



Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Active                                                                |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                       |
| Core Size                  | 32-Bit Single-Core                                                    |
| Speed                      | 120MHz                                                                |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, LCD, POR, PWM, WDT     |
| Number of I/O              | 51                                                                    |
| Program Memory Size        | 128KB (128K x 8)                                                      |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                | -                                                                     |
| RAM Size                   | 68K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                           |
| Data Converters            | A/D 16x12b; D/A 2x12b                                                 |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                         |
| Package / Case             | 64-LQFP                                                               |
| Supplier Device Package    | 64-LQFP (10x10)                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205rbt6 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### Table 3. STM32F207xx features and peripheral counts (continued)

|                                | Peripherals            | STM32F207Vx | STM32F207Zx                         | STM32F207lx          |  |  |  |  |  |  |  |
|--------------------------------|------------------------|-------------|-------------------------------------|----------------------|--|--|--|--|--|--|--|
|                                | SPI/(I <sup>2</sup> S) |             | 3/(2) <sup>(2)</sup>                |                      |  |  |  |  |  |  |  |
|                                | I <sup>2</sup> C       |             | 3                                   |                      |  |  |  |  |  |  |  |
| Comm. interfaces               | USART<br>UART          |             | 4<br>2                              |                      |  |  |  |  |  |  |  |
|                                | USB OTG FS             |             | Yes                                 |                      |  |  |  |  |  |  |  |
|                                | USB OTG HS             |             | Yes                                 |                      |  |  |  |  |  |  |  |
| Comm. interfaces               | CAN                    | 2           |                                     |                      |  |  |  |  |  |  |  |
| Camera interface               |                        |             | Yes                                 |                      |  |  |  |  |  |  |  |
| GPIOs                          |                        | 82          | 82 114 14                           |                      |  |  |  |  |  |  |  |
| SDIO                           |                        |             | Yes                                 |                      |  |  |  |  |  |  |  |
| 12-bit ADC                     |                        | 3           |                                     |                      |  |  |  |  |  |  |  |
| Number of channe               | els                    | 16          | 24                                  | 24                   |  |  |  |  |  |  |  |
| 12-bit DAC<br>Number of channe | els                    |             | Yes<br>2                            |                      |  |  |  |  |  |  |  |
| Maximum CPU fre                | equency                |             | 120 MHz                             |                      |  |  |  |  |  |  |  |
| Operating voltage              |                        |             | 1.8 V to 3.6 V <sup>(3)</sup>       |                      |  |  |  |  |  |  |  |
| Operating temper               |                        |             | Ambient temperatures: -40 to +85 °C | /–40 to +105 °C      |  |  |  |  |  |  |  |
| Operating tempera              | alures                 |             | Junction temperature: -40 to ·      | + 125 °C             |  |  |  |  |  |  |  |
| Package                        |                        | LQFP100     | LQFP144                             | LQFP176/<br>UFBGA176 |  |  |  |  |  |  |  |

1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

On devices in WLCSP64+2 package, if IRROFF is set to V<sub>DD</sub>, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

### 3.11 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines.

### 3.12 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the system clock.

Several prescalers and PLLs allow the configuration of the three AHB buses, the highspeed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 120 MHz and the maximum frequency the high-speed APB domains is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.

The devices embed a dedicate PLL (PLLI2S) which allow to achieve audio class performance. In this case, the  $I^2S$  master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

### 3.13 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).

### 3.14 Power supply schemes

V<sub>DD</sub> = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V<sub>DD</sub> pins. On devices in WLCSP64+2 package, if IRROFF is set to V<sub>DD</sub>, the supply voltage can drop to 1.7 V when the device operates



There are three power modes configured by software when the regulator is ON:

- MR is used in the nominal regulation mode
- LPR is used in Stop modes

The LP regulator mode is configured by software when entering Stop mode.

• Power-down is used in Standby mode.

The Power-down mode is activated only when entering Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost).

Two external ceramic capacitors should be connected on  $V_{CAP_1}$  and  $V_{CAP_2}$  pin. Refer to *Figure 19: Power supply scheme* and *Table 16: VCAP1/VCAP2 operating conditions*.

All packages have the regulator ON feature.

### 3.16.2 Regulator OFF

This feature is available only on packages featuring the REGOFF pin. The regulator is disabled by holding REGOFF high. The regulator OFF mode allows to supply externally a V12 voltage source through V<sub>CAP 1</sub> and V<sub>CAP 2</sub> pins.

The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 19: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used at power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection at reset or pre-reset is required.

### Regulator OFF/internal reset ON

On WLCSP64+2 package, this mode is activated by connecting REGOFF pin to V<sub>DD</sub> and IRROFF pin to V<sub>SS</sub>. On UFBGA176 package, only REGOFF must be connected to V<sub>DD</sub> (IRROFF not available). In this mode,  $V_{DD}/V_{DDA}$  minimum value is 1.8 V.

The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage source through V<sub>CAP 1</sub> and V<sub>CAP 2</sub> pins, in addition to V<sub>DD</sub>.





