Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | 8051 | | Core Size | 8-Bit | | Speed | 33MHz | | Connectivity | EBI/EMI, UART/USART | | Peripherals | POR, PWM, WDT | | Number of I/O | 32 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 1K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-LCC (J-Lead) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c51rd2fa-512 | 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 #### LOGIC SYMBOL ### **PINNING** #### Plastic Dual In-Line Package ### **Plastic Leaded Chip Carrier** #### **Plastic Quad Flat Pack** 2003 Jan 24 6 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 ### **PIN DESCRIPTIONS** | | Р | NAME AND FUNCTION | | NAME AND THE PROPERTY. | | |-----------------|-------|-------------------|---------------|------------------------|---| | MNEMONIC | PDIP | PLCC | LQFP | TYPE | NAME AND FUNCTION | | V _{SS} | 20 | 22 | 16 | ı | Ground: 0 V reference. | | V _{CC} | 40 | 44 | 38 | ı | Power Supply: This is the power supply voltage for normal, idle, and power-down operation. | | P0.0-0.7 | 39–32 | 43–36 | 37–30 | I/O | Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s. | | P1.0–P1.7 | 1–8 | 2–9 | 40–44,
1–3 | I/O | Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups on all pins. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}). | | | | | | | Alternate functions for P87C51RA2/RB2/RC2/RD2 Port 1 include: | | | 1 | 2 | 40 | I/O | T2 (P1.0): Timer/Counter 2 external count input/Clockout (see Programmable Clock-Out) | | | 2 | 3 | 41 | l ı | T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control | | | 3 | 4 | 42 | ı | ECI (P1.2): External Clock Input to the PCA | | | 4 | 5 | 43 | I/O | CEX0 (P1.3): Capture/Compare External I/O for PCA module 0 | | | 5 | 6 | 44 | I/O | CEX1 (P1.4): Capture/Compare External I/O for PCA module 1 | | | 6 | 7 | 1 | I/O | CEX2 (P1.5): Capture/Compare External I/O for PCA module 2 | | | 7 | 8 | 2 | I/O | CEX3 (P1.6): Capture/Compare External I/O for PCA module 3 | | | 8 | 9 | 3 | I/O | CEX4 (P1.7): Capture/Compare External I/O for PCA module 4 | | P2.0-P2.7 | 21–28 | 24–31 | 18–25 | I/O | Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register. | | P3.0-P3.7 | 10–17 | 11,
13–19 | 5, 7–13 | I/O | Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 3 also serves the special features of the P87C51RA2/RB2/RC2/RD2, as listed below: | | | 10 | 11 | 5 | ı | RxD (P3.0): Serial input port | | | 11 | 13 | 7 | 0 | TxD (P3.1): Serial output port | | | 12 | 14 | 8 | | INT0 (P3.2): External interrupt | | | 13 | 15 | 9 | ı | INT1 (P3.3): External interrupt | | | 14 | 16 | 10 | ı | T0 (P3.4): Timer 0 external input | | | 15 | 17 | 11 | | T1 (P3.5): Timer 1 external input | | | 16 | 18 | 12 | 0 | WR (P3.6): External data memory write strobe | | | 17 | 19 | 13 | 0 | RD (P3.7): External data memory read strobe | | RST | 9 | 10 | 4 | ı | Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} . | | ALE | 30 | 33 | 27 | 0 | Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted twice every machine cycle, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. ALE can be disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction. | 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 | MNEMONIC | Р | IN NUMBE | R | TYPE | NAME AND FUNCTION | | |--------------------|------|----------|------|------|---|--| | MINEMONIC | PDIP | PLCC | LQFP | 1176 | NAME AND FUNCTION | | | PSEN | 29 | 32 | 26 | 0 | Program Store Enable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory. | | | EA/V _{PP} | 31 | 35 | 29 | Ī | External Access Enable/Programming Supply Voltage: \overline{EA} must be externally held low to enable the device to fetch code from external program memory locations. If \overline{EA} is held high, the device executes from internal program memory. The value on the \overline{EA} pin is latched when RST is released and any subsequent changes have no effect. This pin also receives the programming supply voltage (V _{PP}) during programming. | | | XTAL1 | 19 | 21 | 15 | ı | Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits. | | | XTAL2 | 18 | 20 | 14 | 0 | Crystal 2: Output from the inverting oscillator amplifier. | | ### NOTE: To avoid "latch-up" effect at power-on, the voltage on any pin (other than V_{PP}) must not be higher than V_{CC} + 0.5 V or less than V_{SS} – 0.5 V. 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 ### **SPECIAL FUNCTION REGISTERS** (Continued) | SYMBOL | DESCRIPTION | DIRECT | BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION | | | | | | | | RESET | |--|---|--|---|------|------|------|-------|-----|------|--------|--| | STWIBUL | DESCRIPTION | ADDRESS | MSB | | | | | | | LSB | VALUE | | | | | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | PSW* | Program Status Word | D0H | CY | AC | F0 | RS1 | RS0 | OV | F1 | P | 00000000B | | RCAP2H#
