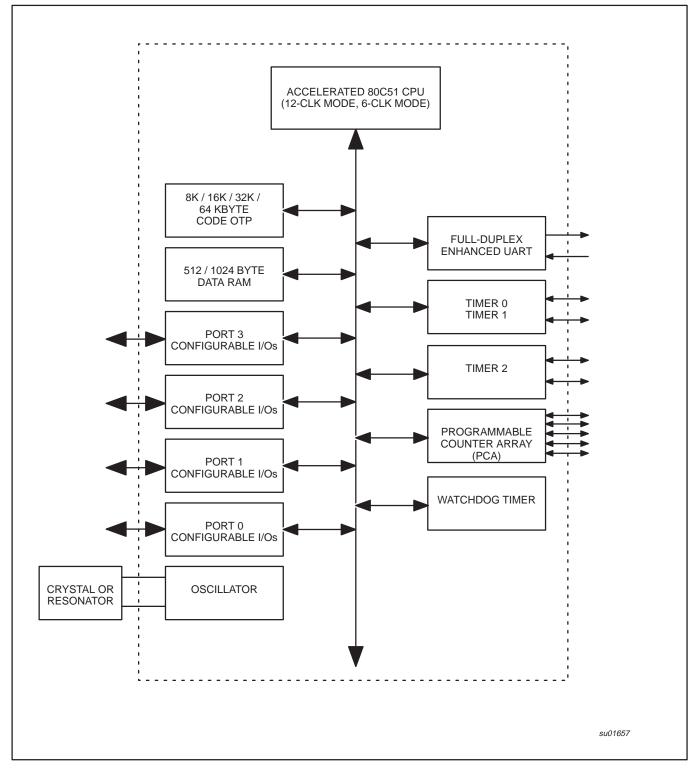


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c51rd2bbd-157

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

BLOCK DIAGRAM 1

Product data

SPECIAL FUNCTION REGISTERS

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT MSB	ADDRES	S, SYMB	OL, OR A	LTERNAT	IVE POR	T FUNCT	ION LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
AUXR#	Auxiliary	8EH	-	-	-	-	-	-	EXTRAM	AO	xxxxxx00B
AUXR1#	Auxiliary 1	A2H	_	_	-	-	GF2	0	_	DPS	xxxxxxx0B
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
CCAP0H#	Module 0 Capture High	FAH									хххххххВ
CCAP1H#	Module 1 Capture High	FBH									хххххххВ
CCAP2H#	Module 2 Capture High	FCH									xxxxxxxB
CCAP3H# CCAP4H#	Module 3 Capture High	FDH FEH									xxxxxxxB
CCAP4H# CCAP0L#	Module 4 Capture High Module 0 Capture Low	EAH									xxxxxxxxB xxxxxxxxB
CCAP1L#	Module 1 Capture Low	EBH									xxxxxxxB
CCAP2L#	Module 2 Capture Low	ECH									xxxxxxxB
CCAP3L#	Module 3 Capture Low	EDH									xxxxxxxB
CCAP4L#	Module 4 Capture Low	EEH									хххххххВ
CCAPM0#	Module 0 Mode	DAH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM1#	Module 1 Mode	DBH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM2#	Module 2 Mode	DCH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM3#	Module 3 Mode	DDH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM4#	Module 4 Mode	DEH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x000000B
			DF	DE	DD	DC	DB	DA	D9	D8	
CCON*#	PCA Counter Control	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	00x00000B
CH#	PCA Counter High	F9H									00H
CKCON# CL#	Clock control PCA Counter Low	8FH E9H	_	-	-	-	_	_	-	X2	x0000000B 00H
CMOD#	PCA Counter Mode	D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF	00xxx000B
DPTR: DPH DPL	Data Pointer (2 bytes) Data Pointer High Data Pointer Low	83H 82H	AF	AE	AD	AC	AB	AA	A9	A8	00H 00H
IE*	Interrupt Enable 0	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
			BF	BE	BD	BC	BB	BA	B9	B8	1
IP*	Interrupt Priority	B8H	_	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000B
			B7	B6	B5	B4	B3	B2	B1	B0	1
IPH#	Interrupt Priority High	B7H	_	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000B
			87	86	85	84	83	82	81	80	1
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	
P1*	Port 1	90H	CEX4	CEX3	CEX2	CEX1	CEX0	ECI	T2EX	T2	FFH
			A7	A6	A5	A4	A3	A2	A1	A0	1
P2*	Port 2	A0H	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	1
P3*	Port 3	B0H	RD	WR	T1	T0	INT1	INTO	TxD	RxD	FFH
											1
PCON# ¹	Power Control	87H	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	00xxx000B

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

Reserved bits.

