

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	100K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F205xx features and peripheral counts	14
Table 3.	STM32F207xx features and peripheral counts	15
Table 4.	Regulator ON/OFF and internal reset ON/OFF availability	
Table 5.	Timer feature comparison	32
Table 6.	USART feature comparison	35
Table 7.	Legend/abbreviations used in the pinout table	
Table 8.	STM32F20x pin and ball definitions	
Table 9.	FSMC pin definition	
Table 10.	Alternate function mapping	
Table 11.	Voltage characteristics	
Table 12.	Current characteristics	
Table 13.	Thermal characteristics	71
Table 14.	General operating conditions	
Table 15.	Limitations depending on the operating power supply range	
Table 16.	VCAP1/VCAP2 operating conditions	
Table 17.	Operating conditions at power-up / power-down (regulator ON)	
Table 18.	Operating conditions at power-up / power-down (regulator OFF)	
Table 19.	Embedded reset and power control block characteristics.	
Table 20.	Typical and maximum current consumption in Run mode, code with data processing	
	running from Flash memory (ART accelerator enabled) or RAM	78
Table 21.	Typical and maximum current consumption in Run mode, code with data processing	-
	running from Flash memory (ART accelerator disabled)	79
Table 22.	Typical and maximum current consumption in Sleep mode	
Table 23.	Typical and maximum current consumptions in Stop mode	
Table 24.	Typical and maximum current consumptions in Standby mode	
Table 25.	Typical and maximum current consumptions in V _{BAT} mode	
Table 26.	Peripheral current consumption	
Table 27.	Low-power mode wakeup timings	
Table 28.	High-speed external user clock characteristics.	
Table 29.	Low-speed external user clock characteristics	
Table 30.	HSE 4-26 MHz oscillator characteristics	
Table 31.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	
Table 32.	HSI oscillator characteristics	
Table 33.	LSI oscillator characteristics	
Table 34.	Main PLL characteristics.	
Table 35.	PLLI2S (audio PLL) characteristics	
Table 36.	SSCG parameters constraint	
Table 37.	Flash memory characteristics	
Table 38.	Flash memory programming.	
Table 39.	Flash memory programming with V_{PP}	
Table 40.	Flash memory endurance and data retention	
Table 41.	EMS characteristics	
Table 42.	EMI characteristics	
Table 43.	ESD absolute maximum ratings	
Table 44.	Electrical sensitivities	
Table 45.	I/O current injection susceptibility	
Table 46.	I/O static characteristics	

There are three power modes configured by software when the regulator is ON:

- MR is used in the nominal regulation mode
- LPR is used in Stop modes

The LP regulator mode is configured by software when entering Stop mode.

• Power-down is used in Standby mode.

The Power-down mode is activated only when entering Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost).

Two external ceramic capacitors should be connected on V_{CAP_1} and V_{CAP_2} pin. Refer to *Figure 19: Power supply scheme* and *Table 16: VCAP1/VCAP2 operating conditions*.

All packages have the regulator ON feature.

3.16.2 Regulator OFF

This feature is available only on packages featuring the REGOFF pin. The regulator is disabled by holding REGOFF high. The regulator OFF mode allows to supply externally a V12 voltage source through V_{CAP 1} and V_{CAP 2} pins.

The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 19: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used at power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection at reset or pre-reset is required.

Regulator OFF/internal reset ON

On WLCSP64+2 package, this mode is activated by connecting REGOFF pin to V_{DD} and IRROFF pin to V_{SS}. On UFBGA176 package, only REGOFF must be connected to V_{DD} (IRROFF not available). In this mode, V_{DD}/V_{DDA} minimum value is 1.8 V.

The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage source through V_{CAP 1} and V_{CAP 2} pins, in addition to V_{DD}.