RCAP2L# | Timer 2 Capture High
Timer 2 Capture Low | CBH
CAH | 0. | 7.0 | 1.0 | 1.01 | 1100 | | | | 00H
00H | | SADDR#
SADEN# | Slave Address
Slave Address Mask | A9H
B9H | | | | | | | | | 00H
00H | | SBUF | Serial Data Buffer | 99H | 9F | 9E | 9D | 9C | 9B | 9A | 99 | 98 | xxxxxxxxB | | SCON* | Serial Control | 98H | SM0/FE | SM1 | SM2 | REN | TB8 | RB8 | TI | RI | 00H | | SP | Stack Pointer | 81H | 8F | 8E | 8D | 8C | 8B | 8A | 89 | 88 | 07H | | TCON* | Timer Control | 88H | TF1 | TR1 | TF0 | TR0 | IE1 | IT1 | IE0 | IT0 | 00H | | | | | CF | CE | CD | СС | СВ | CA | C9 | C8 | | | T2CON* | Timer 2 Control | C8H | TF2 | EXF2 | RCLK | TCLK | EXEN2 | TR2 | C/T2 | CP/RL2 | 00H | | T2MOD# | Timer 2 Mode Control | C9H | _ | _ | _ | _ | _ | _ | T2OE | DCEN | xxxxxx00B | | TH0
TH1
TH2#
TL0
TL1
TL2# | Timer High 0
Timer High 1
Timer High 2
Timer Low 0
Timer Low 1
Timer Low 2 | 8CH
8DH
CDH
8AH
8BH
CCH | | | | | | | | | 00H
00H
00H
00H
00H
00H | | TMOD | Timer Mode | 89H | GATE | C/T | M1 | M0 | GATE | C/T | M1 | M0 | 00H | | WDTRST | Watchdog Timer Reset | A6H | | | | | | | | | | ^{*} SFRs are bit addressable. #### **OSCILLATOR CHARACTERISTICS** XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator. To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. Minimum and maximum high and low times specified in the data sheet must be observed. This device is configured at the factory to operate using 12 clock periods per machine cycle, referred to in this datasheet as "12-clock mode". It may be optionally configured on commercially available parallel programming equipment or via software to operate at 6 clocks per machine cycle, referred to in this datasheet as "6-clock mode". (This yields performance equivalent to twice that of standard 80C51 family devices). Also see next page. [#] SFRs are modified from or added to the 80C51 SFRs. Reserved bits. Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0) Figure 5. Timer 2 Auto Reload Mode (DCEN = 1) 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 When Timer 2 is in the baud rate generator mode, one should not try to read or write TH2 and TL2. As a baud rate generator, Timer 2 is incremented every state time (osc/2) or asynchronously from pin T2; under these conditions, a read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be read, but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers. Table 4 shows commonly used baud rates and how they can be obtained from Timer 2. ### **Summary of Baud Rate Equations** Timer 2 is in baud rate generating mode. If Timer 2 is being clocked through pin T2 (P1.0) the baud rate is: Baud Rate = $$\frac{\text{Timer 2 Overflow Rate}}{16}$$ If Timer 2 is being clocked internally, the baud rate is: $$\mbox{Baud Rate} = \frac{\mbox{f}_{\mbox{OSC}}}{\left[\mbox{ n * } \times \mbox{[65536} - (\mbox{RCAP2H, RCAP2L)]}\right]} \\ \mbox{* n =} \qquad \begin{array}{c} \mbox{16 in 6-clock mode} \\ \mbox{32 in 12-clock mode} \end{array}$$ Where f_{OSC}= Oscillator Frequency To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as: RCAP2H, RCAP2L = $$65536 - \left(\frac{f_{OSC}}{n^* \times Baud Rate}\right)$$ #### Timer/Counter 2 Set-up Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. see Table 5 for set-up of Timer 2 as a timer. Also see Table 6 for set-up of Timer 2 as a counter. Table 5. Timer 2 as a Timer | | T2C | ON | |---|------------------------------|------------------------------| | MODE | INTERNAL CONTROL
(Note 1) | EXTERNAL CONTROL