Figure 6. Regulator OFF/internal reset ON

The following conditions must be respected:

- V<sub>DD</sub> should always be higher than V<sub>CAP\_1</sub> and V<sub>CAP\_2</sub> to avoid current injection between power domains.
- If the time for  $V_{CAP_1}$  and  $V_{CAP_2}$  to reach 1.08 V is faster than the time for  $V_{DD}$  to reach 1.8 V, then PA0 should be kept low to cover both conditions: until  $V_{CAP_1}$  and  $V_{CAP_2}$  reach 1.08 V and until  $V_{DD}$  reaches 1.8 V (see *Figure 8*).
- Otherwise, If the time for V<sub>CAP\_1</sub> and V<sub>CAP\_2</sub> to reach 1.08 V is slower than the time for V<sub>DD</sub> to reach 1.8 V, then PA0 should be asserted low externally (see *Figure 9*).
- If V<sub>CAP\_1</sub> and V<sub>CAP\_2</sub> go below 1.08 V and V<sub>DD</sub> is higher than 1.8 V, then a reset must be asserted on PA0 pin.

### **Regulator OFF/internal reset OFF**

On WLCSP64+2 package, this mode activated by connecting REGOFF to V<sub>SS</sub> and IRROFF to V<sub>DD</sub>. IRROFF cannot be activated in conjunction with REGOFF. This mode is available only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source through V<sub>CAP\_1</sub> and V<sub>CAP\_2</sub> pins. In this mode, the integrated power-on reset (POR)/ power-down reset (PDR) circuitry is disabled.

An external power supply supervisor should monitor both the external 1.2 V and the external  $V_{DD}$  supply voltage, and should maintain the device in reset mode as long as they remain below a specified threshold. The  $V_{DD}$  specified threshold, below which the device must be maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes allows to design low-power applications.



|        |           | Pi      | ns      |         |          |                                                      |          |               |      |                                                                                                               |                         |
|--------|-----------|---------|---------|---------|----------|------------------------------------------------------|----------|---------------|------|---------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP64 | WLCSP64+2 | LQFP100 | LQFP144 | LQFP176 | UFBGA176 | Pin name<br>(function after<br>reset) <sup>(1)</sup> | Pin type | I/O structure | Note | Alternate functions                                                                                           | Additional<br>functions |
| 22     | H5        | 31      | 42      | 52      | P3       | PA6                                                  | I/O      | FT            | (4)  | SPI1_MISO, TIM8_BKIN,<br>TIM13_CH1, DCMI_PIXCLK,<br>TIM3_CH1, TIM1_BKIN,<br>EVENTOUT                          | ADC12_IN6               |
| 23     | J7        | 32      | 43      | 53      | R3       | PA7                                                  | I/O      | FT            | (4)  | SPI1_MOSI, TIM8_CH1N,<br>TIM14_CH1, TIM3_CH2,<br>ETH_MII_RX_DV,<br>TIM1_CH1N,<br>ETH_RMII_CRS_DV,<br>EVENTOUT | ADC12_IN7               |
| 24     | H4        | 33      | 44      | 54      | N5       | PC4                                                  | I/O      | FT            | (4)  | ETH_RMII_RXD0,<br>ETH_MII_RXD0,<br>EVENTOUT                                                                   | ADC12_IN14              |
| 25     | G3        | 34      | 45      | 55      | P5       | PC5                                                  | I/O      | FT            | (4)  | ETH_RMII_RXD1,<br>ETH_MII_RXD1,<br>EVENTOUT                                                                   | ADC12_IN15              |
| 26     | J6        | 35      | 46      | 56      | R5       | PB0                                                  | I/O      | FT            | (4)  | TIM3_CH3, TIM8_CH2N,<br>OTG_HS_ULPI_D1,<br>ETH_MII_RXD2,<br>TIM1_CH2N, EVENTOUT                               | ADC12_IN8               |
| 27     | J5        | 36      | 47      | 57      | R4       | PB1                                                  | I/O      | FT            | (4)  | TIM3_CH4, TIM8_CH3N,<br>OTG_HS_ULPI_D2,<br>ETH_MII_RXD3,<br>TIM1_CH3N, EVENTOUT                               | ADC12_IN9               |
| 28     | J4        | 37      | 48      | 58      | M6       | PB2/BOOT1 (PB2)                                      | I/O      | FT            | -    | EVENTOUT                                                                                                      | -                       |
| -      | -         | -       | 49      | 59      | R6       | PF11                                                 | I/O      | FT            | -    | DCMI_D12, EVENTOUT                                                                                            | -                       |
| -      | -         | -       | 50      | 60      | P6       | PF12                                                 | I/O      | FT            | -    | FSMC_A6, EVENTOUT                                                                                             | -                       |
| -      | -         | -       | 51      | 61      | M8       | V <sub>SS</sub>                                      | S        |               | -    | -                                                                                                             | -                       |
| -      | -         | -       | 52      | 62      | N8       | V <sub>DD</sub>                                      | S        |               | -    | -                                                                                                             | -                       |
| -      | -         | -       | 53      | 63      | N6       | PF13                                                 | I/O      | FT            | -    | FSMC_A7, EVENTOUT                                                                                             | -                       |
| -      | -         | -       | 54      | 64      | R7       | PF14                                                 | 1/0      | FT            | -    | FSMC_A8, EVENTOUT                                                                                             | -                       |
| -      | -         | -       | 55      | 65      | P7       | PF15                                                 | 1/0      | FT            | -    | +SMC_A9, EVENTOUT                                                                                             | -                       |
| -      | -         | -       | 56      | 66      | N7       | PG0                                                  | 1/0      | FT            | -    | FSMC_A10, EVENTOUT                                                                                            | -                       |
| -      | -         | -       | 57      | 67      | M7       | PG1                                                  | I/O      | ŀΤ            | -    | FSMC_A11, EVENTOUT                                                                                            | -                       |