1. Reset value depends on reset source.

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Table 3. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	Х	1	Baud rate generator
Х	Х	0	(off)

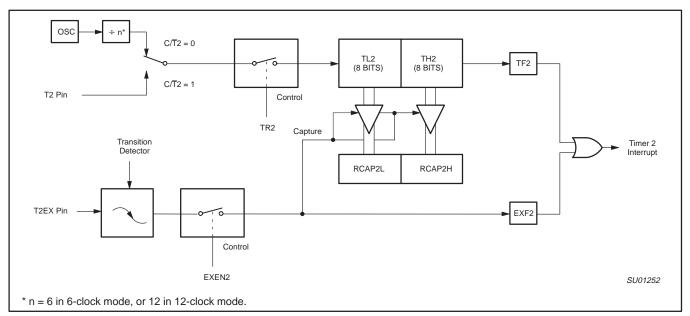


Figure 2. Timer 2 in Capture Mode

	Not Dit	Addressat											
		Audressa	Jie		1								
		—	—	—	_	—	_	T2OE	DCEN				
	Bit	7	6	5	4	3	2	1	0				
Symbol	Functi	on											
_	Not im	Not implemented, reserved for future use.*											
T2OE	Timer	2 Output E	nable bit.										
	Down	Count Ena	able bit. Whe	en set, this a	llows Timer	2 to be con	figured as a	n up/down c	ounter.				
DCEN													

Figure 3. Timer 2 Mode (T2MOD) Control Register

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

S	CON	Addres	s = 98H									Reset Value = 00H	
		Bit Add	ressable	7	6	5	4	3	2	1	0	_	
				SM0	SM1	SM2	REN	TB8	RB8	ΤI	RI		
Where	e SM0,	SM1 spe	cify the serial po	ort mode	e, as foll	ows:							
SM0	SM1	Mode	Description	E	Baud Ra	ate							
0	0	0) shift register f _{OSC} /12 (12-clock mode) or f _{OSC} /6 (6-clock mode)										
0	1	1	8-bit UART	variable									
1	0	0 2 9-bit UART $f_{OSC}/64$ or $f_{OSC}/32$ (12-clock mode) or $f_{OSC}/32$ or $f_{OSC}/16$ (6-clock mode)											
1	1 3 9-bit UART variable												
SM2	acti	vated if th		data bit	(RB8) is							M2 is set to 1, then RI will not be tivated if a valid stop bit was not	
REN	Ena	bles seri	al reception. Se	t by soft	ware to	enable	receptio	on. Clea	r by soft	ware to	disable	e reception.	
B8	The	9th data	bit that will be t	ransmitt	ed in M	odes 2	and 3. S	Set or cl	ear by s	oftware	as desi	ired.	
RB8		Aodes 2 a 3 is not us		data bit	that wa	s receiv	ed. In N	lode 1,	it SM2=	0, RB8	is the st	top bit that was received. In Mode 0,	
ГІ			errupt flag. Set b ny serial transmi						e in Mo	de 0, or	at the t	beginning of the stop bit in the other	
RI			rrupt flag. Set by ny serial reception								halfway	v through the stop bit time in the othe	

SU01626

	Baud Rate		4	CHOD		Tim	er 1
Mode	12-clock mode	6-clock mode	fosc	SMOD	С/Т	Mode	Reload Value
Mode 0 Max	1.67 MHz	3.34 MHz	20 MHz	Х	Х	Х	Х
Mode 2 Max	625 k	1250 k	20 MHz	1	X	X	Х
Mode 1, 3 Max	104.2 k	208.4 k	20 MHz	1	0	2	FFH
Mode 1, 3	19.2 k	38.4 k	11.059 MHz	1	0	2	FDH
	9.6 k	19.2 k	11.059 MHz	0	0	2	FDH
	4.8 k	9.6 k	11.059 MHz	0	0	2	FAH
	2.4 k	4.8 k	11.059 MHz	0	0	2	F4H
	1.2 k	2.4 k	11.059 MHz	0	0	2	E8H
	137.5	275	11.986 MHz	0	0	2	1DH
	110	220	6 MHz	0	0	2	72H
	110	220	12 MHz	0	0	1	FEEBH

