Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | 8051 | | Core Size | 8-Bit | | Speed | 33MHz | | Connectivity | EBI/EMI, UART/USART | | Peripherals | POR, PWM, WDT | | Number of I/O | 32 | | Program Memory Size | 32KB (32K x 8) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 512 x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Through Hole | | Package / Case | 40-DIP (0.600", 15.24mm) | | Supplier Device Package | 40-DIP | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c51rc2fn-112 | ### **BLOCK DIAGRAM (CPU-ORIENTED)** 5 2003 Jan 24 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 #### LOGIC SYMBOL ### **PINNING** ### Plastic Dual In-Line Package ### **Plastic Leaded Chip Carrier** #### **Plastic Quad Flat Pack** 2003 Jan 24 6 Product data 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### **SPECIAL FUNCTION REGISTERS** | SYMBOL | DESCRIPTION | DIRECT
ADDRESS | BIT
MSB | ADDRES | S, SYMB | OL, OR A | LTERNAT | IVE POR | T FUNCT | ION
LSB | RESET
VALUE | |---------------------|---|-------------------|------------|--------|---------|----------|---------|----------|---------|------------|------------------------| | ACC* | Accumulator | E0H | E7 | E6 | E5 | E4 | E3 | E2 | E1 | E0 | 00H | | AUXR# | Auxiliary | 8EH | _ | _ | _ | _ | _ | <u> </u> | EXTRAM | AO | xxxxxx00B | | AUXR1# | Auxiliary 1 | A2H | _ | - | - | - | GF2 | 0 | - | DPS | xxxxxxxx0B | | B* | B register | F0H | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0 | 00H | | CCAP0H# | Module 0 Capture High | FAH | | | | | | | | | xxxxxxxxB | | CCAP1H# | Module 1 Capture High | FBH | | | | | | | | | xxxxxxxxB | | CCAP2H# | Module 2 Capture High | FCH | | | | | | | | | xxxxxxxxB | | CCAP3H# | Module 3 Capture High | FDH | | | | | | | | | xxxxxxxxB | | CCAP4H#
CCAP0L# | Module 4 Capture High
Module 0 Capture Low | FEH
EAH | | | | | | | | | xxxxxxxxB
xxxxxxxxB | | CCAP1L# | Module 1 Capture Low | EBH | | | | | | | | | xxxxxxxxxB | | CCAP2L# | Module 2 Capture Low | ECH | | | | | | | | | xxxxxxxxxB | | CCAP3L# | Module 3 Capture Low | EDH | | | | | | | | | xxxxxxxxB | | CCAP4L# | Module 4 Capture Low | EEH | | | | | | | | | xxxxxxxxB | | CCAPM0# | Module 0 Mode | DAH | _ | ECOM | CAPP | CAPN | MAT | TOG | PWM | ECCF | x0000000B | | CCAPM1# | Module 1 Mode | DBH | - | ECOM | CAPP | CAPN | MAT | TOG | PWM | ECCF | x0000000B | | CCAPM2# | Module 2 Mode | DCH | - | ECOM | CAPP | CAPN | MAT | TOG | PWM | ECCF | x0000000B | | CCAPM3# | Module 3 Mode | DDH | - | ECOM | CAPP | CAPN | MAT | TOG | PWM | ECCF | x0000000B | | CCAPM4# | Module 4 Mode | DEH | - | ECOM | CAPP | CAPN | MAT | TOG | PWM | ECCF | x0000000B | | | | | DF | DE | DD | DC | DB | DA | D9 | D8 | | | CCON*# | PCA Counter Control | D8H | CF | CR | _ | CCF4 | CCF3 | CCF2 | CCF1 | CCF0 | 00x00000B | | CH# | PCA Counter High | F9H | | | | | | | | | 00H | | CKCON#
CL# | Clock control
PCA Counter Low | 8FH
E9H | _ | - | - | - | _ | _ | - | X2 | x0000000B
00H | | CMOD# | PCA Counter Mode | D9H | CIDL | WDTE | _ | _ | - | CPS1 | CPS0 | ECF | 00xxx000B | | DPTR:
DPH
DPL | Data Pointer (2 bytes) Data Pointer High Data Pointer Low | 83H
82H | AF | AE | AD | AC | АВ | AA | A9 | A8 | 00H
00H | | IE* | Interrupt Enable 0 | A8H | EA | EC | ET2 | ES | ET1 | EX1 | ET0 | EX0 | 00H | | | | | BF | BE | BD | ВС | BB | ВА | B9 | B8 | 1 | | IP* | Interrupt Priority | В8Н | _ | PPC | PT2 | PS | PT1 | PX1 | PT0 | PX0 | x0000000B | | | | | B7 | B6 | B5 | B4 | B3 | B2 | B1 | В0 | 1 | | IPH# | Interrupt Priority High | В7Н | _ | PPCH | PT2H | PSH | PT1H | PX1H | PT0H | PX0H | x0000000B | | | | | 87 | 86 | 85 | 84 | 83 | 82 | 81 | 80 | | | P0* | Port 0 | 80H | AD7 | AD6 | AD5 | AD4 | AD3 | AD2 | AD1 | AD0 | FFH | | | | | 97 | 96 | 95 | 94 | 93 | 92 | 91 | 90 | | | P1* | Port 1 | 90H | CEX4 | CEX3 | CEX2 | CEX1 | CEX0 | ECI | T2EX | T2 | FFH | | | | | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | | | P2* | Port 2 | A0H | AD15 | AD14 | AD13 | AD12 | AD11 | AD10 | AD9 | AD8 | FFH | | | | | B7 | B6 | B5 | B4 | В3 | B2 | B1 | В0 | | | P3* | Port 3 | вон | RD | WR | T1 | T0 | ĪNT1 | ĪNT0 | TxD | RxD | FFH | | PCON# ¹ | Power Control | 87H | SMOD1 | SMOD0 | _ | POF | GF1 | GF0 | PD | IDL | 00xxx000B | ^{*} SFRs are bit addressable. [#] SFRs are modified from or added to the 80C51 SFRs. Reserved bits. ^{1.