(Note 2) | | 16-bit Auto-Reload | 00H | 08H | | 16-bit Capture | 01H | 09H | | Baud rate generator receive and transmit same baud rate | 34H | 36H | | Receive only | 24H | 26H | | Transmit only | 14H | 16H | #### Table 6. Timer 2 as a Counter | | TM | OD | |-------------|------------------------------|------------------------------| | MODE | INTERNAL CONTROL
(Note 1) | EXTERNAL CONTROL
(Note 2) | | 16-bit | 02H | 0AH | | Auto-Reload | 03H | 0BH | #### NOTES: - Capture/reload occurs only on timer/counter overflow. - 2. Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generator mode. Figure 10. Serial Port Mode 1 Figure 11. Serial Port Mode 2 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ## P87C51RA2/RB2/RC2/RD2 #### **Interrupt Priority Structure** The P87C51RA2/RB2/RC2/RD2 has a 7 source four-level interrupt structure (see Table 7). There are 3 SFRs associated with the four-level interrupt. They are the IE, IP, and IPH. (See Figures 15, 16, and 17.) The IPH (Interrupt Priority High) register makes the four-level interrupt structure possible. The IPH is located at SFR address B7H. The structure of the IPH register and a description of its bits is shown in Figure 17. The function of the IPH SFR, when combined with the IP SFR, determines the priority of each interrupt. The priority of each interrupt is determined as shown in the following table: | PRIORI | TY BITS | INTERRUPT PRIORITY LEVEL | | | | |--------|---------|----------------------------|--|--|--| | IPH.x | IP.x | INTERROPT PRIORITY LEVEL | | | | | 0 | 0 | Level 0 (lowest priority) | | | | | 0 | 1 | Level 1 | | | | | 1 | 0 | Level 2 | | | | | 1 | 1 | Level 3 (highest priority) | | | | The priority scheme for servicing the interrupts is the same as that for the 80C51, except there are four interrupt levels rather than two as on the 80C51. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed. Table 7. Interrupt Table | SOURCE | POLLING PRIORITY | REQUEST BITS | HARDWARE CLEAR? | VECTOR ADDRESS | |--------|------------------|---------------------|---------------------------------------|----------------| | X0 | 1 | IE0 | N (L) ¹ Y (T) ² | 03H | | T0 | 2 | TP0 | Y | 0BH | | X1 | 3 | IE1 | N (L) Y (T) | 13H | | T1 | 4 | TF1 | Y | 1BH | | PCA | 5 | CF, CCFn
n = 0–4 | N | 33H | | SP | 6 | RI, TI | N | 23H | | T2 | 7 | TF2, EXF2 | N | 2BH | #### NOTES: - 1. L = Level activated - 2. T = Transition activated | | _ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----------|--------|----------------------------|--------------------------|--------------|------------|-------------|---------------|-----------| | | IE (0A8H) | EA | EC | ET2 | ES | ET1 | EX1 | ET0 | EX0 | | | | | Bit = 1 ena
Bit = 0 dis | ables the i
ables it. | nterrupt. | | | | | | BIT | SYMBOL | FUNC | TION | | | | | | | | IE.7 | EA | Global | disable b | it. If EA = | 0, all inter | rrupts are | disabled. | If $EA = 1$, | each inte | | | | enable | d or disal | oled by se | tting or cle | earing its | enable bit. | | | | IE.6 | EC | PCA ir | nterrupt er | nable bit | | | | | | | IE.5 | ET2 | Timer | 2 interrup | t enable b | it. | | | | | | IE.4 | ES | Serial | Port interi | upt enabl | e bit. | | | | | | IE.3 | ET1 | Timer | 1 interrup | t enable b | it. | | | | | | IE.2 | EX1 | Extern | al interrup | ot 1 enable | e bit. | | | | | | IE.1 | ET0 | Timer | 0 interrup | t enable b | it. | | | | | | IE.0 | EX0 | Extern | al interrur | ot 0 enable | e bit. | | | | | Figure 15. IE Registers 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 Figure 24. CCAPMn: PCA Modules Compare/Capture Registers | _ | ECOMn | CAPPn | CAPNn | MATn | TOGn | PWMn | ECCFn | MODULE FUNCTION | |---|-------|-------|-------|------|------|------|-------|---| | Х | 0 | 0 | 0 | 0 | 0 | 0 | 0 | No operation | | Х | Х | 1 | 0 | 0 | 0 | 0 | Х | 16-bit capture by a positive-edge trigger on CEXn | | Х | Х | 0 | 1 | 0 | 0 | 0 | Х | 16-bit capture by a negative trigger on CEXn | | Х | Х | 1 | 1 | 0 | 0 | 0 | Х | 16-bit capture by a transition on CEXn | | Х | 1 | 0 | 0 | 1 | 0 | 0 | Х | 16-bit Software Timer | | Х | 1 | 0 | 0 | 1 | 1 | 0 | Х | 16-bit High Speed Output | | Х | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 8-bit PWM | | Х | 1 | 0 | 0 | 1 | Х | 0 | Х | Watchdog Timer | Figure 25. PCA Module Modes (CCAPMn Register) #### **PCA Capture Mode** To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated. Refer to Figure 26. #### 16-bit Software Timer Mode The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (see Figure 27). #### **High Speed Output Mode** In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (see Figure 28). #### **Pulse Width Modulator Mode** All of the PCA modules can be used as PWM outputs. Figure 29 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. the allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode. 