Figure 7. Serial Port Control (SCON) Register

Figure 8. Timer 1 Generated Commonly Used Baud Rates

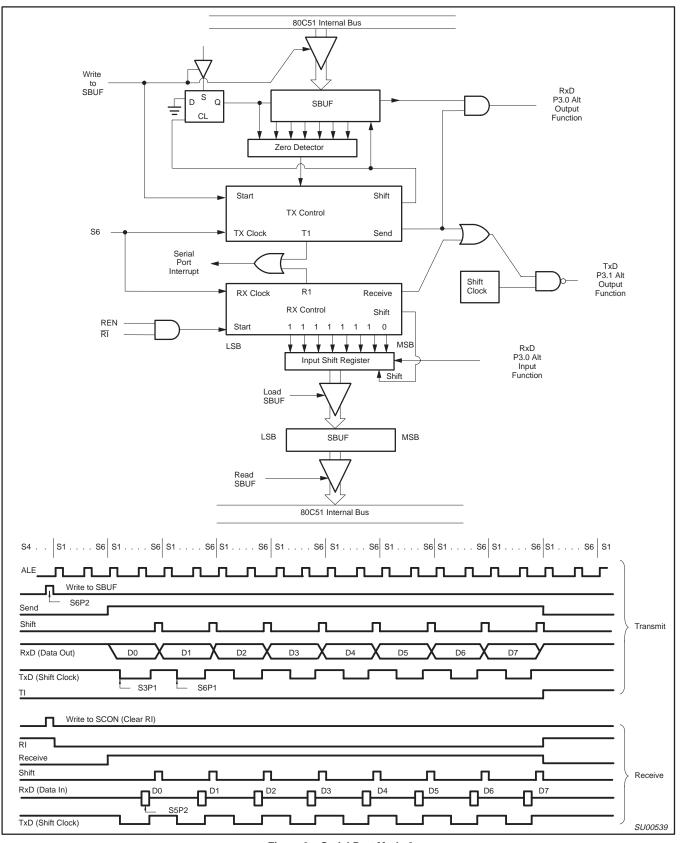
More About Mode 0

Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed a 1/12 the oscillator frequency (12-clock mode) or 1/6 the oscillator frequency (6-clock mode).

Figure 9 shows a simplified functional diagram of the serial port in Mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF" and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P3.0 and also enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1, and S2. At


S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift are shifted to the right one position.

As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control block to do one last shift and then deactivate SEND and set T1. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF."

Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 1111110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are

P87C51RA2/RB2/RC2/RD2

P87C51RA2/RB2/RC2/RD2

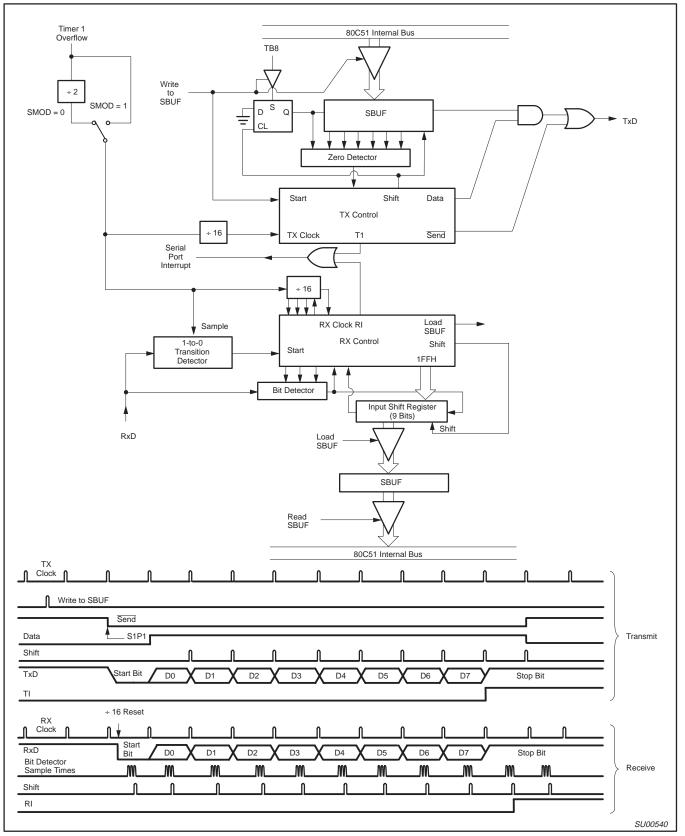


Figure 10. Serial Port Mode 1

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Timer 1 Overflow 80C51 Internal Bus TB8 Write ÷ 2 to SBUF SMOD = 1 S SMOD = 0 D Ē Q SBUF TxD CL Zero Detector Start Shift Data TX Control ÷ 16 TX Clock T1 Send Serial Port Interrupt ÷ 16 ¥ ¥ Load SBUF RX Clock R1 Sample RX Control 1-to-0 Transition Shift Start 1FFH Detector Bit Detector Input Shift Register (9 Bits) A Shift RxD Load SBUF SBUF Read SBUF 80C51 Internal Bus TX Clock _ Write to SBUF n Send S1P1 Data Transmit Shift ſ TxD Start Bit D0 D1 D2 D3 D4 D5 D6 D7 TB8 Stop Bit ΤI Stop Bit Gen. ÷ 16 Reset RX Clock **N ↓** ⅃ Start Bit RxD D0 D1 D2 D3 D4 D5 D6 D7 RB8 Stop Bit Bit Detector Receive Sample Times M M M M M M M M M Ŵ m Shift Λ Λ Λ Λ ſ Λ Λ RI SU00542