} Reset value depends on reset source. 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 ### **SPECIAL FUNCTION REGISTERS** (Continued) | SYMBOL | DESCRIPTION | DIRECT | BIT | ADDRES | S, SYMB | OL, OR A | LTERNAT | VE POR | T FUNCT | ION | RESET | |--|---|--|--------|--------|---------|----------|---------|--------|---------|--------|--| | STWIBUL | DESCRIPTION | ADDRESS | MSB | | | | | | | LSB | VALUE | | | | | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | PSW* | Program Status Word | D0H | CY | AC | F0 | RS1 | RS0 | OV | F1 | P | 00000000B | | RCAP2H#
RCAP2L# | Timer 2 Capture High
Timer 2 Capture Low | CBH
CAH | 0. | 7.0 | 1.0 | 1.01 | 1100 | | | | 00H
00H | | SADDR#
SADEN# | Slave Address
Slave Address Mask | A9H
B9H | | | | | | | | | 00H
00H | | SBUF | Serial Data Buffer | 99H | 9F | 9E | 9D | 9C | 9B | 9A | 99 | 98 | xxxxxxxxB | | SCON* | Serial Control | 98H | SM0/FE | SM1 | SM2 | REN | TB8 | RB8 | TI | RI | 00H | | SP | Stack Pointer | 81H | 8F | 8E | 8D | 8C | 8B | 8A | 89 | 88 | 07H | | TCON* | Timer Control | 88H | TF1 | TR1 | TF0 | TR0 | IE1 | IT1 | IE0 | IT0 | 00H | | | | | CF | CE | CD | СС | СВ | CA | C9 | C8 | | | T2CON* | Timer 2 Control | C8H | TF2 | EXF2 | RCLK | TCLK | EXEN2 | TR2 | C/T2 | CP/RL2 | 00H | | T2MOD# | Timer 2 Mode Control | C9H | _ | _ | _ | _ | _ | _ | T2OE | DCEN | xxxxxx00B | | TH0
TH1
TH2#
TL0
TL1
TL2# | Timer High 0
Timer High 1
Timer High 2
Timer Low 0
Timer Low 1
Timer Low 2 | 8CH
8DH
CDH
8AH
8BH
CCH | | | | | | | | | 00H
00H
00H
00H
00H
00H | | TMOD | Timer Mode | 89H | GATE | C/T | M1 | M0 | GATE | C/T | M1 | M0 | 00H | | WDTRST | Watchdog Timer Reset | A6H | | | | | | | | | | ^{*} SFRs are bit addressable. ### **OSCILLATOR CHARACTERISTICS** XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator. To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. Minimum and maximum high and low times specified in the data sheet must be observed. This device is configured at the factory to operate using 12 clock periods per machine cycle, referred to in this datasheet as "12-clock mode". It may be optionally configured on commercially available parallel programming equipment or via software to operate at 6 clocks per machine cycle, referred to in this datasheet as "6-clock mode". (This yields performance equivalent to twice that of standard 80C51 family devices). Also see next page. [#] SFRs are modified from or added to the 80C51 SFRs. Reserved bits. 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 # LOW POWER MODES Stop Clock Mode The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and Special Function Registers retain their values. This mode allows step-by-step utilization and permits reduced system power consumption by lowering the clock frequency down to any value. For lowest power consumption the Power Down mode is suggested. #### **Idle Mode** In the idle mode (see Table 2), the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset. ### **Power-Down Mode** To save even more power, a Power Down mode (see Table 2) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values down to 2 V and care must be taken to return V_{CC} to the minimum specified operating voltages before the Power Down Mode is terminated. Either a hardware reset or external interrupt can be used to exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values. To properly terminate Power Down, the reset or external interrupt should not be executed before $V_{\rm CC}$ is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms). With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down. ### **POWER-ON FLAG** The Power-On Flag (POF) is set by on-chip circuitry when the V_{CC} level on the P87C51RA2/RB2/RC2/RD2 rises from 0 to 5 V. The POF bit can be set or cleared by software allowing a user to determine if the reset is the result of a power-on or a warm start after