|        |           | Pi      | ins     |         |          |                                                      |          |               |      |                                                                                                                                                 |                         |
|--------|-----------|---------|---------|---------|----------|------------------------------------------------------|----------|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| LQFP64 | WLCSP64+2 | LQFP100 | LQFP144 | LQFP176 | UFBGA176 | Pin name<br>(function after<br>reset) <sup>(1)</sup> | Pin type | I/O structure | Note | Alternate functions                                                                                                                             | Additional<br>functions |
| -      | -         | -       | -       | 84      | N12      | PH7                                                  | I/O      | FT            | -    | I2C3_SCL, ETH_MII_RXD3,<br>EVENTOUT                                                                                                             | -                       |
| -      | -         | -       | -       | 85      | M12      | PH8                                                  | I/O      | FT            | -    | I2C3_SDA, DCMI_HSYNC,<br>EVENTOUT                                                                                                               | -                       |
| -      | -         | -       | -       | 86      | M13      | PH9                                                  | I/O      | FT            | -    | I2C3_SMBA, TIM12_CH2,<br>DCMI_D0, EVENTOUT                                                                                                      | -                       |
| -      | -         | -       | -       | 87      | L13      | PH10                                                 | I/O      | FT            | -    | TIM5_CH1, DCMI_D1,<br>EVENTOUT                                                                                                                  | -                       |
| -      | -         | -       | -       | 88      | L12      | PH11                                                 | I/O      | FT            | -    | TIM5_CH2, DCMI_D2,<br>EVENTOUT                                                                                                                  | -                       |
| -      | -         | -       | -       | 89      | K12      | PH12                                                 | I/O      | FT            | -    | TIM5_CH3, DCMI_D3,<br>EVENTOUT                                                                                                                  | -                       |
| -      | -         | -       | -       | 90      | H12      | V <sub>SS</sub>                                      | S        | -             | -    | -                                                                                                                                               | -                       |
| -      | -         | -       | -       | 91      | J12      | V <sub>DD</sub>                                      | S        | -             | -    | -                                                                                                                                               | -                       |
| 33     | J1        | 51      | 73      | 92      | P12      | PB12                                                 | I/O      | FT            | -    | SPI2_NSS, I2S2_WS,<br>I2C2_SMBA, USART3_CK,<br>TIM1_BKIN, CAN2_RX,<br>OTG_HS_ULPI_D5,<br>ETH_RMII_TXD0,<br>ETH_MII_TXD0,<br>OTG_HS_ID, EVENTOUT | -                       |
| 34     | H2        | 52      | 74      | 93      | P13      | PB13                                                 | I/O      | FT            | -    | SPI2_SCK, I2S2_SCK,<br>USART3_CTS, TIM1_CH1N,<br>CAN2_TX,<br>OTG_HS_ULPI_D6,<br>ETH_RMII_TXD1,<br>ETH_MII_TXD1, EVENTOUT                        | OTG_HS_<br>VBUS         |
| 35     | H1        | 53      | 75      | 94      | R14      | PB14                                                 | I/O      | FT            | -    | SPI2_MISO, TIM1_CH2N,<br>TIM12_CH1, OTG_HS_DM<br>USART3_RTS, TIM8_CH2N,<br>EVENTOUT                                                             | -                       |
| 36     | G1        | 54      | 76      | 95      | R15      | PB15                                                 | I/O      | FT            | -    | SPI2_MOSI, I2S2_SD,<br>TIM1_CH3N, TIM8_CH3N,<br>TIM12_CH2, OTG_HS_DP,<br>RTC_50Hz, EVENTOUT                                                     | -                       |
| -      | -         | 55      | 77      | 96      | P15      | PD8                                                  | I/O      | FT            | -    | FSMC_D13, USART3_TX,<br>EVENTOUT                                                                                                                | -                       |

Table 8. STM32F20x pin and ball definitions (continued)