3.20 Timers and watchdogs

The STM32F20x devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 5 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock	Max timer clock
Advanced- control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	60 MHz	120 MHz
General	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	30 MHz	60 MHz
purpose	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	30 MHz	60 MHz
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	30 MHz	60 MHz
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	60 MHz	120 MHz
General	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	60 MHz	120 MHz
purpose	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	30 MHz	60 MHz
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	30 MHz	60 MHz

 Table 5. Timer feature comparison

3.20.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control timer features are shared with those of the standard TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.20.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F20x devices (see *Table 5* for differences).

TIM2, TIM3, TIM4, TIM5

The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

They can also be used as simple time bases.

3.20.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

DocID15818 Rev 13

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping	
USART1	х	х	х	х	Х	х	1.87	7.5	APB2 (max. 60 MHz)	
USART2	х	х	х	х	х	х	1.87	3.75	APB1 (max. 30 MHz)	
USART3	х	х	х	х	х	х	1.87	3.75	APB1 (max. 30 MHz)	
UART4	х	-	х	-	х	-	1.87	3.75	APB1 (max. 30 MHz)	
UART5	х	-	х	-	х	-	3.75	3.75	APB1 (max. 30 MHz)	
USART6	х	х	х	х	х	х	3.75	7.5	APB2 (max. 60 MHz)	

 Table 6. USART feature comparison

3.23 Serial peripheral interface (SPI)

The STM32F20x devices feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, while SPI2 and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.24 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, in half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx interfaces can be served by the DMA controller.

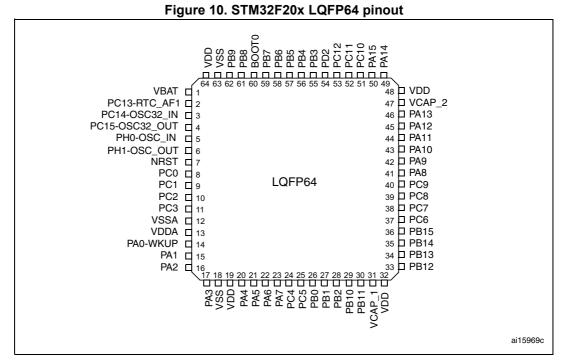
3.25 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

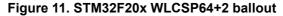
DocID15818 Rev 13

3.37 Serial wire JTAG debug port (SWJ-DP)

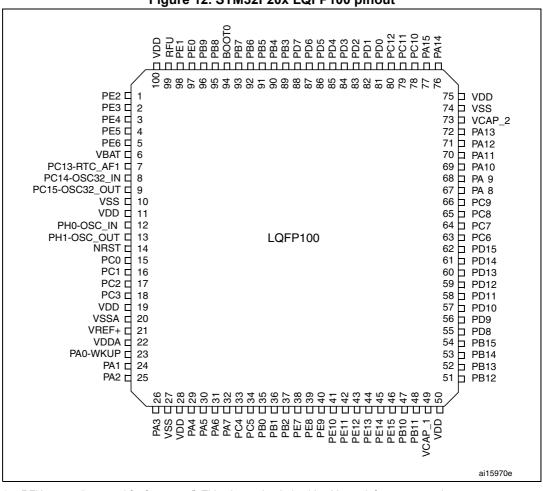
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.


3.38 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F20x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.


The Embedded Trace Macrocell operates with third party debugger software tools.

