ V}; I_{OL} = 3.2 \text{ mA}^2$	-		0.4	V
V _{OH}	Output high voltage, ports 1, 2, 3 3	V_{CC} = 4.5 V; I_{OH} = -30 μ A	V _{CC} - 0.7		-	V
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	V_{CC} = 4.5 V; I_{OH} = -3.2 mA	V _{CC} - 0.7		-	V
IIL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4 V	-1		-50	μA
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0 V; See note 4	-		-650	μA
I _{LI}	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$	-		±10	μA
I _{CC}	Power supply current					
	Idle mode (see Note 5)					
	Power-down mode or clock stopped (see Figure 46 for conditions)	$T_{amb} = 0 \ ^{\circ}C \text{ to } 70 \ ^{\circ}C$		2	30	μA
		$T_{amb} = -40 \ ^{\circ}C \text{ to } +85 \ ^{\circ}C$		3	50	μΑ
V _{RAM}	RAM keep-alive voltage		1.2			V
R _{RST}	Internal reset pull-down resistor		40		225	kΩ
C _{IO}	Pin capacitance ¹⁰ (except EA)		_		15	pF

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.

2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V_{OL}s of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I_{OL} can exceed these conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions.

 Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC}-0.7 specification when the address bits are stabilizing.

 Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2 V.

5. See Figures 43 through 46 for I_{CC} test conditions and Figure 41 for I_{CC} vs. Frequency.

12-clock mode characteristics:

Active mode (operating):	$I_{CC} = 1.0 \text{ mA} + 1.1 \text{ mA} \times \text{FREQ}.[\text{MHz}]$
Active mode (reset):	$I_{CC} = 7.0 \text{ mA} + 0.6 \text{ mA} \times \text{FREQ}.[\text{MHz}]$
Idle mode:	I_{CC} = 1.0 mA + 0.22 mA × FREQ.[MHz

Idle mode: $I_{CC} = 1.0 \text{ mA} + 0.22 \text{ mA} \times \text{FREQ.[MHz]}$ 6. This value applies to $T_{amb} = 0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$. For $T_{amb} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $I_{TL} = -750 \text{ }\mu\text{A}$.

7. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.

8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 15 mA (*NOTE: This is 85 °C specification.)

- Maximum I_{OL} per 8-bit port: 26 mA
- Maximum total I_{OL} for all outputs: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

9. ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF (except EA is 25 pF).

11. To improve noise rejection a nominal 100 ns glitch rejection circuitry has been added to the RST pin, and a nominal 15 ns glitch rejection circuitry has been added to the INT0 and INT1 pins. Previous devices provided only an inherent 5 ns of glitch rejection.

P87C51RA2/RB2/RC2/RD2

AC ELECTRICAL CHARACTERISTICS (12-CLOCK MODE, 2.7 V TO 5.5 V OPERATION)

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$; $V_{CC} = 2.7 \lor$ to 5.5 V, $V_{SS} = 0 \lor 1,2,3,4$