|        |           | Pi      | ns      |         |          |                                                      |          |               |      |                                                                                                  |                         |
|--------|-----------|---------|---------|---------|----------|------------------------------------------------------|----------|---------------|------|--------------------------------------------------------------------------------------------------|-------------------------|
| LQFP64 | WLCSP64+2 | LQFP100 | LQFP144 | LQFP176 | UFBGA176 | Pin name<br>(function after<br>reset) <sup>(1)</sup> | Pin type | I/O structure | Note | Alternate functions                                                                              | Additional<br>functions |
| 38     | F2        | 64      | 97      | 116     | G15      | PC7                                                  | I/O      | FT            | -    | I2S3_MCK, TIM8_CH2,<br>SDIO_D7, USART6_RX,<br>DCMI_D1, TIM3_CH2,<br>EVENTOUT                     | -                       |
| 39     | F3        | 65      | 98      | 117     | G14      | PC8                                                  | I/O      | FT            | -    | TIM8_CH3,SDIO_D0,<br>TIM3_CH3, USART6_CK,<br>DCMI_D2, EVENTOUT                                   | -                       |
| 40     | D1        | 66      | 99      | 118     | F14      | PC9                                                  | I/O      | FT            | -    | I2S2_CKIN, I2S3_CKIN,<br>MCO2, TIM8_CH4,<br>SDIO_D1, I2C3_SDA,<br>DCMI_D3, TIM3_CH4,<br>EVENTOUT | -                       |
| 41     | E2        | 67      | 100     | 119     | F15      | PA8                                                  | I/O      | FT            | -    | MCO1, USART1_CK,<br>TIM1_CH1, I2C3_SCL,<br>OTG_FS_SOF, EVENTOUT                                  | -                       |
| 42     | E3        | 68      | 101     | 120     | E15      | PA9                                                  | I/O      | FT            | -    | USART1_TX, TIM1_CH2,<br>I2C3_SMBA, DCMI_D0,<br>EVENTOUT                                          | OTG_FS_<br>VBUS         |
| 43     | D3        | 69      | 102     | 121     | D15      | PA10                                                 | I/O      | FT            | -    | USART1_RX, TIM1_CH3,<br>OTG_FS_ID,DCMI_D1,<br>EVENTOUT                                           | -                       |
| 44     | D2        | 70      | 103     | 122     | C15      | PA11                                                 | I/O      | FT            | -    | USART1_CTS, CAN1_RX,<br>TIM1_CH4,OTG_FS_DM,<br>EVENTOUT                                          | -                       |
| 45     | C1        | 71      | 104     | 123     | B15      | PA12                                                 | I/O      | FT            | -    | USART1_RTS, CAN1_TX,<br>TIM1_ETR, OTG_FS_DP,<br>EVENTOUT                                         | -                       |
| 46     | В2        | 72      | 105     | 124     | A15      | PA13<br>(JTMS-SWDIO)                                 | I/O      | FT            | -    | JTMS-SWDIO, EVENTOUT                                                                             | -                       |
| 47     | C2        | 73      | 106     | 125     | F13      | V <sub>CAP_2</sub>                                   | S        | -             | -    | -                                                                                                | -                       |
| -      | B1        | 74      | 107     | 126     | F12      | V <sub>SS</sub>                                      | S        | -             | -    | -                                                                                                |                         |
| 48     | A8        | 75      | 108     | 127     | G13      | V <sub>DD</sub>                                      | S        | -             | -    | -                                                                                                | -                       |
| -      | -         | -       | -       | 128     | E12      | PH13                                                 | I/O      | FT            | -    | TIM8_CH1N, CAN1_TX,<br>EVENTOUT                                                                  | -                       |
| -      | -         | -       | -       | 129     | E13      | PH14                                                 | I/O      | FT            | -    | TIM8_CH2N, DCMI_D4,<br>EVENTOUT                                                                  | -                       |

| Table 8. STM32F20x | pin and ball definition | s (continued)  |
|--------------------|-------------------------|----------------|
|                    |                         | 0 (0011011000) |