powerdown. The V_{CC} level must remain above 3 V for the POF to remain unaffected by the V_{CC} level. ### **Design Consideration** When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory. #### ONCE™ Mode The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems without the device having to be removed from the circuit. The ONCE Mode is invoked by: - 1. Pull ALE low while the device is in reset and PSEN is high; - 2. Hold ALE low as RST is deactivated. While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied. ### **Programmable Clock-Out** A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed: - 1. to input the external clock for Timer/Counter 2, or - to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz operating frequency in 12-clock mode (122 Hz to 8 MHz in 6-clock mode). To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer. The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation: Oscillator Frequency n × (65536 - RCAP2H, RCAP2L) n = 2 in 6-clock mode 4 in 12-clock mode Where (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer. In the Clock-Out mode Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will be the same. Table 2. External Pin Status During Idle and Power-Down Mode | MODE | PROGRAM MEMORY | ALE | PSEN | PORT 0 | PORT 1 | PORT 2 | PORT 3 | |------------|----------------|-----|------|--------|--------|---------|--------| | Idle | Internal | 1 | 1 | Data | Data | Data | Data | | Idle | External | 1 | 1 | Float | Data | Address | Data | | Power-down | Internal | 0 | 0 | Data | Data | Data | Data | | Power-down | External | 0 | 0 | Float | Data | Data | Data | 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 | s | CON | Addres | s = 98H | | | | | | | | | Reset Value = 00H | |-------|---|---|--|-------------|----------|----------|-----------|-----------|----------|----------|-----------|--| | | | Bit Addı | ressable | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | SM0 | SM1 | SM2 | REN | TB8 | RB8 | TI | RI | | | Where | Where SM0, SM1 specify the serial port mode, as follows: | | | | | | | | | | | | | SM0 | SM1 | Mode | Description | n Baud Rate | | | | | | | | | | 0 | 0 | 0 0 shift register f _{OSC} /12 (12-clock mode) or f _{OSC} /6 (6-clock mode) | | | | | | | | | | | | 0 | 1 | 1 1 8-bit UART variable | | | | | | | | | | | | 1 | 0 | 2 | 9-bit UART $f_{OSC}/64$ or $f_{OSC}/32$ (12-clock mode) or $f_{OSC}/32$ or $f_{OSC}/16$ (6-clock mode) | | | | | | | | | _{SC} /16 (6-clock mode) | | 1 | 1 | 1 3 9-bit UART variable | | | | | | | | | | | | SM2 | Enables the multiprocessor communication feature in Modes 2 and 3. In Mode 2 or 3, if SM2 is set to 1, then RI will not be activated if the received 9th data bit (RB8) is 0. In Mode 1, if SM2=1 then RI will not be activated if a valid stop bit was not received. In Mode 0, SM2 should be 0. | | | | | | | | | | | | | REN | Ena | bles seria | al reception. Set | by soft | ware to | enable | reception | n. Clea | r by sof | tware to | disable | e reception. | | TB8 | The | 9th data | bit that will be to | ansmitt | ed in M | odes 2 | and 3. S | Set or cl | ear by s | oftware | as desi | red. | | RB8 | | Modes 2 a
3 is not us | • | data bit | that wa | s receiv | ed. In N | /lode 1, | it SM2= | 0, RB8 | is the st | op bit that was received. In Mode 0, | | TI | | Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software. | | | | | | | | | | | | RI | | | | | | | | | | | halfway | through the stop bit time in the other | | | mod | des, in an | y serial receptio | n (exce | pt see S | SM2). N | lust be o | cleared | by softw | are. | | SU01626 | Figure 7. Serial Port Control (SCON) Register | | Baud Rate | | | SMOD | Timer 1 | | | | |---------------|---------------|--------------|------------|------|---------|------|--------------|--| | Mode | 12-clock mode | 6-clock mode | fosc | SMOD | C/T | Mode | Reload Value | | | Mode 0 Max | 1.67 MHz | 3.34 MHz | 20 MHz | Х | Х | Х | Х | | | Mode 2 Max | 625 k | 1250 k | 20 MHz | 1 | Х | Х | X | | | Mode 1, 3 Max | 104.2 k | 208.4 k | 20 MHz | 1 | 0 | 2 | FFH | | | Mode 1, 3 | 19.2 k | 