4 Pinouts and pin description


1. The above figure shows the package top view.

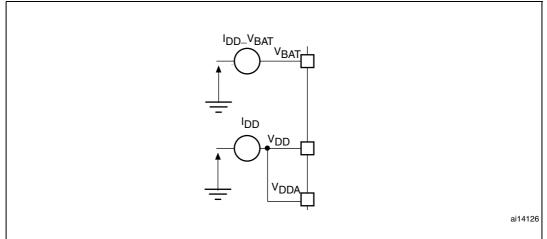
	1	2	3	4	5	6	7	8	9
А	PA14	PA15	PC12	PB3	PB5	PB7	PB9	VDD	V _{BAT}
В	VSS	PA13	PC10	PB4	PB6	BOOT0	PB8	PC13	PC14
С	PA12	VCAP_2	PC11				PD2	IRROFF	PC15
D	PC9	PA11	PA10				PC2	VSS	VDD
E	VDD	PA8	PA9				PA0	NRST	PH0- OSC_IN
F	VSS	PC7	PC8				VREF+	PC1	PH1- OSC_OUT
G	PB15	PC6	PC5				PA3	PC3	PC0
н	PB14	PB13	PB10	PC4	PA6	PA5	REGOFF	PA1	VSS_5
J	PB12	PB11	VCAP_1	PB2	PB1	PB0	PA7	PA4	PA2

1. The above figure shows the package top view.

1. RFU means "reserved for future use". This pin can be tied to $V_{\text{DD}}, V_{\text{SS}}$ or left unconnected.

2. The above figure shows the package top view.

Table 8. STM32	F20>	c pin	and	ball definitions


		Pi	ns			Table 8. STM32					
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	1	1	1	A2	PE2	I/O	FT	-	TRACECLK, FSMC_A23, ETH_MII_TXD3, EVENTOUT	-
-	-	2	2	2	A1	PE3	I/O	FT	-	TRACED0,FSMC_A19, EVENTOUT	-
-	-	3	3	3	B1	PE4	I/O	FT	-	TRACED1,FSMC_A20, DCMI_D4, EVENTOUT	-
-	-	4	4	4	B2	PE5	I/O	FT	-	TRACED2, FSMC_A21, TIM9_CH1, DCMI_D6, EVENTOUT	-
-	-	5	5	5	В3	PE6	I/O	FT	-	TRACED3, FSMC_A22, TIM9_CH2, DCMI_D7, EVENTOUT	-
1	A9	6	6	6	C1	V _{BAT}	S		-	-	-
-	-	-	-	7	D2	PI8	I/O	FT	(2)(3)	EVENTOUT	RTC_AF2
2	B8	7	7	8	D1	PC13	I/O	FT	(2)(3)	EVENTOUT	RTC_AF1
3	В9	8	8	9	E1	PC14/OSC32_IN (PC14)	I/O	FT	(2)(3)	EVENTOUT	OSC32_IN ⁽⁴⁾
4	C9	9	9	10	F1	PC15-OSC32_OUT (PC15)	I/O	FT	(2)(3)	EVENTOUT	OSC32_OUT ⁽⁴⁾
-	-	-	-	11	D3	PI9	I/O	FT	-	CAN1_RX,EVENTOUT	-
-	-	-	-	12	E3	PI10	I/O	FT	-	ETH_MII_RX_ER, EVENTOUT	-
-	-	-	-	13	E4	PI11	I/O	FT	-	OTG_HS_ULPI_DIR, EVENTOUT	-
-	-	-	-	14	F2	V _{SS}	S		-	-	-
-	-	-	-	15	F3	V _{DD}	S		-	-	-
-	-	-	10	16	E2	PF0	I/O	FT	-	FSMC_A0, I2C2_SDA, EVENTOUT	-
-	-	-	11	17	H3	PF1	I/O	FT	-	FSMC_A1, I2C2_SCL, EVENTOUT	-
-	-	-	12	18	H2	PF2	I/O	FT	-	FSMC_A2, I2C2_SMBA, EVENTOUT	-
-	-	-	13	19	J2	PF3	I/O	FT	(4)	FSMC_A3, EVENTOUT	ADC3_IN9