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) # P87C51RA2/RB2/RC2/RD2 Figure 26. PCA Capture Mode Figure 27. PCA Compare Mode 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 Figure 30. PCA Watchdog Timer mode (Module 4 only) #### **PCA Watchdog Timer** An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 30 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high. In order to hold off the reset, the user has three options: - periodically change the compare value so it will never match the PCA timer. - periodically change the PCA timer value so it will never match the compare values, or - disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it. The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option. Figure 31 shows the code for initializing the watchdog timer. Module 4 can be configured in either compare mode, and the WDTE bit in CMOD must also be set. The user's software then must periodically change (CCAP4H,CCAP4L) to keep a match from occurring with the PCA timer (CH,CL). This code is given in the WATCHDOG routine in Figure 31. This routine should not be part of an interrupt service routine, because if the program counter goes astray and gets stuck in an infinite loop, interrupts will still be serviced and the watchdog will keep getting reset. Thus, the purpose of the watchdog would be defeated. Instead, call this subroutine from the main program within 2^{16} count of the PCA timer. 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 ### **ABSOLUTE MAXIMUM RATINGS**1, 2, 3 | PARAMETER | RATING | UNIT | |--|------------------------|------| | Operating temperature under bias | 0 to +70 or -40 to +85 | °C | | Storage temperature range | -65 to +150 | °C | | Voltage on EA/V _{PP} pin to V _{SS} | 0 to +13.0 | V | | Voltage on any other pin to V _{SS} ⁴ | -0.5 to +6.0 | V | | Maximum I _{OL} per I/O pin | 15 | mA | | Power dissipation (based on package heat transfer limitations, not device power consumption) | 1.5 | W | #### NOTES: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise 4. Transient voltage only. #### **AC ELECTRICAL CHARACTERISTICS** $T_{amb} = 0$ °C to +70°C or -40°C to +85°C | | | | | | CLOCK FREQUENCY
RANGE | | | |---------------------|--------|----------------------|----------------|-------------------------|--------------------------|-----|------| | SYMBOL | FIGURE | PARAMETER | OPERATING MODE | POWER SUPPLY
VOLTAGE | MIN | MAX | UNIT | | 1/t _{CLCL} | 38 | Oscillator frequency | 6-clock | 5 V ± 10% | 0 | 30 | MHz | | | | | 6-clock | 2.7 V to 5.5 V | 0 | 16 | MHz | | | | | 12-clock | 5 V ± 10% | 0 | 33 | MHz | | | | | 12-clock | 2.7 V to 5.5 V | 0 | 16 | MHz | 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 #### DC ELECTRICAL CHARACTERISTICS $T_{amb} = 0$ °C to +70 °C or -40 °C to +85 °C; $V_{CC} = 2.7$ V to 5.5 V; $V_{SS} = 0$ V (16 MHz max. CPU clock) | SYMBOL | PARAMETER | TEST
CONDITIONS | LIMITS | UNIT | | | |------------------|---|---|--------------------------|------------------|--------------------------|----| | | | | MIN | TYP ¹ | MAX | 7 | | V _{IL} | Input low voltage ¹¹ | 4.0 V < V _{CC} < 5.5 V | -0.5 | | 0.2 V _{CC} -0.1 | V | | | | 2.7 V < V _{CC} < 4.0 V | -0.5 | | 0.7 V _{CC} | V | | V _{IH} | Input high voltage (ports 0, 1, 2, 3, EA) | | 0.2 V _{CC} +0.9 | | V _{CC} +0.5 | V | | V _{IH1} | Input high voltage, XTAL1, RST ¹¹ | | 0.7 V _{CC} | | V _{CC} +0.5 | V | | V _{OL} | Output low voltage, ports 1, 2, 8 | $V_{CC} = 2.7 \text{ V}; I_{OL} = 1.6 \text{ mA}^2$ | _ | | 0.4 | V | | V _{OL1} | Output low voltage, port 0, ALE, PSEN8, 7 | $V_{CC} = 2.7 \text{ V}; I_{OL} = 3.2 \text{ mA}^2$ | _ | | 0.4 | V | | V _{OH} | Output high voltage, ports 1, 2, 3 3 | $V_{CC} = 2.7 \text{ V; } I_{OH} = -20 \mu A$ | V _{CC} - 0.7 | | _ | V | | | | $V_{CC} = 4.5 \text{ V; } I_{OH} = -30 \mu\text{A}$ | V _{CC} - 0.7 | | _ | V | | V _{OH1} | Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³ | $V_{CC} = 2.7 \text{ V}; I_{OH} = -3.2 \text{ mA}$ | V _{CC} – 0.7 | | - | V | | I _{IL} | Logical 0 input current, ports 1, 2, 3 | V _{IN} = 0.4 V | -1 | | -50 | μΑ | | I _{TL} | Logical 1-to-0 transition current, ports 1, 2, 36 | V _{IN} = 2.0 V; See note 4 | - | | -650 | μΑ | | I _{LI} | Input leakage current, port 0 | $0.45 < V_{IN} < V_{CC} - 0.3$ | _ | | ±10 | μΑ | | I _{CC} | Power supply current (see Figure 41 and Source Code): | | | | | | | | Active mode @ 16 MHz | | | | | μΑ | | | Idle mode @ 16 MHz | | | | | μΑ | | | Power-down mode or clock stopped (see Figure 37 for conditions) 12 | T _{amb} = 0 °C to 70 °C | | 2 | 30 | μΑ | | | , | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$ | | 3 | 50 | μΑ | | V _{RAM} | RAM keep-alive voltage | | 1.2 | | | V | | R _{RST} | Internal reset pull-down resistor | | 40 | | 225 | kΩ | | C _{IO} | Pin capacitance ¹⁰ (except EA) | | _ | | 15 | pF | #### NOTES: - 1. Typical ratings are not guaranteed. Values listed are based on tests conducted on limited number of samples at room temperature. - 2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the Vols of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IOL can exceed these conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions. - Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC}-0.7 specification when the address bits are stabilizing. - Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when $V_{\mbox{\scriptsize IN}}$ is approximately 2 V. - See Figures 43 through 46 for I_{CC} test conditions and Figure 41 for I_{CC} vs. Frequency 12-clock mode characteristics: Active mode (operating): $I_{CC} = 1.0 \text{ mA} + 1.1 \text{ mA} \times \text{FREQ.[MHz]}$ I_{CC} = 7.0 mA + 0.6 mA × FREQ.[MHz] I_{CC} = 1.0 mA + 0.22 mA × FREQ.[MHz] Active mode (reset): Idle mode: - 6. This value applies to $T_{amb} = 0$ °C to +70 °C. For $T_{amb} = -40$ °C to +85 °C, $I_{TL} = -750 \,\mu\text{A}$. 7. Load capacitance for port 0, ALE, and $\overline{PSEN} = 100 \,p\text{F}$, load capacitance for all other outputs = 80 pF. - 8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 15 mA (*NOTE: This is 85 °C specification.) Maximum I_{OL} per port pin: Maximum IOL per 8-bit port: 26 mA Maximum total I_{OI} for all outputs: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed - 9. ALE is tested to V_{OH1} , except when ALE is off then V_{OH} is the voltage specification. - 10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF - 11. To improve noise rejection a nominal 100 ns glitch rejection circuitry has been added to the RST pin, and a nominal 15 ns glitch rejection circuitry has been added to the INTO and INTO pins. Previous devices provided only an inherent 5 ns of glitch rejection. - 12. Power down mode for 3 V range: Commercial Temperature Range typ: 0.5 μA, max. 20 μA; Industrial Temperature Range typ. 1.0 μA, max. 30 μA; 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 ### AC ELECTRICAL CHARACTERISTICS (12-CLOCK MODE, 5 V ±10% OPERATION) T_{amb} = 0 °C to +70 °C or -40 °C to +85 °C ; V_{CC} = 5 V ±10%, V_{SS} = 0 V^{1,2,3,4} | Symbol | Figure | Parameter | Limits | | 16 MHz | Unit | | |---------------------|--------|--|--------------------------|---------------------------------------|----------|-------|-----| | | | | MIN | MAX | MIN | MAX | 7 | | 1/t _{CLCL} | 38 | Oscillator frequency | 0 | 33 | | | MHz | | tLHLL | 34 | ALE pulse width | 2 t _{CLCL} -8 | | 117 | | ns | | t _{AVLL} | 34 | Address valid to ALE low | t _{CLCL} -13 | | 49.5 | | ns | | t _{LLAX} | 34 | Address hold after ALE low | t _{CLCL} -20 | | 42.5 | | ns | | t _{LLIV} | 34 | ALE low to valid instruction in | | 4 t _{CLCL} -35 | | 215 | ns | | t _{LLPL} | 34 | ALE low to PSEN low | t _{CLCL} -10 | | 52.5 | | ns | | t _{PLPH} | 34 | PSEN pulse width | 3 t _{CLCL} -10 | | 177.5 | | ns | | t _{PLIV} | 34 | PSEN low to valid instruction in | | 3 t _{CLCL} -35 | | 152.5 | ns | | t _{PXIX} | 34 | Input instruction hold after PSEN | 0 | | 0 | | ns | | t _{PXIZ} | 34 | Input instruction float after PSEN | | t _{CLCL} -10 | | 52.5 | ns | | t _{AVIV} | 34 | Address to valid instruction in | | 5 t _{CLCL} -35 | | 277.5 | ns | | t _{PLAZ} | 34 | PSEN low to address float | | 10 | | 10 | ns | | Data Men | nory | | • | • | • | | | | t _{RLRH} | 35 | RD pulse width | 6 t _{CLCL} -20 | | 355 | | ns | | t _{WLWH} | 36 | WR pulse width | 6 t _{CLCL} –20 | | 355 | | ns | | t _{RLDV} | 35 | RD low to valid data in | | 5 t _{CLCL} -35 | | 277.5 | ns | | t _{RHDX} | 35 | Data hold after RD | 0 | | 0 | | ns | | t _{RHDZ} | 35 | Data float after RD | | 2 t _{CLCL} -10 | | 115 | ns | | t _{LLDV} | 35 | ALE low to valid data in | | 8 t _{CLCL} -35 | | 465 | ns | | t _{AVDV} | 35 | Address to valid data in | | 9 t _{CLCL} -35 | | 527.5 | ns | | t _{LLWL} | 35, 36 | ALE low to RD or WR low | 3 t _{CLCL} -15 | 3 t _{CLCL} +15 | 172.5 | 202.5 | ns | | t _{AVWL} | 35, 36 | Address valid to WR low or RD low | 4 t _{CLCL} -15 | | 235 | | ns | | t _{QVWX} | 36 | Data valid to WR transition | t _{CLCL} -25 | | 37.5 | | ns | | t _{WHQX} | 36 | Data hold after WR | t _{CLCL} -15 | | 47.5 | | ns | | t _{QVWH} | 36 | Data valid to WR high | 7 t _{CLCL} –5 | | 432.5 | | ns | | t _{RLAZ} | 35 | RD low to address float | | 0 | | 0 | ns | | t _{WHLH} | 35, 36 | RD or WR high to ALE high | t _{CLCL} -10 | t _{CLCL} +10 | 52.5 | 72.5 | ns | | External | Clock | • | • | • | • | | • | | t _{CHCX} | 38 | High time | 0.32 t _{CLCL} | t _{CLCL} - t _{CLCX} | | | ns | | t _{CLCX} | 38 | Low time | 0.32 t _{CLCL} | t _{CLCL} - t _{CHCX} | | | ns | | t _{CLCH} | 38 | Rise time | | 5 | | | ns | | tCHCL | 38 | Fall time | | 5 | | | ns | | Shift regi | ster | • | • | • | • | | | | t _{XLXL} | 37 | Serial port clock cycle time | 12 t _{CLCL} | | 750 | | ns | | t _{QVXH} | 37 | Output data setup to clock rising edge | 10 t _{CLCL} –25 | | 600 | | ns | | t _{XHQX} | 37 | Output data hold after clock rising edge | 2 t _{CLCL} -15 | | 110 | | ns | | t _{XHDX} | 37 | Input data hold after clock rising edge | 0 | | 0 | | ns | | t _{XHDV} | 37 | Clock rising edge to input data valid ⁵ | | 10 t _{CLCL} -133 | <u> </u> | 492 | ns | - Parameters are valid over operating temperature range unless otherwise specified. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all outputs = 80 pF - 3. Interfacing the microcontroller to devices with float time up to 45 ns is permitted. This limited bus contention will not cause damage to port 0 - 4. Parts are guaranteed by design to operate down to 0 Hz. 5. Below 16 MHz this parameter is 8 t_{CLCL} 133. 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 #### **EPROM CHARACTERISTICS** All these devices can be programmed by using a modified Improved Quick-Pulse Programming algorithm. It differs from older methods in the value used for V_{PP} (programming supply voltage) and in the width and number of the ALE/PROG pulses. The family contains two signature bytes that can be read and used by an EPROM programming system to identify the device. The signature bytes identify the device as being manufactured by Philips. Table 8 shows the logic levels for reading the signature byte, and for programming the program memory, the encryption table, and the security bits. The circuit configuration and waveforms for quick-pulse programming are shown in Figures 47 and 48. Figure 49 shows the circuit configuration for normal program memory verification. #### **Quick-Pulse Programming** The setup for microcontroller quick-pulse programming is shown in Figure 47. Note that the device is running with a 4 to 6MHz oscillator. The reason the oscillator needs to be running is that the device is executing internal address and program data transfers. The address of the EPROM location to be programmed is applied to ports 1 and 2, as shown in Figure 47. The code byte to be programmed into that location is applied to port 0. RST, PSEN and pins of ports 2 and 3 specified in Table 8 are held at the 'Program Code Data' levels indicated in Table 8. The ALE/PROG is pulsed low 5 times as shown in Figure 48. To program the encryption table, repeat the 5 pulse programming sequence for addresses 0 through 1FH, using the 'Pgm Encryption Table' levels. Do not forget that after the encryption table is programmed, verification cycles will