Symbol	Figure	Parameter	Limits		16 MHz Clock		Unit	
			MIN	MAX	MIN	MAX	1	
1/t _{CLCL}	38	Oscillator frequency	0	16			MHz	
t _{LHLL}	34	ALE pulse width	2t _{CLCL} -10		115		ns	
t _{AVLL}	34	Address valid to ALE low	t _{CLCL} –15		47.5		ns	
t _{LLAX}	34	Address hold after ALE low	t _{CLCL} –25		37.5		ns	
t _{LLIV}	34	ALE low to valid instruction in		4 t _{CLCL} –55		195	ns	
t _{LLPL}	34	ALE low to PSEN low	t _{CLCL} –15		47.5		ns	
t _{PLPH}	34	PSEN pulse width	3 t _{CLCL} –15		172.5		ns	
t _{PLIV}	34	PSEN low to valid instruction in		3 t _{CLCL} –55		132.5	ns	
t _{PXIX}	34	Input instruction hold after PSEN	0		0		ns	
t _{PXIZ}	34	Input instruction float after PSEN		t _{CLCL} –10		52.5	ns	
t _{AVIV}	34	Address to valid instruction in		5 t _{CLCL} –50		262.5	ns	
t _{PLAZ}	34	PSEN low to address float		10		10	ns	
Data Mem	nory	•		•	•			
t _{RLRH}	35	RD pulse width	6 t _{CLCL} –25		350		ns	
t _{WLWH}	36	WR pulse width	6 t _{CLCL} –25		350		ns	
t _{RLDV}	35	RD low to valid data in		5 t _{CLCL} –50		262.5	ns	
t _{RHDX}	35	Data hold after RD	0		0		ns	
t _{RHDZ}	35	Data float after RD		2 t _{CLCL} –20		105	ns	
t _{LLDV}	35	ALE low to valid data in		8 t _{CLCL} –55		445	ns	
t _{AVDV}	35	Address to valid data in		9 t _{CLCL} –50		512.5	ns	
t _{LLWL}	35, 36	ALE low to RD or WR low	3 t _{CLCL} –20	3 t _{CLCL} +20	167.5	207.5	ns	
t _{AVWL}	35, 36	Address valid to WR low or RD low	4 t _{CLCL} –20		230		ns	
t _{QVWX}	36	Data valid to WR transition	t _{CLCL} –30		32.5		ns	
t _{WHQX}	36	Data hold after WR	t _{CLCL} –20		42.5		ns	
t _{QVWH}	36	Data valid to WR high	7 t _{CLCL} –10		427.5		ns	
t _{RLAZ}	35	RD low to address float		0		0	ns	
t _{WHLH}	35, 36	RD or WR high to ALE high	t _{CLCL} –15	t _{CLCL} +15	47.5	77.5	ns	
External	Clock			•		I		
t _{CHCX}	38	High time	0.32 t _{CLCL}	t _{CLCL} – t _{CLCX}			ns	
t _{CLCX}	38	Low time	0.32 t _{CLCL}	t _{CLCL} - t _{CHCX}			ns	
t _{CLCH}	38	Rise time		5			ns	
t _{CHCL}	38	Fall time		5			ns	
Shift regi	ster		I	•	-	I		
t _{XLXL}	37	Serial port clock cycle time	12 t _{CLCL}		750		ns	
t _{QVXH}	37	Output data setup to clock rising edge	10 t _{CLCL} –25		600		ns	
t _{XHQX}	37	Output data hold after clock rising edge	2 t _{CLCL} –15		110		ns	
t _{XHDX}	37	Input data hold after clock rising edge	0		0		ns	
t _{XHDV}	37	Clock rising edge to input data valid ⁵		10 t _{CLCL} –133		492	ns	

NOTES:

Parameters are valid over operating temperature range unless otherwise specified.
 Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all outputs = 80 pF

3. Interfacing the microcontroller to devices with float time up to 45 ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz. 5. Below 16 MHz this parameter is 8 t_{CLCL} – 133.

P87C51RA2/RB2/RC2/RD2

AC ELECTRICAL CHARACTERISTICS (6-CLOCK MODE, 2.7 V TO 5.5 V OPERATION)

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$; $V_{CC}=2.7 \lor$ to 5.5 V, $V_{SS} = 0 \lor V^{1,2,3,4,5}$