Pins											
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
22	H5	31	42	52	P3	PA6	I/O	FT	(4)	SPI1_MISO, TIM8_BKIN, TIM13_CH1, DCMI_PIXCLK, TIM3_CH1, TIM1_BKIN, EVENTOUT	ADC12_IN6
23	J7	32	43	53	R3	PA7	I/O	FT	(4)	SPI1_MOSI, TIM8_CH1N, TIM14_CH1, TIM3_CH2, ETH_MII_RX_DV, TIM1_CH1N, ETH_RMII_CRS_DV, EVENTOUT	ADC12_IN7
24	H4	33	44	54	N5	PC4	I/O	FT	(4)	ETH_RMII_RXD0, ETH_MII_RXD0, EVENTOUT	ADC12_IN14
25	G3	34	45	55	P5	PC5	I/O	FT	(4)	ETH_RMII_RXD1, ETH_MII_RXD1, EVENTOUT	ADC12_IN15
26	J6	35	46	56	R5	PB0	I/O	FT	(4)	TIM3_CH3, TIM8_CH2N, OTG_HS_ULPI_D1, ETH_MII_RXD2, TIM1_CH2N, EVENTOUT	ADC12_IN8
27	J5	36	47	57	R4	PB1	I/O	FT	(4)	TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, ETH_MII_RXD3, TIM1_CH3N, EVENTOUT	ADC12_IN9
28	J4	37	48	58	M6	PB2/BOOT1 (PB2)	I/O	FT	-	EVENTOUT	-
-	-	-	49	59	R6	PF11	I/O	FT	-	DCMI_D12, EVENTOUT	
-	-	-	50	60	P6	PF12	I/O	FT	-	FSMC_A6, EVENTOUT	-
-	-	-	51	61	M8	V _{SS}	S		-	-	-
-	-	-	52	62	N8	V _{DD}	S		-	-	-
-	-	-	53	63	N6	PF13	I/O	FT	-	FSMC_A7, EVENTOUT	-
-	-	-	54	64	R7	PF14	I/O	FT	-	FSMC_A8, EVENTOUT	-
-	-	-	55	65	P7	PF15	I/O	FT	-	FSMC_A9, EVENTOUT	-
-	-	-	56	66	N7	PG0	I/O	FT	-	FSMC_A10, EVENTOUT	-
-	-	-	57	67	M7	PG1	I/O	FT	-	FSMC_A11, EVENTOUT	-

6.1.7 Current consumption measurement

Figure 20. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} , V_{DD}) ⁽¹⁾	-0.3	4.0	
V	Input voltage on five-volt tolerant pin ⁽²⁾	V _{SS} -0.3	V _{DD} +4	V
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
V _{SSX} -V _{SS}	Variations between all the different ground pins	-	50	1110
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	naximum ectrical	-

Table 11. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

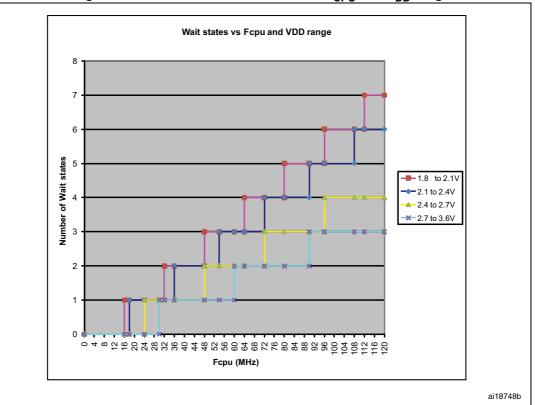


Figure 21. Number of wait states versus $f_{\mbox{CPU}}$ and $V_{\mbox{DD}}$ range

1. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range and IRROFF is set to V_{DD} .

6.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 16*.

1. Legend: ESR is the equivalent series resistance.

Table 16. VCAP1/VCAP2 operating conditions⁽¹⁾

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	2.2 µF
ESR	ESR of external capacitor	< 2 Ω

1. When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

	Peripheral ⁽¹⁾	Typical consumption at 25 °C	Unit
	SDIO	0.69	
	TIM1	1.06	
	TIM8	1.03	
	TIM9	0.58	
	TIM10	0.37	
4002	TIM11	0.39	m۸
APB2	ADC1 ⁽⁴⁾	2.13	mA
	ADC2 ⁽⁴⁾	2.04	
	ADC3 ⁽⁴⁾	2.12	
	SPI1	1.20	
	USART1	0.38	
	USART6	0.37	

 Table 26. Peripheral current consumption (continued)

1. External clock is 25 MHz (HSE oscillator with 25 MHz crystal) and PLL is on.

2. EN1 bit is set in DAC_CR register.

3. EN2 bit is set in DAC_CR register.

4. $f_{ADC} = f_{PCLK2}/2$, ADON bit set in ADC_CR2 register.