Figure 12. Serial Port Mode 3

Enhanced Features

The UART operates in all of the usual modes that are described in the first section of *Data Handbook IC20, 80C51-Based 8-Bit Microcontrollers.* In addition the UART can perform framing error detect by looking for missing stop bits, and automatic address recognition. The UART also fully supports multiprocessor communication as does the standard 80C51 UART.

When used for framing error detect the UART looks for missing stop bits in the communication. A missing bit will set the FE bit in the SCON register. The FE bit shares the SCON.7 bit with SM0 and the function of SCON.7 is determined by PCON.6 (SMOD0) (see Figure 7). If SMOD0 is set then SCON.7 functions as FE. SCON.7 functions as SM0 when SMOD0 is cleared. When used as FE SCON.7 can only be cleared by software. Refer to Figure 13.

Automatic Address Recognition

Automatic Address Recognition is a feature which allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be automatically set when the received byte contains either the "Given" address or the "Broadcast" address. The 9-bit mode requires that the 9th information bit is a 1 to indicate that the received information is an address and not data. Automatic address recognition is shown in Figure 14.

The 8 bit mode is called Mode 1. In this mode the RI flag will be set if SM2 is enabled and the information received has a valid stop bit following the 8 address bits and the information is either a Given or Broadcast address.

Mode 0 is the Shift Register mode and SM2 is ignored.

Using the Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the Given slave address or addresses. All of the slaves may be contacted by using the Broadcast address. Two special Function Registers are used to define the slave's address, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to b used and which bits are "don't care". The SADEN mask can be logically ANDed with the SADDR to create the "Given" address which the master will use for addressing each of the slaves. Use of the Given address allows multiple slaves to be recognized while excluding others. The following examples will help to show the versatility of this scheme:

Slave 0	SADDR	=	1100 0000
	SADEN	=	<u>1111 1101</u>
	Given	=	1100 00X0

Slave 1	SADDR	=	1100	0000
	SADEN	=	<u>1111</u>	1110
	Given	=	1100	000X

In the above example SADDR is the same and the SADEN data is used to differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for Slave 0 would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address for slave 1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0 = 0 (for slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000.

P87C51RA2/RB2/RC2/RD2

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:

Slave 0	SADDR	=	1100 0000
	SADEN	=	<u>1111 1001</u>
	Given	=	1100 0XX0
Slave 1	SADDR	=	1110 0000
	SADEN	=	<u>1111 1010</u>
	Given	=	1110 0X0X
Slave 2	SADDR	=	1110 0000
	SADEN	=	<u>1111 1100</u>
	Given	=	1110 00XX

In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0 and 1 and exclude Slave 2 use address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are trended as don't-cares. In most cases, interpreting the don't-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H) are leaded with 0s. This produces a given address of all "don't cares" as well as a Broadcast address of all "don't cares". This effectively disables the Automatic Addressing mode and allows the microcontroller to use standard 80C51 type UART drivers which do not make use of this feature.

P87C51RA2/RB2/RC2/RD2

		7	6	5	4	3	2	1	0
	IP (0B8H)	-	PPC	PT2	PS	PT1	PX1	PT0	PX0
			Bit = 1 ass Bit = 0 ass						
BIT	SYMBOL	FUNC	TION						
IP.7	-	-							
IP.6	PPC	PCA ir	nterrupt pr	iority bit					
IP.5	PT2	Timer	2 interrup	priority b	it.				
IP.4	PS	Serial	Port interi	upt priorit	y bit.				
IP.3	PT1	Timer	1 interrup	priority b	it.				
IP.2	PX1	Extern	al interrup	ot 1 priority	y bit.				
IP.1	PT0	Timer	0 interrup	priority b	it.				
IP.0	PX0	Extern	al interrup	ot 0 priority	y bit.				SU0129