38.4 k | 11.059 MHz | 1 | 0 | 2 | FDH | | | | 9.6 k | 19.2 k | 11.059 MHz | 0 | 0 | 2 | FDH | | | | 4.8 k | 9.6 k | 11.059 MHz | 0 | 0 | 2 | FAH | | | | 2.4 k | 4.8 k | 11.059 MHz | 0 | 0 | 2 | F4H | | | | 1.2 k | 2.4 k | 11.059 MHz | 0 | 0 | 2 | E8H | | | | 137.5 | 275 | 11.986 MHz | 0 | 0 | 2 | 1DH | | | | 110 | 220 | 6 MHz | 0 | 0 | 2 | 72H | | | | 110 | 220 | 12 MHz | 0 | 0 | 1 | FEEBH | | Figure 8. Timer 1 Generated Commonly Used Baud Rates #### More About Mode 0 Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed a 1/12 the oscillator frequency (12-clock mode) or 1/6 the oscillator frequency (6-clock mode). Figure 9 shows a simplified functional diagram of the serial port in Mode 0, and associated timing. Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF" and activation of SEND. SEND enables the output of the shift register to the alternate output function line of P3.0 and also enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1, and S2. At S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift are shifted to the right one position. As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control block to do one last shift and then deactivate SEND and set T1. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF." Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 11111110 to the receive shift register, and in the next clock phase activates RECEIVE. RECEIVE enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 shifted to the left one position. The value that comes in from the right is the value that was sampled at the P3.0 pin at S5P2 of the same machine cycle. As data bits come in from the right, 1s shift out to the left. When the 0 that was initially loaded into the rightmost position arrives at the leftmost position in the shift register, it flags the RX Control block to do one last shift and load SBUF. At S1P1 of the 10th machine cycle after the write to SCON that cleared RI, RECEIVE is cleared as RI is set. #### More About Mode 1 Ten bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in SCON. In the 80C51 the baud rate is determined by the Timer 1 or Timer 2 overflow rate. Figure 10 shows a simplified functional diagram of the serial port in Mode 1, and associated timings for transmit receive. Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads a 1 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission actually commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. (Thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal.) The transmission begins with activation of SEND which puts the start bit at TxD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TxD. The first shift pulse occurs one bit time after that. As data bits shift out to the right, zeros are clocked in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 10th divide-by-16 rollover after "write to SBUF." Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose RxD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written into the input shift register. Resetting the divide-by-16 counter aligns its rollovers with the boundaries of the incoming bit times. The 16 states of the counter divide each bit time into 16ths. At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of RxD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed. As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in mode 1 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated.: - 1. R1 = 0, and - 2. Either SM2 = 0, or the received stop bit = 1. If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met, the stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated. At this time, whether the above conditions are met or not, the unit goes back to looking for a 1-to-0 transition in RxD. #### More About Modes 2 and 3 Eleven bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On transmit, the 9th data bit (TB8) can be assigned the value of 0 or 1. On receive, the 9the data bit goes into RB8 in SCON. The baud rate is programmable to either 1/32 or 1/64 (12-clock mode) or 1/16 or 1/32 the oscillator frequency (6-clock mode) the oscillator frequency in Mode 2. Mode 3 may have a variable baud rate generated from Timer 1 or Timer 2. Figures 11 and 12 show a functional diagram of the serial port in Modes 2 and 3. The receive portion is exactly the same as in Mode 1. The transmit portion differs from Mode 1 only in the 9th bit of the transmit shift register. Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads TB8 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. (Thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal.) The transmission begins with activation of SEND, which puts the start bit at TxD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TxD. The first shift pulse occurs one bit time after that. The first shift clocks a 1 (the stop bit) into the 9th bit position of the shift register. Thereafter, only zeros are clocked in. Thus, as data bits shift out to the right, zeros are clocked in from the left. When TB8 is at the output position of the shift register, then the stop bit is just to the left of TB8, and all positions to the left of that contain zeros. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 11th divide-by-16 rollover after "write to SUBF." Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose RxD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written to the input shift register. At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of R-D. The value accepted is the value that was seen in at least 2 of the 3 samples. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed. As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in Modes 2 and 3 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated. - 1. RI = 0, and - 2. Either SM2 = 0, or the received 9th data bit = 1. If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set. If both conditions are met, the received 9th data bit goes into RB8, and the first 8 data bits go into SBUF. One bit time later, whether the above conditions were met or not, the unit goes back to looking for a 1-to-0 transition at the RxD input. # P87C51RA2/RB2/RC2/RD2 Figure 12. Serial Port Mode 3 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 ### **Interrupt Priority Structure** The P87C51RA2/RB2/RC2/RD2 has a 7 source four-level interrupt structure (see Table 7). There are 3 SFRs associated with the four-level interrupt. They are the IE, IP, and IPH. (See Figures 15, 16, and 17.) The IPH (Interrupt Priority High) register makes the four-level interrupt structure possible. The IPH is located at SFR address B7H. The structure of the IPH register and a description of its bits is shown in Figure 17. The function of the IPH SFR, when combined with the IP SFR, determines the priority of each interrupt. The priority of each interrupt is determined as shown in the following table: | PRIORI | TY BITS | INTERRUPT PRIORITY LEVEL | | | | | |--------|---------|----------------------------|--|--|--|--| | IPH.x | IP.x | INTERROFT FRIORITY LEVEL | | | | | | 0 | 0 | Level 0 (lowest priority) | | | | | | 0 | 1 | Level 1 | | | | | | 1 | 0 | Level 2 | | | | | | 1 | 1 | Level 3 (highest priority) | | | | | The priority scheme for servicing the interrupts is the same as that for the 80C51, except there are four interrupt levels rather than two as on the 80C51. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed. Table 7. Interrupt Table | SOURCE | POLLING PRIORITY | REQUEST BITS | HARDWARE CLEAR? | VECTOR ADDRESS | |--------|------------------|---------------------|---------------------------------------|----------------| | X0 | 1 | IE0 | N (L) ¹ Y (T) ² | 03H | | T0 | 2 | TP0 | Y | 0BH | | X1 | 3 | IE1 | N (L) Y (T) | 13H | | T1 | 4 | TF1 | Y | 1BH | | PCA | 5 | CF, CCFn
n = 0–4 | N | 33H | | SP | 6 | RI, TI | N | 23H | | T2 | 7 | TF2, EXF2 | N | 2BH | ### NOTES: - 1. L = Level activated - 2. T = Transition activated | | _ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | |------|-----------|--|---|------------|--------------|------------|-------------|---|---|--|--|--| | | IE (0A8H) | EA EC ET2 ES ET1 EX1 ET0 EX0 | | | | | | | | | | | | | | Enable Bit = 1 enables the interrupt.