Symbol Figure		Parameter	Limits		16 MHz	Unit	
			MIN	MAX	MIN	MAX	1
1/t _{CLCL}	38	Oscillator frequency	0	16			MHz
t _{LHLL}	34	ALE pulse width	t _{CLCL} -10		52.5		ns
t _{AVLL}	34	Address valid to ALE low	0.5 t _{CLCL} –15		16.25		ns
t _{LLAX}	34	Address hold after ALE low	0.5 t _{CLCL} –25		6.25		ns
t _{LLIV}	34	ALE low to valid instruction in		2 t _{CLCL} –55		70	ns
t _{LLPL}	34	ALE low to PSEN low	0.5 t _{CLCL} –15		16.25		ns
t _{PLPH}	34	PSEN pulse width	1.5 t _{CLCL} –15		78.75		ns
t _{PLIV}	34	PSEN low to valid instruction in		1.5 t _{CLCL} –55		38.75	ns
t _{PXIX}	34	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	34	Input instruction float after PSEN		0.5 t _{CLCL} –10		21.25	ns
t _{AVIV}	34	Address to valid instruction in		2.5 t _{CLCL} –50		101.25	ns
t _{PLAZ}	34	PSEN low to address float		10		10	ns
Data Mem	nory	·		-			
t _{RLRH}	35	RD pulse width	3 t _{CLCL} –25		162.5		ns
t _{WLWH}	36	WR pulse width	3 t _{CLCL} –25		162.5		ns
t _{RLDV}	35	RD low to valid data in		2.5 t _{CLCL} –50		106.25	ns
t _{RHDX}	35	Data hold after RD	0		0		ns
t _{RHDZ}	35	Data float after RD		t _{CLCL} –20		42.5	ns
t _{LLDV}	35	ALE low to valid data in		4 t _{CLCL} –55		195	ns
t _{AVDV}	35	Address to valid data in		4.5 t _{CLCL} –50		231.25	ns
t _{LLWL}	35, 36	ALE low to RD or WR low	1.5 t _{CLCL} –20	1.5 t _{CLCL} +20	73.75	113.75	ns
t _{AVWL}	35, 36	Address valid to \overline{WR} low or \overline{RD} low	2 t _{CLCL} –20		105		ns
t _{QVWX}	36	Data valid to WR transition	0.5 t _{CLCL} –30		1.25		ns
t _{WHQX}	36	Data hold after WR	0.5 t _{CLCL} –20		11.25		ns
t _{QVWH}	36	Data valid to WR high	3.5 t _{CLCL} –10		208.75		ns
t _{RLAZ}	35	RD low to address float		0		0	ns
t _{WHLH}	35, 36	RD or WR high to ALE high	0.5 t _{CLCL} –15	0.5 t _{CLCL} +15	16.25	46.25	ns
External	Clock	1		1			
t _{CHCX}	38	High time	0.4 t _{CLCL}	t _{CLCL} – t _{CLCX}			ns
t _{CLCX}	38	Low time	0.4 t _{CLCL}	t _{CLCL} – t _{CHCX}			ns
t _{CLCH}	38	Rise time		5			ns
t _{CHCL}	38	Fall time		5			ns
Shift regi	ster			1			
t _{XLXL}	37	Serial port clock cycle time	6 t _{CLCL}		375		ns
t _{QVXH}	37	Output data setup to clock rising edge	5 t _{CLCL} –25		287.5		ns
t _{XHQX}	37	Output data hold after clock rising edge	t _{CLCL} –15		47.5		ns
t _{XHDX}	37	Input data hold after clock rising edge	0		0	_	ns
t _{XHDV}	37	Clock rising edge to input data valid ⁶		5 t _{CLCL} –133		179.5	ns

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified.

 Load capacitance for port 0, ALE, and PSEN=100 pF, load capacitance for all outputs = 80 pF
 Interfacing the microcontroller to devices with float time up to 45ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz.

5. Data shown in the table are the best mathematical models for the set of measured values obtained in tests. If a particular parameter

calculated at a customer specified frequency has a negative value, it should be considered equal to zero.

6. Below 16 MHz this parameter is 4 t_{CLCL} - 133

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

```
/*
##
       as31 version V2.10
                                   / *js* /
##
##
##
       source file: idd_ljmp1.asm
         list file: idd_ljmp1.lst
                                  created Fri Apr 20 15:51:40 2001
##
##
#0000
                    # AUXR equ 08Eh
#0000
                    # CKCON equ 08Fh
                    #
                    #
#0000
                    # org 0
                    #
                    # LJMP_LABEL:
                                     AUXR,#001h ; turn off ALE
LJMP_LABEL ; jump to end of address space
0000 /75;/8E;/01;
                   #
                             MOV
0003 /02;/FF;/FD;
                   #
                              LJMP
0005 /00;
                             NOP
                    #
                    #
#FFFD
                    # org Offfdh
                    #
                    # LJMP_LABEL:
                    #
FFFD /02;/FD;FF;
                    #
                              LJMP LJMP_LABEL
                    # ;
                              NOP
                    #
                    #
*/"
                                                                               SU01499
```

Figure 42. Source code used in measuring I_{DD} operational

EPROM CHARACTERISTICS

All these devices can be programmed by using a modified Improved Quick-Pulse Programming[™] algorithm. It differs from older methods in the value used for V_{PP} (programming supply voltage) and in the width and number of the ALE/PROG pulses.