produce only encrypted data. To program the security bits, repeat the 5 pulse programming sequence using the 'Pgm Security Bit' levels. After one security bit is programmed, further programming of the code memory and encryption table is disabled. However, the other security bits can still be programmed. Note that the $\overline{\text{EA}}/\text{V}_{PP}$ pin must not be allowed to go above the maximum specified V_{PP} level for any amount of time. Even a narrow glitch above that voltage can cause permanent damage to the device. The V_{PP} source should be well regulated and free of glitches and overshoot. #### **Program Verification** If security bits 2 and 3 have not been programmed, the on-chip program memory can be read out for program verification. The address of the program memory locations to be read is applied to ports 1 and 2 as shown in Figure 49. The other pins are held at the 'Verify Code Data' levels indicated in Table 8. The contents of the address location will be emitted on port 0. External pull-ups are required on port 0 for this operation. If the 64 byte encryption table has been programmed, the data presented at port 0 will be the exclusive NOR of the program byte with one of the encryption bytes. The user will have to know the encryption table contents in order to correctly decode the verification data. The encryption table itself cannot be read out. #### **Reading the Signature Bytes** The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values are: (030H) = 15H indicates manufactured by Philips (031H) = CAH indicates 87C51RA2 CBH indicates 87C51RB2 CCH indicates 87C51RC2 CDH indicates 87C51RC2 CDH indicates 87C51RD2 (060H) = NA #### **Program/Verify Algorithms** Any algorithm in agreement with the conditions listed in Table 8, and which satisfies the timing specifications, is suitable. #### **Security Bits** With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 9) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory, EA is latched on Reset and all further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled. When all three security bits are programmed, all of the conditions above apply and all external program memory execution is disabled. ### **Encryption Array** 64 bytes of encryption array are initially unprogrammed (all 1s). [™]Trademark phrase of Intel Corporation. 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 Table 8. EPROM Programming Modes | MODE | RST | PSEN | ALE/PROG | EA/V _{PP} | P2.7 | P2.6 | P3.7 | P3.6 | P3.3 | |-----------------------------------|-----|------|----------|--------------------|------|------|------|------|------| | Read signature | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | Х | | Program code data | 1 | 0 | 0* | V_{PP} | 1 | 0 | 1 | 1 | Х | | Verify code data | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | Х | | Pgm encryption table | 1 | 0 | 0* | V_{PP} | 1 | 0 | 1 | 0 | Х | | Pgm security bit 1 | 1 | 0 | 0* | V_{PP} | 1 | 1 | 1 | 1 | Х | | Pgm security bit 2 | 1 | 0 | 0* | V_{PP} | 1 | 1 | 0 | 0 | Х | | Pgm security bit 3 | 1 | 0 | 0* | V_{PP} | 0 | 1 | 0 | 1 | Х | | Program to 6-clock mode | 1 | 0 | 0* | V_{PP} | 0 | 0 | 1 | 0 | 0 | | Verify 6-clock ⁴ | 1 | 0 | 1 | 1 | е | 0 | 0 | 1 | 1 | | Verify security bits ⁵ | 1 | 0 | 1 | 1 | е | 0 | 1 | 0 | Χ | #### NOTES: - 1. '0' = Valid low for that pin, '1' = valid high for that pin. - 2. $V_{PP} = 12.75 \text{ V} \pm 0.25 \text{ V}.$ - 3. V_{CC} = 5 V±10% during programming and verification. 4. Bit is output on P0.4 (1 = 12x, 0 = 6x). - 5. Security bit one is output on P0.7. Security bit two is output on P0.6. - Security bit three is output on P0.3. - ALE/PROG receives 5 programming pulses for code data (also for user array; 5 pulses for encryption or security bits) while V_{PP} is held at 12.75 V. Each programming pulse is low for 100 μs ($\pm 10~\mu s$) and high for a minimum of 10 μs . Table 9. Program Security Bits for EPROM Devices | PROGRAM LOCK BITS ^{1, 2} | | | 31, 2 | | | | | |-----------------------------------|-----|-----|-------|--|--|--|--| | | SB1 | SB2 | SB3 | PROTECTION DESCRIPTION | | | | | 1 | U | U | U | No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.) | | | | | 2 | Р | U | U | MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on Reset, and further programming of the EPROM is disabled. | | | | | 3 | Р | Р | U | Same as 2, also verify is disabled. | | | | | 4 | Р | Р | Р | Same as 3, external execution is disabled. Internal data RAM is not accessible. | | | | #### NOTES: - 1. P programmed. U unprogrammed. - 2. Any other combination of the security bits is not defined. 