Enable Bit = 0 disables it. | | | | | | | | | | | | BIT | SYMBOL | FUNC | UNCTION | | | | | | | | | | | IE.7 | EA | Global | Global disable bit. If EA = 0, all interrupts are disabled. If EA = 1, each interrupt can be individually | | | | | | | | | | | | | enable | d or disal | oled by se | tting or cle | earing its | enable bit. | | | | | | | IE.6 | EC | PCA ir | nterrupt er | nable bit | | | | | | | | | | IE.5 | ET2 | Timer | 2 interrup | t enable b | it. | | | | | | | | | IE.4 | ES | Serial | Port interi | upt enabl | e bit. | | | | | | | | | IE.3 | ET1 | Timer | Timer 1 interrupt enable bit. | | | | | | | | | | | IE.2 | EX1 | External interrupt 1 enable bit. | | | | | | | | | | | | IE.1 | ET0 | Timer 0 interrupt enable bit. | | | | | | | | | | | | IE.0 | FX0 | EX0 External interrupt 0 enable bit. | | | | | | | | | | | Figure 15. IE Registers 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 Figure 16. IP Registers Figure 17. IPH Registers 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 Figure 24. CCAPMn: PCA Modules Compare/Capture Registers | _ | ECOMn | CAPPn | CAPNn | MATn | TOGn | PWMn | ECCFn | MODULE FUNCTION | |---|-------|-------|-------|------|------|------|-------|---| | Х | 0 | 0 | 0 | 0 | 0 | 0 | 0 | No operation | | Х | Х | 1 | 0 | 0 | 0 | 0 | Х | 16-bit capture by a positive-edge trigger on CEXn | | Х | Х | 0 | 1 | 0 | 0 | 0 | Х | 16-bit capture by a negative trigger on CEXn | | Х | Х | 1 | 1 | 0 | 0 | 0 | Х | 16-bit capture by a transition on CEXn | | Х | 1 | 0 | 0 | 1 | 0 | 0 | Х | 16-bit Software Timer | | Х | 1 | 0 | 0 | 1 | 1 | 0 | Х | 16-bit High Speed Output | | Х | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 8-bit PWM | | Х | 1 | 0 | 0 | 1 | Х | 0 | Х | Watchdog Timer | Figure 25. PCA Module Modes (CCAPMn Register) ### **PCA Capture Mode** To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated. Refer to Figure 26. ### 16-bit Software Timer Mode The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (see Figure 27). ### **High Speed Output Mode** In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (see Figure 28). #### **Pulse Width Modulator Mode** All of the PCA modules can be used as PWM outputs. Figure 29 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. the allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode. # P87C51RA2/RB2/RC2/RD2 Figure 28. PCA High Speed Output Mode Figure 29. PCA PWM Mode 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 ``` INIT_WATCHDOG: ; Module 4 in compare mode ; Write to low byte first MOV CCAPM4, #4CH MOV CCAP4L, #0FFH MOV CCAP4H, #0FFH ; Before PCA timer counts up to ; FFFF Hex, these compare values ; must be changed ORL CMOD, #40H ; Set the WDTE bit to enable the ; watchdog timer without changing ; the other bits in CMOD ; Main program goes here, but CALL WATCHDOG periodically. ; *********************************** WATCHDOG: ; Hold off interrupts CLR EA MOV CCAP4L, #00 ; Next compare value is within MOV CCAP4H, CH ; 255 counts of the current PCA SETB EA ; timer value RET ``` Figure 31. PCA Watchdog Timer Initialization Code ### P87C51RA2/RB2/RC2/RD2 #### **EXPLANATION OF THE AC SYMBOLS** Each timing symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are: A - Address C - Clock D - Input data H - Logic level high I – Instruction (program memory contents) L - Logic level low, or ALE P - PSEN Q - Output data $R - \overline{RD}$ signal t - Time V - Valid W- WR signal X – No longer a valid logic level Z - Float **Examples:** t_{AVLL} = Time for address valid to ALE low. t_{LLPL} =Time for ALE low to \overline{PSEN} low. Figure 34. External Program Memory Read Cycle Figure 35. External Data Memory Read Cycle 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 Figure 36. External Data Memory Write Cycle Figure 37. Shift Register Mode Timing Figure 38. External Clock