The family contains two signature bytes that can be read and used by an EPROM programming system to identify the device. The signature bytes identify the device as being manufactured by Philips.

Table 8 shows the logic levels for reading the signature byte, and for programming the program memory, the encryption table, and the security bits. The circuit configuration and waveforms for quick-pulse programming are shown in Figures 47 and 48. Figure 49 shows the circuit configuration for normal program memory verification.

Quick-Pulse Programming

The setup for microcontroller quick-pulse programming is shown in Figure 47. Note that the device is running with a 4 to 6MHz oscillator. The reason the oscillator needs to be running is that the device is executing internal address and program data transfers.

The address of the EPROM location to be programmed is applied to ports 1 and 2, as shown in Figure 47. The code byte to be programmed into that location is applied to port 0. RST, <u>PSEN</u> and pins of ports 2 and 3 specified in Table 8 are held at the 'Program Code Data' levels indicated in Table 8. The ALE/PROG is pulsed low 5 times as shown in Figure 48.

To program the encryption table, repeat the 5 pulse programming sequence for addresses 0 through 1FH, using the 'Pgm Encryption Table' levels. Do not forget that after the encryption table is programmed, verification cycles will produce only encrypted data.

To program the security bits, repeat the 5 pulse programming sequence using the 'Pgm Security Bit' levels. After one security bit is programmed, further programming of the code memory and encryption table is disabled. However, the other security bits can still be programmed.

Note that the \overline{EA}/V_{PP} pin must not be allowed to go above the maximum specified V_{PP} level for any amount of time. Even a narrow glitch above that voltage can cause permanent damage to the device. The V_{PP} source should be well regulated and free of glitches and overshoot.

Program Verification

If security bits 2 and 3 have not been programmed, the on-chip program memory can be read out for program verification. The address of the program memory locations to be read is applied to ports 1 and 2 as shown in Figure 49. The other pins are held at the 'Verify Code Data' levels indicated in Table 8. The contents of the address location will be emitted on port 0. External pull-ups are required on port 0 for this operation.

P87C51RA2/RB2/RC2/RD2

If the 64 byte encryption table has been programmed, the data presented at port 0 will be the exclusive NOR of the program byte with one of the encryption bytes. The user will have to know the encryption table contents in order to correctly decode the verification data. The encryption table itself cannot be read out.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values are:

(030H) = 15H indicates manufactured by Philips

031H) =	CAH indicates 87C51RA2
	CBH indicates 87C51RB2
	CCH indicates 87C51RC2
	CDH indicates 87C51RD2
00011	N 1 A

(060H) = NA

Program/Verify Algorithms

Any algorithm in agreement with the conditions listed in Table 8, and which satisfies the timing specifications, is suitable.

Security Bits

With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 9) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory, EA is latched on Reset and all further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled. When all three security bits are programmed, all of the conditions above apply and all external program memory execution is disabled.

Encryption Array

64 bytes of encryption array are initially unprogrammed (all 1s).

[™]Trademark phrase of Intel Corporation.

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Table 8. EPROM Programming Modes

MODE	RST	PSEN	ALE/PROG	EA/V _{PP}	P2.7	P2.6	P3.7	P3.6	P3.3
Read signature	1	0	1	1	0	0	0	0	Х
Program code data	1	0	0*	V _{PP}	1	0	1	1	Х
Verify code data	1	0	1	1	0	0	1	1	Х
Pgm encryption table	1	0	0*	V _{PP}	1	0	1	0	Х
Pgm security bit 1	1	0	0*	V _{PP}	1	1	1	1	Х
Pgm security bit 2	1	0	0*	V _{PP}	1	1	0	0	Х
Pgm security bit 3	1	0	0*	V _{PP}	0	1	0	1	Х
Program to 6-clock mode	1	0	0*	V _{PP}	0	0	1	0	0
Verify 6-clock ⁴	1	0	1	1	е	0	0	1	1
Verify security bits ⁵	1	0	1	1	е	0	1	0	Х

NOTES:

1. '0' =Valid low for that pin, '1' =valid high for that pin.