| S  |
|----|
| 22 |
| ĸ  |

# DocID15818 Rev 13

|        |                        | AF0  | AF1    | AF2      | AF3          | AF4            | AF5            | AF6                  | AF7        | AF8                | AF9                       | AF10                | AF11                          | AF12                 | AF13    |       |          |
|--------|------------------------|------|--------|----------|--------------|----------------|----------------|----------------------|------------|--------------------|---------------------------|---------------------|-------------------------------|----------------------|---------|-------|----------|
|        | Port                   | SYS  | TIM1/2 | TIM3/4/5 | TIM8/9/10/11 | I2C1/I2C2/I2C3 | SPI1/SPI2/I2S2 | SPI3/I2S3            | USART1/2/3 | UART4/5/<br>USART6 | CAN1/CAN2/<br>TIM12/13/14 | OTG_FS/ OTG_HS      | ЕТН                           | FSMC/SDIO/<br>OTG_HS | DCMI    | AF014 | AF15     |
|        | PC0                    | -    | -      | -        | -            | -              | -              | -                    | -          | -                  | -                         | OTG_HS_ULPI_<br>STP | -                             | -                    | -       | -     | EVENTOUT |
|        | PC1                    | -    | -      | -        | -            | -              | -              | -                    | -          | -                  | -                         | -                   | ETH_MDC                       | -                    | -       | -     | EVENTOUT |
|        | PC2                    | -    | -      | -        | -            | -              | SPI2_MISO      | -                    | -          | -                  | -                         | OTG_HS_ULPI_<br>DIR | ETH_MII_TXD2                  | -                    | -       | -     | EVENTOUT |
|        | PC3                    | -    | -      | -        | -            | -              | SPI2_MOSI      | -                    | -          | -                  | -                         | OTG_HS_ULPI_<br>NXT | ETH<br>_MII_TX_CLK            | -                    | -       | -     | EVENTOUT |
|        | PC4                    | -    | -      | -        | -            | -              | -              | -                    | -          | -                  | -                         | -                   | ETH_MII_RXD0<br>ETH_RMII_RXD0 | -                    | -       | -     | EVENTOUT |
|        | PC5                    | -    | -      | -        | -            | -              | -              | -                    | -          | -                  | -                         | -                   | ETH_MII_RXD1<br>ETH_RMII_RXD1 | -                    | -       | -     | EVENTOUT |
|        | PC6                    | -    | -      | TIM3_CH1 | TIM8_CH1     | -              | I2S2_MCK       | -                    | -          | USART6_TX          | -                         | -                   | -                             | SDIO_D6              | DCMI_D0 | -     | EVENTOUT |
|        | PC7                    | -    | -      | TIM3_CH2 | TIM8_CH2     | -              | -              | I2S3_MCK             | -          | USART6_RX          | -                         | -                   | -                             | SDIO_D7              | DCMI_D1 | -     | EVENTOUT |
| Port C | PC8                    | -    | -      | TIM3_CH3 | TIM8_CH3     | -              | -              | -                    | -          | USART6_CK          | -                         | -                   | -                             | SDIO_D0              | DCMI_D2 | -     | EVENTOUT |
|        | PC9                    | MCO2 | -      | TIM3_CH4 | TIM8_CH4     | I2C3_SDA       | I2S2_CKIN      | I2S3_CKIN            | -          | -                  | -                         | -                   | -                             | SDIO_D1              | DCMI_D3 | -     | EVENTOUT |
|        | PC10                   | -    | -      | -        | -            | -              | -              | SPI3_SCK<br>I2S3_SCK | USART3_TX  | UART4_TX           | -                         | -                   | -                             | SDIO_D2              | DCMI_D8 | -     | EVENTOUT |
|        | PC11                   | -    | -      | -        | -            | -              | -              | SPI3_MISO            | USART3_RX  | UART4_RX           | -                         | -                   | -                             | SDIO_D3              | DCMI_D4 | -     | EVENTOUT |
|        | PC12                   | -    | -      | -        | -            | -              | -              | SPI3_MOSI<br>I2S3_SD | USART3_CK  | UART5_TX           | -                         | -                   | -                             | SDIO_CK              | DCMI_D9 | -     | EVENTOUT |
|        | PC13                   | -    | -      | -        | -            | -              | -              | -                    | -          | -                  | -                         | -                   | -                             | -                    | -       | -     | EVENTOUT |
|        | PC14-<br>OSC32_IN      | -    | -      | -        | -            | -              | -              | -                    | -          | -                  | -                         | -                   | -                             | -                    | -       | -     | EVENTOUT |
|        | PC15-<br>OSC32_OU<br>T | -    | -      | -        | -            | -              | -              | -                    | -          | -                  | -                         | -                   | -                             | -                    | -       | -     | EVENTOUT |

Table 10. Alternate function mapping (continued)

### Typical and maximum current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to f<sub>HCLK</sub> frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz and 3 wait states from 90 to 120 MHz).
- When the peripherals are enabled HCLK is the system clock, f<sub>PCLK1</sub> = f<sub>HCLK</sub>/4, and f<sub>PCLK2</sub> = f<sub>HCLK</sub>/2, except is explicitly mentioned.
- The maximum values are obtained for  $V_{DD}$  = 3.6 V and maximum ambient temperature (T<sub>A</sub>), and the typical values for T<sub>A</sub>= 25 °C and V<sub>DD</sub> = 3.3 V unless otherwise specified.

# Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM <sup>(1)</sup>

| Symbol      | Baramatar      | Conditions                                                             |                       | Тур                    | Ма                     | Unit                    |      |
|-------------|----------------|------------------------------------------------------------------------|-----------------------|------------------------|------------------------|-------------------------|------|
| Symbol      | Farameter      | Conditions                                                             | HCLK                  | T <sub>A</sub> = 25 °C | T <sub>A</sub> = 85 °C | T <sub>A</sub> = 105 °C | Unit |
|             |                |                                                                        | 120 MHz               | 49                     | 63                     | 72                      |      |
|             |                |                                                                        | 90 MHz                | 38                     | 51                     | 61                      |      |
|             | Supply current |                                                                        | 60 MHz                | 26                     | 39                     | 49                      |      |
|             |                | (3)                                                                    | 30 MHz                | 14                     | 27                     | 37                      |      |
|             |                | External clock <sup>(3)</sup> , all peripherals enabled <sup>(4)</sup> | 25 MHz                | 11                     | 24                     | 34                      |      |
|             |                |                                                                        | 16 MHz <sup>(5)</sup> | 8                      | 21                     | 30                      |      |
|             |                |                                                                        | 8 MHz                 | 5                      | 17                     | 27                      | mA   |
|             |                |                                                                        | 4 MHz                 | 3                      | 16                     | 26                      |      |
| 1           |                |                                                                        | 2 MHz                 | 2                      | 15                     | 25                      |      |
| <b>I</b> DD | in Run mode    |                                                                        | 120 MHz               | 21                     | 34                     | 44                      |      |
|             |                |                                                                        | 90 MHz                | 17                     | 30                     | 40                      |      |
|             |                |                                                                        | 60 MHz                | 12                     | 25                     | 35                      |      |
|             |                | (3)                                                                    | 30 MHz                | 7                      | 20                     | 30                      |      |
|             |                | External clock <sup>(3)</sup> , all<br>peripherals disabled            | 25 MHz                | 5                      | 18                     | 28                      |      |
|             |                | P -                                                                    | 16 MHz <sup>(5)</sup> | 4.0                    | 17.0                   | 27.0                    | -    |
|             |                |                                                                        | 8 MHz                 | 2.5                    | 15.5                   | 25.5                    |      |
|             |                |                                                                        | 4 MHz                 | 2.0                    | 14.7                   | 24.8                    |      |
|             |                |                                                                        | 2 MHz                 | 1.6                    | 14.5                   | 24.6                    |      |