Drive 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 ``` ## as31 version V2.10 / *js* / ## ## ## source file: idd_ljmp1.asm list file: idd_ljmp1.lst created Fri Apr 20 15:51:40 2001 ## #0000 # AUXR equ 08Eh #0000 # CKCON equ 08Fh # #0000 # org 0 # LJMP_LABEL: AUXR,#001h ; turn off ALE LJMP_LABEL ; jump to end of address space 0000 /75;/8E;/01; # MOV 0003 /02;/FF;/FD; # LJMP 0005 /00; NOP #FFFD # org Offfdh # LJMP_LABEL: FFFD /02;/FD;FF; # LJMP LJMP_LABEL # ; NOP # # SU01499 ``` Figure 42. Source code used in measuring $I_{\mbox{\scriptsize DD}}$ operational 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 Table 8. EPROM Programming Modes | MODE | RST | PSEN | ALE/PROG | EA/V _{PP} | P2.7 | P2.6 | P3.7 | P3.6 | P3.3 | |-----------------------------------|-----|------|----------|--------------------|------|------|------|------|------| | Read signature | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | Х | | Program code data | 1 | 0 | 0* | V_{PP} | 1 | 0 | 1 | 1 | Х | | Verify code data | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | Х | | Pgm encryption table | 1 | 0 | 0* | V_{PP} | 1 | 0 | 1 | 0 | Х | | Pgm security bit 1 | 1 | 0 | 0* | V_{PP} | 1 | 1 | 1 | 1 | Х | | Pgm security bit 2 | 1 | 0 | 0* | V_{PP} | 1 | 1 | 0 | 0 | Х | | Pgm security bit 3 | 1 | 0 | 0* | V_{PP} | 0 | 1 | 0 | 1 | Х | | Program to 6-clock mode | 1 | 0 | 0* | V_{PP} | 0 | 0 | 1 | 0 | 0 | | Verify 6-clock ⁴ | 1 | 0 | 1 | 1 | е | 0 | 0 | 1 | 1 | | Verify security bits ⁵ | 1 | 0 | 1 | 1 | е | 0 | 1 | 0 | Χ | #### NOTES: - 1. '0' = Valid low for that pin, '1' = valid high for that pin. - 2. $V_{PP} = 12.75 \text{ V} \pm 0.25 \text{ V}.$ - 3. V_{CC} = 5 V±10% during programming and verification. 4. Bit is output on P0.4 (1 = 12x, 0 = 6x). - 5. Security bit one is output on P0.7. Security bit two is output on P0.6. - Security bit three is output on P0.3. - ALE/PROG receives 5 programming pulses for code data (also for user array; 5 pulses for encryption or security bits) while V_{PP} is held at 12.75 V. Each programming pulse is low for 100 μs ($\pm 10~\mu s$) and high for a minimum of 10 μs . Table 9. Program Security Bits for EPROM Devices | PRO | PROGRAM LOCK BITS ^{1, 2} | | | | |-----|-----------------------------------|-----|-----|--| | | SB1 | SB2 | SB3 | PROTECTION DESCRIPTION | | 1 | U | U | U | No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.) | | 2 | Р | U | U | MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on Reset, and further programming of the EPROM is disabled. | | 3 | Р | Р | U | Same as 2, also verify is disabled. | | 4 | Р | Р | Р | Same as 3, external execution is disabled. Internal data RAM is not accessible. | ### NOTES: - 1. P programmed. U unprogrammed. - 2. Any other combination of the security bits is not defined. 2003 Jan 24 56 ### **EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS** T_{amb} = 21°C to +27°C, V_{CC} = 5V±10%, V_{SS} = 0V (See Figure 50) | SYMBOL | PARAMETER | MIN | MAX | UNIT | |---------------------|---------------------------------------|---------------------|---------------------|------| | V _{PP} | Programming supply voltage | 12.5 | 13.0 | V | | I _{PP} | Programming supply current | | 50 ¹ | mA | | 1/t _{CLCL} | Oscillator frequency | 4 | 6 | MHz | | t _{AVGL} | Address setup to PROG low | 48t _{CLCL} | | | | t _{GHAX} | Address hold after PROG | 48t _{CLCL} | | | | t _{DVGL} | Data setup to PROG low | 48t _{CLCL} | | | | t _{GHDX} | Data hold after PROG | 48t _{CLCL} | | | | t _{EHSH} | P2.7 (ENABLE) high to V _{PP} | 48t _{CLCL} | | | | t _{SHGL} | V _{PP} setup to PROG low | 10 | | μs | | t _{GHSL} | V _{PP} hold after PROG | 10 | | μs | | t _{GLGH} | PROG width | 90 | 110 | μs | | t _{AVQV} | Address to data valid | | 48t _{CLCL} | | | t _{ELQZ} | ENABLE low to data valid | | 48t _{CLCL} | | | t _{EHQZ} | Data