Figure 16. IP Registers

	_	7	6	5	4	3	2	1	0
IPH	(B7H)	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
			Bit = 1 ass Bit = 0 ass						
BIT	SYMBOL	FUNC	TION						
IPH.7	-	-							
IPH.6	PPCH	PCA ir	nterrupt pr	iority bit					
IPH.5	PT2H	Timer	2 interrupt	priority b	it high.				
IPH.4	PSH	Serial	Port interr	upt priorit	y bit high.				
IPH.3	PT1H	Timer	1 interrupt	priority b	it high.				
IPH.2	PX1H	Extern	al interrup	t 1 priority	/ bit high.				
IPH.1	PT0H	Timer	0 interrupt	priority b	it high.				
IPH.0	PX0H	Extern	al interrup	ot 0 priority	/ bit high.				SU012

Figure 17. IPH Registers

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

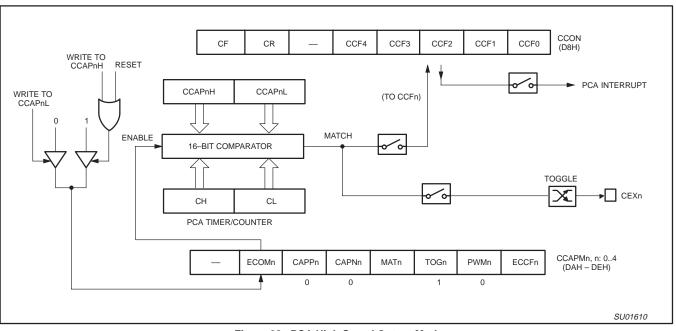


Figure 28. PCA High Speed Output Mode

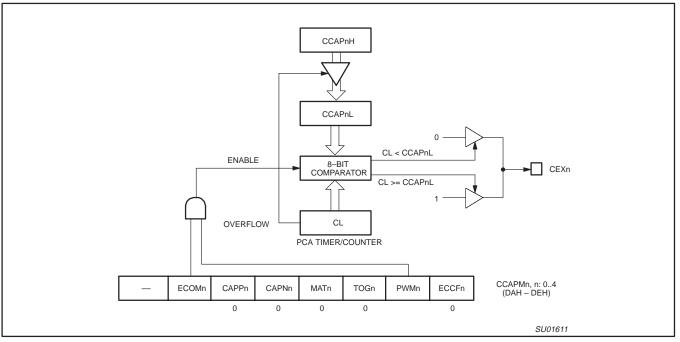


Figure 29. PCA PWM Mode

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

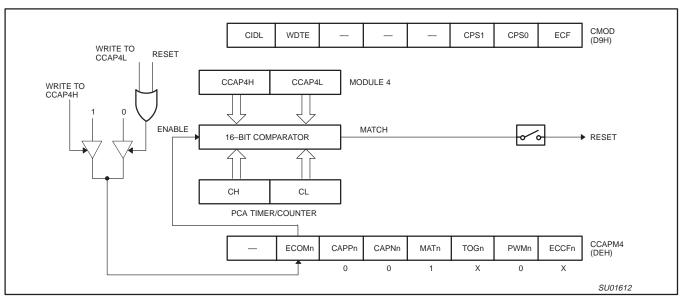


Figure 30. PCA Watchdog Timer mode (Module 4 only)

PCA Watchdog Timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed.

Figure 30 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

- 1. periodically change the compare value so it will never match the PCA timer,
- 2. periodically change the PCA timer value so it will never match the compare values, or
- 3. disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for **all** modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

Figure 31 shows the code for initializing the watchdog timer. Module 4 can be configured in either compare mode, and the WDTE bit in CMOD must also be set. The user's software then must periodically change (CCAP4H,CCAP4L) to keep a match from occurring with the PCA timer (CH,CL). This code is given in the WATCHDOG routine in Figure 31.

This routine should not be part of an interrupt service routine, because if the program counter goes astray and gets stuck in an infinite loop, interrupts will still be serviced and the watchdog will keep getting reset. Thus, the purpose of the watchdog would be defeated. Instead, call this subroutine from the main program within 2^{16} count of the PCA timer.

Expanded Data RAM Addressing

The P87C51RA2/RB2/RC2/RD2 has internal data memory that is mapped into four separate segments: the lower 128 bytes of RAM, upper 128 bytes of RAM, 128 bytes Special Function Register (SFR), and 256 bytes expanded RAM (ERAM) (768 bytes for the RD2).

The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.
- The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.
- 3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only.
- The 256/768-bytes expanded RAM (ERAM, 00H 1FFH/2FFH) are indirectly accessed by move external instruction, MOVX, and with the EXTRAM bit cleared, see Figure 32.