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed by characterization, tested in production at  $V_{DD}$  max and  $f_{HCLK}$  max with peripherals enabled.

3. External clock is 4 MHz and PLL is on when  $f_{HCLK}$  > 25 MHz.

4. When the ADC is on (ADON bit set in the ADC\_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. In this case HCLK = system clock/2.





Figure 23. Typical current consumption vs. temperature, Run mode, code with data processing running from RAM, and peripherals ON

Figure 24. Typical current consumption vs. temperature, Run mode, code with data processing running from RAM, and peripherals OFF







Figure 34. ACC<sub>HSI</sub> versus temperature

### Low-speed internal (LSI) RC oscillator

| Table 33. LS | l oscillator | characteristics | (1) |
|--------------|--------------|-----------------|-----|
|--------------|--------------|-----------------|-----|

| Symbol                              | Parameter                        | Min | Тур | Мах | Unit |
|-------------------------------------|----------------------------------|-----|-----|-----|------|
| f <sub>LSI</sub> <sup>(2)</sup>     | Frequency                        | 17  | 32  | 47  | kHz  |
| t <sub>su(LSI)</sub> <sup>(3)</sup> | LSI oscillator startup time      | -   | 15  | 40  | μs   |
| I <sub>DD(LSI)</sub> <sup>(3)</sup> | LSI oscillator power consumption | -   | 0.4 | 0.6 | μA   |

1.  $V_{DD}$  = 3 V,  $T_A$  = -40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization results, not tested in production.

3. Guaranteed by design, not tested in production.





Figure 35. ACC<sub>LSI</sub> versus temperature

### 6.3.10 PLL characteristics

The parameters given in *Table 34* and *Table 35* are derived from tests performed under temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 14*.

| Symbol                 | Parameter                             | Conditions         | Min                 | Тур | Мах                 | Unit |
|------------------------|---------------------------------------|--------------------|---------------------|-----|---------------------|------|
| f <sub>PLL_IN</sub>    | PLL input clock <sup>(1)</sup>        | -                  | 0.95 <sup>(2)</sup> | 1   | 2.10 <sup>(2)</sup> | MHz  |
| f <sub>PLL_OUT</sub>   | PLL multiplier output clock           | -                  | 24                  | -   | 120                 | MHz  |
| f <sub>PLL48_OUT</sub> | 48 MHz PLL multiplier output<br>clock | -                  | -                   | -   | 48                  | MHz  |
| f <sub>VCO_OUT</sub>   | PLL VCO output                        | -                  | 192                 | -   | 432                 | MHz  |
| t <sub>LOCK</sub>      | PLL lock time                         | VCO freq = 192 MHz | 75                  | -   | 200                 | 116  |
|                        |                                       | VCO freq = 432 MHz | 100                 | -   | 300                 | μο   |

Table 34. Main PLL characteristics



| Symbol                                     | Paran                                                            | Parameter                                                        |                   | Min | Тур | Мах | Unit |
|--------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------|-----|-----|-----|------|
| Weak pull-up<br>R <sub>PU</sub> equivalent | All pins<br>except for<br>PA10/PB12<br>(OTG_FS_ID,<br>OTG_HS_ID) | $V_{IN} = V_{SS}$                                                | 30                | 40  | 50  |     |      |
|                                            |                                                                  | PA10/PB12<br>(OTG_FS_ID,<br>OTG_HS_ID)                           | -                 | 7   | 10  | 14  | kO   |
| R <sub>PD</sub>                            | Weak pull-down<br>equivalent<br>resister <sup>(7)</sup>          | All pins<br>except for<br>PA10/PB12<br>(OTG_FS_ID,<br>OTG_HS_ID) | $V_{IN} = V_{DD}$ | 30  | 40  | 50  | K22  |
|                                            |                                                                  | PA10/PB12<br>(OTG_FS_ID,<br>OTG_HS_ID)                           | -                 | 7   | 10  | 14  |      |
| C <sub>IO</sub> <sup>(8)</sup>             | I/O pin capacitance                                              |                                                                  | -                 | -   | 5   | -   | pF   |

Table 46. I/O static characteristics (continued)

1. Guaranteed by design, not tested in production.

2. Guaranteed by tests in production.

3. With a minimum of 200 mV.

- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 45: I/O current injection susceptibility
- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45: I/O current injection susceptibility
- 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 38*.



being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for  $I_{INJ(PIN)}$  and  $\Sigma I_{INJ(PIN)}$  in Section 6.3.16 does not affect the ADC accuracy.