2. V_{PP} = 12.75 V ±0.25 V.

4. Bit is output on P0.4 (1 = 12x, 0 = 6x). 5. Security bit one is output on P0.7.

Security bit two is output on P0.6.

Security bit three is output on P0.3.

* ALE/PROG receives 5 programming pulses for code data (also for user array; 5 pulses for encryption or security bits) while VPP is held at 12.75 V. Each programming pulse is low for 100 μs (±10 μs) and high for a minimum of 10 $\mu s.$

Table 9. Program Security Bits for EPROM Devices

PROGRAM LOCK BITS ^{1, 2}		31, 2		
	SB1	SB2	SB3	PROTECTION DESCRIPTION
1	U	U	U	No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)
2	Р	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.
3	Р	Р	U	Same as 2, also verify is disabled.
4	Р	Р	Р	Same as 3, external execution is disabled. Internal data RAM is not accessible.

NOTES:

1. P - programmed. U - unprogrammed.

2. Any other combination of the security bits is not defined.

P87C51RA2/RB2/RC2/RD2

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

 T_{amb} = 21°C to +27°C, V_{CC} = 5V±10%, V_{SS} = 0V (See Figure 50)

SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{PP}	Programming supply voltage	12.5	13.0	V
I _{PP}	Programming supply current		50 ¹	mA
1/t _{CLCL}	Oscillator frequency	4	6	MHz
t _{AVGL}	Address setup to PROG low	48t _{CLCL}		
t _{GHAX}	Address hold after PROG	48t _{CLCL}		
t _{DVGL}	Data setup to PROG low	48t _{CLCL}		
t _{GHDX}	Data hold after PROG	48t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) high to V _{PP}	48t _{CLCL}		
t _{SHGL}	V _{PP} setup to PROG low	10		μs
t _{GHSL}	V _{PP} hold after PROG	10		μs
t _{GLGH}	PROG width	90	110	μs
t _{AVQV}	Address to data valid		48t _{CLCL}	
t _{ELQZ}	ENABLE low to data valid		48t _{CLCL}	
t _{EHQZ}	Data float after ENABLE	0	48t _{CLCL}	
tGHGL	PROG high to PROG low	10		μs

NOTE:

1. Not tested.

NOTES:

* FOR PROGRAMMING CONFIGURATION SEE FIGURE 47.

FOR VERIFICATION CONDITIONS SEE FIGURE 49.

** SEE TABLE 8.

Figure 50. EPROM Programming and Verification

MASK ROM DEVICES

Security Bits

With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 10) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes

from the internal memory, EA is latched on Reset and all further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled.

P87C51RA2/RB2/RC2/RD2

Encryption Array

64 bytes of encryption array are initially unprogrammed (all 1s).

Table 10. Program Security Bits

PROGRAM LOCK BITS ^{1, 2}		BITS ^{1, 2}	
	SB1	SB2	PROTECTION DESCRIPTION
1	U	U	No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)
2	Р	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.

NOTES:

1. P - programmed. U - unprogrammed.

2. Any other combination of the security bits is not defined.

ROM CODE SUBMISSION FOR 8K ROM DEVICES (87C51RA2)

When submitting ROM code for the 8k ROM devices, the following must be specified:

1. 8 kbyte user ROM data

- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 1FFFH	DATA	7:0	User ROM Data
2000H to 203FH	KEY	7:0	ROM Encryption Key FFH = no encryption
2040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
2040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. EA is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	□ Disabled
Security Bit #2:	□ Enabled	□ Disabled
Encryption:	🗆 No	□ Yes If Yes, must send key file.