The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example:

MOV 0A0H,#data

accesses the SFR at location 0A0H (which is P2). Instructions that use indirect addressing access the Upper 128 bytes of data RAM.

For example:

MOV @R0,acc

where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).

P87C51RA2/RB2/RC2/RD2

The ERAM can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory is physically located on-chip, logically occupies the first 256/768 bytes of external data memory in the P87C51RA2/RB2/RC2/RD2.

With EXTRAM = 0, the ERAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to ERAM will not affect ports P0, P3.6 (WR#) and P3.7 (RD#). P2 SFR is output during external addressing. For example, with EXTRAM = 0,

MOVX @R0,acc

where R0 contains 0A0H, accesses the ERAM at address 0A0H rather than external memory. An access to external data memory locations higher than the ERAM will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals. Refer to Figure 33.

With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX @ Ri will provide an 8-bit address multiplexed with data on Port 0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a 16-bit address. Port 2 outputs the high-order eight address bits (the contents of DPH) while Port 0 multiplexes the low-order eight address bits (DPL) with data. MOVX @Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the ERAM.

AUXR	Addres	s = 8EH							I	Reset Value = xxxx	xx00B
	Not Bit	Addressat	ble								
		_	_	_	_	_	_	EXTRAM	AO		
	Bit:	7	6	5	4	3	2	1	0		
Symbol	Fund	tion									
AO	Disal	ole/Enable	ALE								
	AO		Operating	Mode							
	0		ALE is emit in 6-clock n		onstant rate	of ¹ / ₆ the o	scillator fre	equency (12-c	clock mod	le; ¹ / ₃ f _{OSC}	
	1			,	ring off-chip	memory ad	cess.				
EXTRAM	Interi	nal/Externa	I RAM acces	s using M	OVX @Ri/@	DPTR					
	EXTI 0 1	RAM	Operating Internal ER External da	AM acces	s using MO y access.	/X @Ri/@I	OPTR				
	Not i	mplemente	d, reserved f	or future u	ISe*.						
			served bits. The lue will be 1. The					ke new features. I	n that case,	the reset or inactive value	
											SU0161

Figure 32. AUXR: Auxiliary Register

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

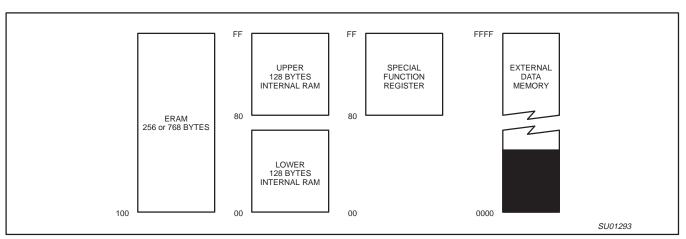


Figure 33. Internal and External Data Memory Address Space with EXTRAM = 0

HARDWARE WATCHDOG TIMER (ONE-TIME ENABLED WITH RESET-OUT FOR P87C51RA2/RB2/RC2/RD2)

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer reset (WDTRST) SFR. The WDT is disabled at reset. To enable the WDT, the user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When the WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When the WDT overflows, it will drive an output reset HIGH pulse at the RST-pin (see the note below).

Using the WDT

To enable the WDT, the user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the WDT, the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When the WDT overflows, it will generate an output RESET pulse at the reset pin (see note below). The RESET pulse duration is $98 \times T_{OSC}$ (6-clock mode; 196 in 12-clock mode), where T_{OSC} = 1/f_{OSC}. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0$ °C to +70 °C or -40 °C to +85 °C; $V_{CC} = 5 V \pm 10\%$; $V_{SS} = 0 V (30/33 \text{ MHz max. CPU clock})$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP ¹	MAX	1
V _{IL}	Input low voltage ¹¹	4.5 V < V _{CC} < 5.5 V	-0.5		0.2 V _{CC} -0.1	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)		0.2 V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST ¹¹		0.7 V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2, 3 ⁸	$V_{CC} = 4.5 \text{ V}; I_{OL} = 1.6 \text{ mA}^2$	-		0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN 7, 8	$V_{CC} = 4.5 \text{ V}; I_{OL} = 3.2 \text{ mA}^2$	-		0.4	V
V _{OH}	Output high voltage, ports 1, 2, 3 ³	V _{CC} = 4.5 V; I _{OH} = -30 μA	V _{CC} - 0.7		-	V
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	V_{CC} = 4.5 V; I_{OH} = -3.2 mA	V _{CC} - 0.7		-	V
IL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4 V	-1		-50	μA
ITL	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0 V; See note 4	-		-650	μA
ILI	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$	-		±10	μA
I _{CC}	Power supply current Active mode (see Note 5)					
	Idle mode (see Note 5)					
	Power-down mode or clock stopped (see Figure 46 for conditions)	$T_{amb} = 0 \ ^{\circ}C$ to 70 $^{\circ}C$		2	30	μA
		$T_{amb} = -40 \ ^{\circ}C \text{ to } +85 \ ^{\circ}C$		3	50	μA
V _{RAM}	RAM keep-alive voltage		1.2			V
R _{RST}	Internal reset pull-down resistor		40		225	kΩ
C _{IO}	Pin capacitance ¹⁰ (except EA)		-		15	pF

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.