- Example of an actual transfer curve 1.
- 2. Ideal transfer curve
- End point correlation line. 3.
- $E_T$  = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. 4. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.





 $C_{parasitic}$  represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high  $C_{parasitic}$  value downgrades conversion accuracy. To remedy this,  $f_{ADC}$  should be reduced. 2.



Refer to Table 66 for the values of  $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$  and  $\mathsf{C}_{ADC}$ 1.

| Symbol                     | Parameter                                    | Min | Max | Unit |
|----------------------------|----------------------------------------------|-----|-----|------|
| t <sub>d(CLKL-NWEL)</sub>  | FSMC_CLK low to FSMC_NWE low                 | -   | 1   | ns   |
| t <sub>d(CLKL-NWEH)</sub>  | FSMC_CLK low to FSMC_NWE high                | 0   | -   | ns   |
| t <sub>d(CLKL-ADIV)</sub>  | FSMC_CLK low to FSMC_AD[15:0] invalid        | 0   | -   | ns   |
| t <sub>d(CLKL-DATA</sub> ) | FSMC_A/D[15:0] valid data after FSMC_CLK low | -   | 2   | ns   |
| t <sub>d(CLKL-NBLH)</sub>  | FSMC_CLK low to FSMC_NBL high                | 0.5 | -   | ns   |

Table 77. Synchronous multiplexed PSRAM write timings<sup>(1)(2)</sup> (continued)

1. C<sub>L</sub> = 30 pF.

2. Guaranteed by characterization results, not tested in production.



### Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings

| Table 78. Synchronous non-multiplexed NOR/PSRAM read | timinas <sup>(1)(2)</sup> |
|------------------------------------------------------|---------------------------|
| Table 70. Oynemonous non-maniplexed North Ortam read | unnings                   |

| Symbol                     | Parameter                             | Min                | Max | Unit |
|----------------------------|---------------------------------------|--------------------|-----|------|
| t <sub>w(CLK)</sub>        | FSMC_CLK period                       | 2T <sub>HCLK</sub> | -   | ns   |
| t <sub>d(CLKL-NExL)</sub>  | FSMC_CLK low to FSMC_NEx low (x=02)   | -                  | 0   | ns   |
| t <sub>d(CLKL-NExH)</sub>  | FSMC_CLK low to FSMC_NEx high (x= 02) | 1                  | -   | ns   |
| t <sub>d(CLKL-NADVL)</sub> | FSMC_CLK low to FSMC_NADV low         | -                  | 2.5 | ns   |





Figure 65. PC Card/CompactFlash controller waveforms for common memory read access

1. FSMC\_NCE4\_2 remains high (inactive during 8-bit access.







### 7.7 Thermal characteristics

The maximum chip-junction temperature,  $T_{\rm J}$  max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T<sub>A</sub> max is the maximum ambient temperature in °C,
- $\Theta_{JA}$  is the package junction-to-ambient thermal resistance, in ° C/W,
- P<sub>D</sub> max is the sum of P<sub>INT</sub> max and P<sub>I/O</sub> max (P<sub>D</sub> max = P<sub>INT</sub> max + P<sub>I/O</sub>max),
- P<sub>INT</sub> max is the product of I<sub>DD</sub> and V<sub>DD</sub>, expressed in Watts. This is the maximum chip internal power.

P<sub>I/O</sub> max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$ 

taking into account the actual V\_{OL} / I\_{OL} and V\_{OH} / I\_{OH} of the I/Os at low and high level in the application.

| Symbol          | Parameter                                                                         | Value | Unit   |
|-----------------|-----------------------------------------------------------------------------------|-------|--------|
|                 | Thermal resistance junction-ambient<br>LQFP 64 - 10 × 10 mm / 0.5 mm pitch        | 45    |        |
| Θ <sub>JA</sub> | Thermal resistance junction-ambient<br>WLCSP64+2 - 0.400 mm pitch                 | 51    | °C /// |
|                 | Thermal resistance junction-ambient<br>LQFP100 - 14 × 14 mm / 0.5 mm pitch        | 46    |        |
|                 | Thermal resistance junction-ambient<br>LQFP144 - 20 × 20 mm / 0.5 mm pitch        | 40    | C/W    |
|                 | <b>Thermal resistance junction-ambient</b><br>LQFP176 - 24 × 24 mm / 0.5 mm pitch | 38    |        |
|                 | Thermal resistance junction-ambient<br>UFBGA176 - 10× 10 mm / 0.5 mm pitch        | 39    |        |

| Table 95 | . Package | thermal | characteristics |
|----------|-----------|---------|-----------------|
|----------|-----------|---------|-----------------|

### **Reference document**

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.