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 ### ROM CODE SUBMISSION FOR 16K ROM DEVICES (87C51RB2) When submitting ROM code for the 16K ROM devices, the following must be specified: - 1. 16 kbyte user ROM data - 2. 64 byte ROM encryption key - 3. ROM security bits. | ADDRESS | CONTENT | BIT(S) | COMMENT | |----------------|---------|--------|---| | 0000H to 3FFFH | DATA | 7:0 | User ROM Data | | 4000H to 403FH | KEY | 7:0 | ROM Encryption Key
FFH = no encryption | | 4040H | SEC | 0 | ROM Security Bit 1
0 = enable security
1 = disable security | | 4040H | SEC | 1 | ROM Security Bit 2
0 = enable security
1 = disable security | Security Bit 1: When programmed, this bit has two effects on masked ROM parts: - 1. External MOVC is disabled, and - 2. EA is latched on Reset. Security Bit 2: When programmed, this bit inhibits Verify User ROM. NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled. If the ROM Code file does not include the options, the following information must be included with the ROM code. For each of the following, check the appropriate box, and send to Philips along with the code: | Security Bit #1: | ☐ Enabled | ☐ Disabled | |------------------|-----------|-----------------------------------| | Security Bit #2: | ☐ Enabled | ☐ Disabled | | Encryption: | □ No | ☐ Yes If Yes, must send key file. | 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### P87C51RA2/RB2/RC2/RD2 ### ROM CODE SUBMISSION FOR 32K ROM DEVICES (87C51RC2) When submitting ROM code for the 32K ROM devices, the following must be specified: - 1. 32 kbyte user ROM data - 2. 64 byte ROM encryption key - 3. ROM security bits. | ADDRESS | CONTENT | BIT(S) | COMMENT | |----------------|---------|--------|---| | 0000H to 7FFFH | DATA | 7:0 | User ROM Data | | 8000H to 803FH | KEY | 7:0 | ROM Encryption Key
FFH = no encryption | | 8040H | SEC | 0 | ROM Security Bit 1 0 = enable security 1 = disable security | | 8040H | SEC | 1 | ROM Security Bit 2
0 = enable security
1 = disable security | Security Bit 1: When programmed, this bit has two effects on masked ROM parts: - 1. External MOVC is disabled, and - 2. EA is latched on Reset. Security Bit 2: When programmed, this bit inhibits Verify User ROM. NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled. If the ROM Code file does not include the options, the following information must be included with the ROM code. For each of the following, check the appropriate box, and send to Philips along with the code: | Security Bit #1: | ☐ Enabled | ☐ Disabled | |------------------|-----------|-----------------------------------| | Security Bit #2: | ☐ Enabled | ☐ Disabled | | Encryption: | □ No | ☐ Yes If Yes, must send key file. | 80C51 8-bit microcontroller family 8KB/16KB/32KB/64KB OTP with 512B/1KB RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) ### DIP40: plastic dual in-line package; 40 leads (600 mil) SOT129-1 ### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UNIT | A
max. | A ₁
min. | A ₂
max. | b | b ₁ | c | D ⁽¹⁾ | E ⁽¹⁾ | е | e ₁ | L | ME | Мн | w | Z ⁽¹⁾
max. | |--------|-----------|------------------------|------------------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|----------------|----------------|-------|--------------------------| | mm | 4.7 | 0.51 | 4.0 | 1.70
1.14 | 0.53
0.38 | 0.36
0.23 | 52.50
51.50 | 14.1
13.7 | 2.54 | 15.24 | 3.60
3.05 | 15.80
15.24 | 17.42
15.90 | 0.254 | 2.25 | | inches | 0.19 | 0.020 | 0.16 | 0.067
0.045 | 0.021
0.015 | 0.014
0.009 | 2.067
2.028 | 0.56
0.54 | 0.10 | 0.60 | 0.14
0.12 | 0.62
0.60 | 0.69
0.63 | 0.01 | 0.089 | scale #### Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|--------|--------|-----------|------------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | EIAJ | | PROJECTION | ISSUE DATE | | | SOT129-1 | 051G08 | MO-015 | SC-511-40 | | | 95-01-14
99-12-27 | |