2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V_{OL}s of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I_{OL} can exceed these conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions.

 Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC}-0.7 specification when the address bits are stabilizing.

 Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2 V.

5. See Figures 43 through 46 for I_{CC} test conditions and Figure 41 for I_{CC} vs. Frequency.

12-clock mode characteristics:

Active mode (operating):	I _{CC} = 1.0 mA + 1.1 mA × FREQ.[MHz]
Active mode (reset):	$I_{CC} = 7.0 \text{ mA} + 0.6 \text{ mA} \times \text{FREQ}.[\text{MHz}]$
Idle mode:	$I_{CC} = 1.0 \text{ mA} + 0.22 \text{ mA} \times \text{FREQ}.[\text{MHz}]$

Idle mode: $I_{CC} = 1.0 \text{ mA} + 0.22 \text{ mA} \times \text{FREQ}.[\text{MHz}]$ 6. This value applies to $T_{amb} = 0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$. For $T_{amb} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $I_{TL} = -750 \text{ }\mu\text{A}$.

7. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.

8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 15 mA (*NOTE: This is 85 °C specification.)

- Maximum I_{OL} per 8-bit port: 26 mA
- Maximum total I_{OL} for all outputs: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

9. ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF (except EA is 25 pF).

11. To improve noise rejection a nominal 100 ns glitch rejection circuitry has been added to the RST pin, and a nominal 15 ns glitch rejection circuitry has been added to the INT0 and INT1 pins. Previous devices provided only an inherent 5 ns of glitch rejection.

P87C51RA2/RB2/RC2/RD2

AC ELECTRICAL CHARACTERISTICS (12-CLOCK MODE, 2.7 V TO 5.5 V OPERATION)

 $T_{amb} = 0 \text{ °C to } +70 \text{ °C or } -40 \text{ °C to } +85 \text{ °C}$; $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}^{1,2,3,4}$

Symbol	Figure	Parameter	Limits		16 MHz Clock		Unit
			MIN MAX		MIN MAX		
1/t _{CLCL}	38	Oscillator frequency	0	16			MHz
LHLL	34	ALE pulse width	2t _{CLCL} -10		115		ns
AVLL	34	Address valid to ALE low	t _{CLCL} –15		47.5		ns
t _{LLAX}	34	Address hold after ALE low	t _{CLCL} –25		37.5		ns
t _{LLIV}	34	ALE low to valid instruction in		4 t _{CLCL} –55		195	ns
t _{LLPL}	34	ALE low to PSEN low	t _{CLCL} –15		47.5		ns
t _{PLPH}	34	PSEN pulse width	3 t _{CLCL} –15		172.5		ns
t _{PLIV}	34	PSEN low to valid instruction in		3 t _{CLCL} –55		132.5	ns
t _{PXIX}	34	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	34	Input instruction float after PSEN		t _{CLCL} –10		52.5	ns
t _{AVIV}	34	Address to valid instruction in		5 t _{CLCL} –50		262.5	ns
t _{PLAZ}	34	PSEN low to address float		10		10	ns
Data Men	nory		I	•		1	
t _{RLRH}	35	RD pulse width	6 t _{CLCL} –25		350		ns
t _{WLWH}	36	WR pulse width	6 t _{CLCL} –25		350		ns
RLDV	35	RD low to valid data in		5 t _{CLCL} –50		262.5	ns
t _{RHDX}	35	Data hold after RD	0		0		ns
t _{RHDZ}	35	Data float after RD		2 t _{CLCL} –20		105	ns
t _{LLDV}	35	ALE low to valid data in		8 t _{CLCL} –55		445	ns
tavdv	35	Address to valid data in		9 t _{CLCL} –50		512.5	ns
t _{LLWL}	35, 36	ALE low to RD or WR low	3 t _{CLCL} –20	3 t _{CLCL} +20	167.5	207.5	ns
t _{AVWL}	35, 36	Address valid to WR low or RD low	4 t _{CLCL} –20		230		ns
t _{QVWX}	36	Data valid to WR transition	t _{CLCL} –30		32.5		ns
t _{WHQX}	36	Data hold after WR	t _{CLCL} –20		42.5		ns
t _{QVWH}	36	Data valid to WR high	7 t _{CLCL} –10		427.5		ns
t _{RLAZ}	35	RD low to address float		0		0	ns
t _{WHLH}	35, 36	RD or WR high to ALE high	t _{CLCL} –15	t _{CLCL} +15	47.5	77.5	ns
External	Clock	1	I	•			
t _{CHCX}	38	High time	0.32 t _{CLCL}	t _{CLCL} - t _{CLCX}			ns
t _{CLCX}	38	Low time	0.32 t _{CLCL}	t _{CLCL} - t _{CHCX}			ns
tCLCH	38	Rise time		5			ns
t _{CHCL}	38	Fall time		5			ns
Shift regi	ster		I	•		I	
t _{XLXL}	37	Serial port clock cycle time	12 t _{CLCL}		750		ns
t _{QVXH}	37	Output data setup to clock rising edge	10 t _{CLCL} –25		600		ns
tXHQX	37	Output data hold after clock rising edge	2 t _{CLCL} –15		110		ns
t _{XHDX}	37	Input data hold after clock rising edge	0		0		ns
t _{XHDV}	37	Clock rising edge to input data valid ⁵		10 t _{CLCL} –133	1	492	ns