## 8 Part numbering

| Table 96. Ordering informati                     | on scheme |     |   |   |    |        |
|--------------------------------------------------|-----------|-----|---|---|----|--------|
| Example:                                         | STM32 F   | 205 | R | Е | те | 6 Vxxx |
| Device family                                    |           |     |   |   |    |        |
| STM22 - ADM based 32 bit microcentroller         |           |     |   |   |    |        |
| STNISZ – ARIVI-based Sz-bit microcontroller      |           |     |   |   |    |        |
| Product type                                     |           |     |   |   |    |        |
| F = general-purpose                              |           |     |   |   |    |        |
| Device subfamily                                 |           |     |   |   |    |        |
| 205 = STM32F20x, connectivity                    |           |     |   |   |    |        |
| 207= STM32F20x, connectivity, camera interface,  |           |     |   |   |    |        |
| Ethernet                                         |           |     |   |   |    |        |
|                                                  |           |     |   |   |    |        |
| Pin count                                        |           |     |   |   |    |        |
| R = 64 pins or 66 pins <sup>(1)</sup>            |           |     |   |   |    |        |
| V = 100 pins                                     |           |     |   |   |    |        |
| Z = 144 pins                                     |           |     |   |   |    |        |
| I = 176 pins                                     |           |     |   |   |    |        |
|                                                  |           |     |   |   |    |        |
| Flash memory size                                |           |     |   |   |    |        |
| B = 128 Kbytes of Flash memory                   |           |     |   |   |    |        |
| C = 256 Kbytes of Flash memory                   |           |     |   |   |    |        |
| E = 512 Kbytes of Flash memory                   |           |     |   |   |    |        |
| F = 768 Kbytes of Flash memory                   |           |     |   |   |    |        |
| G = 1024 Kbytes of Flash memory                  |           |     |   |   |    |        |
|                                                  |           |     |   |   |    |        |
| Package                                          |           |     |   |   |    |        |
| T = LQFP                                         |           |     |   |   |    |        |
| H = UFBGA                                        |           |     |   |   |    |        |
| Y = WLCSP                                        |           |     |   |   |    |        |
| Temperature range                                |           |     |   |   |    |        |
| 6 = Industrial temperature range, -40 to 85 °C.  |           |     |   |   |    |        |
| 7 = Industrial temperature range, -40 to 105 °C. |           |     |   |   |    |        |
| Software option                                  |           |     |   |   |    |        |
| Internal code or Blank                           |           |     |   |   |    |        |
| Options                                          |           |     |   |   |    |        |

xxx = programmed parts TR = tape and reel

1. The 66 pins is available on WLCSP package only.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.



| Date        | Revision          | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29-Oct-2012 | 10<br>(continued) | Replaced t <sub>d(CLKL-NOEL)</sub> by t <sub>d(CLKH-NOEL)</sub> in Table 76: Synchronous<br>multiplexed NOR/PSRAM read timings, Table 78: Synchronous non-<br>multiplexed NOR/PSRAM read timings, Figure 61: Synchronous<br>multiplexed NOR/PSRAM read timings and Figure 63: Synchronous<br>non-multiplexed NOR/PSRAM read timings.<br>Added Figure 87: LQFP176 recommended footprint.<br>Added Note 2 below Figure 86: Regulator OFF/internal reset ON.<br>Updated device subfamily in Table 96: Ordering information scheme.<br>Remove reference to note 2 for USB IOTG FS in Table 101: Main<br>applications versus package for STM32F2xxx microcontrollers. |

| Table 97. | Document revisio | on history | (continued) |
|-----------|------------------|------------|-------------|
|           | Document revisit |            | (continued) |



| Date | Revision      | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date | Revision   11 | Changes   In the whole document, updated notes related to WLCSP64+2 usage with IRROFF set to V <sub>DD</sub> . Updated Section 3.16.1: Regulator ON and Section 3.16: Power supply supervisor, Section 3.16.1: Regulator ON and Section 3.16: Regulator OFF. Added Section 3.16.3: Regulator ON/OFF and internal reset ON/OFF availability. Added note related to WLCSP64+2 package.   Restructured RTC features and added reference clock detection in Section 3.17: Real-time clock (RTC), backup SRAM and backup registers.   Added note indicating the package view below Figure 10: STM32F20X LQFP64 pinout, Figure 12: STM32F20X LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout, and Figure 14: STM32F20x LQFP176 pinout.   Added Table 7: Legend/abbreviations used in the pinout table. Table 8: STM32F20x pin and ball definitions: content reformatted; removed indexes on V <sub>SS</sub> and V <sub>DD</sub> ; updated PA4, PA5, PA6, PC4, BOOT0; replaced DCMI_12 by DCMI_D12, TIM8_CHIN by TIM8_CH1N, ETH_MII_RX_D0 by ETH_MII_RXD0, ETH_MII_RXD0, ETH_MII_RXD0, ETH_MII_RXD1, and RMII_CRS_DV by ETH_RMII_RXD1, ETH_RMII_RXD1, and RMII_CRS_DV by ETH_RMII_RXD1, ETH_RMII_RXD1, and RMII_CRS_DV by ETH_RMII_RXD1, added EVENTOUT as AF15 alternated function for PC13, PC14, PC15, PH0, PH1, and PI8.   Updated figure 17: Pin loading conditions and Figure 18: Pin input voltage.   Added V <sub>IN</sub> in Table 14: General operating conditions.   Removed note applying to V <sub>POR/PER</sub> minimum value in Table 19: Embedded reset and power control block characteristics.   Updated Power control block characteristics.   Updated conditions in Table 41: EMS characteristics. |