float after ENABLE | 0 | 48t _{CLCL} | | | t _{GHGL} | PROG high to PROG low | 10 | | μs | ### NOTE: 1. Not tested. #### NOTES - FOR PROGRAMMING CONFIGURATION SEE FIGURE 47. FOR VERIFICATION CONDITIONS SEE FIGURE 49. - ** SEE TABLE 8. Figure 50. EPROM Programming and Verification 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 #### MASK ROM DEVICES ### **Security Bits** With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 10) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory, $\overline{\text{EA}}$ is latched on Reset and all further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled. ### **Encryption Array** 64 bytes of encryption array are initially unprogrammed (all 1s). Table 10. Program Security Bits | PROGRAM LOCK BITS ^{1, 2} | | BITS ^{1, 2} | | |-----------------------------------|-----|----------------------|--| | | SB1 | SB2 | PROTECTION DESCRIPTION | | 1 | U | | No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.) | | 2 | Р | | MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on Reset, and further programming of the EPROM is disabled. | #### NOTES: - 1. P programmed. U unprogrammed. - 2. Any other combination of the security bits is not defined. ### **ROM CODE SUBMISSION FOR 8K ROM DEVICES (87C51RA2)** When submitting ROM code for the 8k ROM devices, the following must be specified: - 1. 8 kbyte user ROM data - 2. 64 byte ROM encryption key - 3. ROM security bits. | ADDRESS | CONTENT | BIT(S) | COMMENT | |----------------|---------|--------|---| | 0000H to 1FFFH | DATA | 7:0 | User ROM Data | | 2000H to 203FH | KEY | 7:0 | ROM Encryption Key
FFH = no encryption | | 2040H | SEC | 0 | ROM Security Bit 1
0 = enable security
1 = disable security | | 2040H | SEC | 1 | ROM Security Bit 2
0 = enable security
1 = disable security | Security Bit 1: When programmed, this bit has two effects on masked ROM parts: - 1. External MOVC is disabled, and - 2. EA is latched on Reset. Security Bit 2: When programmed, this bit inhibits Verify User ROM. NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled. If the ROM Code file does not include the options, the following information must be included with the ROM code. For each of the following, check the appropriate box, and send to Philips along with the code: | Security Bit #1: | ☐ Enabled | ☐ Disabled | |------------------|-----------|----------------------------------| | Security Bit #2: | ☐ Enabled | ☐ Disabled | | Encryption: | □ No | ☐ Yes If Yes, must send key file | 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 ### ROM CODE SUBMISSION FOR 16K ROM DEVICES (87C51RB2) When submitting ROM code for the 16K ROM devices, the following must be specified: - 1. 16 kbyte user ROM data - 2. 64 byte ROM encryption key - 3. ROM security bits. | ADDRESS | CONTENT | BIT(S) | COMMENT | |----------------|---------|--------|---| | 0000H to 3FFFH | DATA | 7:0 | User ROM Data | | 4000H to 403FH | KEY | 7:0 | ROM Encryption Key
FFH = no encryption | | 4040H | SEC | 0 | ROM Security Bit 1
0 = enable security
1 = disable security | | 4040H | SEC | 1 | ROM Security Bit 2
0 = enable security
1 = disable security | Security Bit 1: When programmed, this bit has two effects on masked ROM parts: - 1. External MOVC is disabled, and - 2. EA is latched on Reset. Security Bit 2: When programmed, this bit inhibits Verify User ROM. NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled. If the ROM Code file does not include the options, the following information must be included with the ROM code. For each of the following, check the appropriate box, and send to Philips along with the code: | Security Bit #1: | ☐ Enabled | ☐ Disabled | |------------------|-----------|-----------------------------------| | Security Bit #2: | ☐ Enabled | ☐ Disabled | | Encryption: | □ No | ☐ Yes If Yes, must send key file. |