NOTES:

Parameters are valid over operating temperature range unless otherwise specified.
 Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all outputs = 80 pF

3. Interfacing the microcontroller to devices with float time up to 45 ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz. 5. Below 16 MHz this parameter is 8 t_{CLCL} – 133.

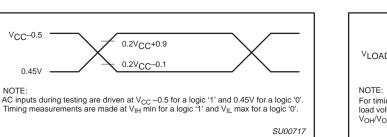
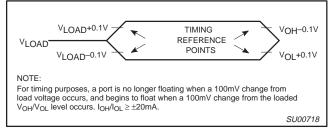



Figure 39. AC Testing Input/Output

P87C51RA2/RB2/RC2/RD2

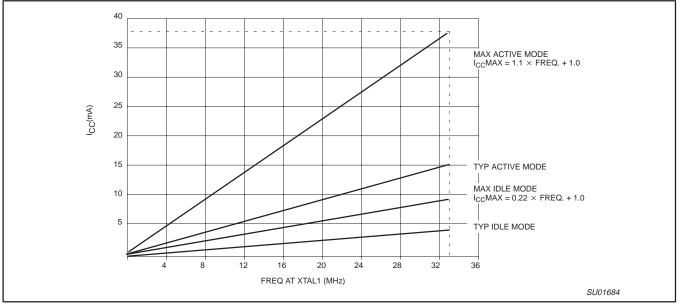


Figure 41. I_{CC} vs. FREQ for 12-clock operation Valid only within frequency specifications of the specified operating voltage

P87C51RA2/RB2/RC2/RD2

ROM CODE SUBMISSION FOR 16K ROM DEVICES (87C51RB2)

When submitting ROM code for the 16K ROM devices, the following must be specified:

- 1. 16 kbyte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 3FFFH	DATA	7:0	User ROM Data
4000H to 403FH	KEY	7:0	ROM Encryption Key FFH = no encryption
4040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
4040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. \overline{EA} is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	□ Enabled	□ Disabled	
Security Bit #2:	Enabled	Disabled	

Encryption: 🗆 No

□ Yes If Yes, must send key file.

P87C51RA2/RB2/RC2/RD2

ROM CODE SUBMISSION FOR 32K ROM DEVICES (87C51RC2)

When submitting ROM code for the 32K ROM devices, the following must be specified:

- 1. 32 kbyte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 7FFFH	DATA	7:0	User ROM Data
8000H to 803FH	KEY	7:0	ROM Encryption Key FFH = no encryption
8040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
8040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. \overline{EA} is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	Disabled
Security Bit #2:	Enabled	Disabled

Encryption: 🗆 No

□ Yes If Yes, must send key file.

P87C51RA2/RB2/RC2/RD2

REVISION HISTORY

Rev	Date	Description	
_3	20030124	oduct data (9397 750 10994); ECN 853-2391 29335 dated 07 Jan 2003.	
		Modifications:	
		 Updated ordering information table. 	
_2	20021028	Product data (9397 750 10393); ECN 853-2391 29117 dated 28 Oct 2002.	

P87C51RA2/RB2/RC2/RD2

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax:

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2003 All rights reserved. Printed in U.S.A.

Date of release: 01-03

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 10994

Let's make things better.