6.3.7 Wakeup time from low-power mode

The wakeup times given in *Table 27* is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Min ⁽¹⁾	Тур ⁽¹⁾	Max ⁽¹⁾	Unit
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep mode	-	1	-	μs
	Wakeup from Stop mode (regulator in Run mode)	-	13	-	
t _{WUSTOP} ⁽²⁾	Wakeup from Stop mode (regulator in low-power mode)	-	17	40	μs
	Wakeup from Stop mode (regulator in low-power mode and Flash memory in Deep power down mode)	-	110	-	F -
t _{WUSTDBY} ⁽²⁾⁽³⁾	Wakeup from Standby mode	260	375	480	μs

1. Guaranteed by characterization results, not tested in production.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

3. $t_{WUSTDBY}$ minimum and maximum values are given at 105 °C and –45 °C, respectively.

6.3.8 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 28* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	26	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	V_{SS}	-	$0.3V_{\text{DD}}$	v	
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
١L	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

 Table 28. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 29* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 29. Low-speed external use	r clock characteristics
----------------------------------	-------------------------

1. Guaranteed by design, not tested in production.

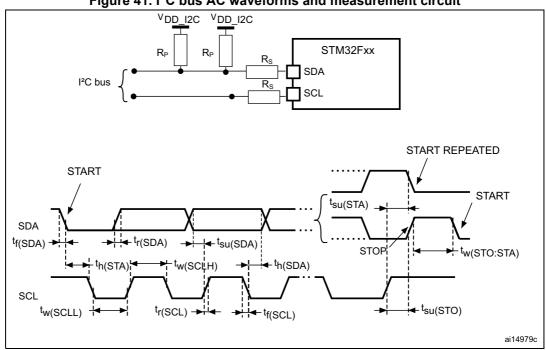


Figure 41. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. $V_{DD_{12C}}$ is the I²C bus power supply.

f (kU-)	I2C_CCR value
f _{SCL} (kHz)	R _P = 4.7 kΩ
400	0x8019
300	0x8021
200	0x8032
100	0x0096
50	0x012C
20	0x02EE

Table 53. SCL frequency (f_{PCLK1}= 30 MHz., V_{DD} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I²C speed,

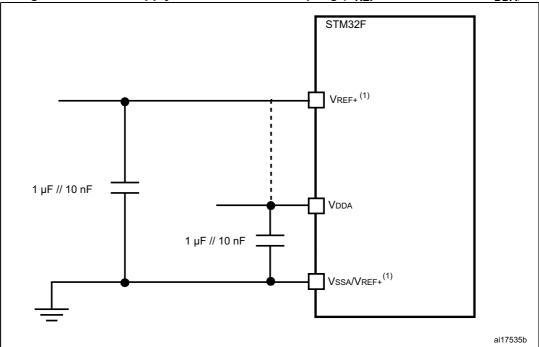
For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

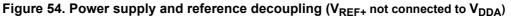
Symbol	Parameter Conditions		Min	Max	Unit
f _{CK} 1/t _{c(CK)}	I ² S clock frequency	Master, 16-bit data, audio frequency = 48 kHz, main clock disabled	1.23	1.24	MHz
0(01)		Slave	0	64F _S ⁽¹⁾	
t _{r(CK)} t _{f(CK)}	I^2S clock rise and fall time Capacitive load $C_L = 50 \text{ pF}$		-	(2)	
t _{v(WS)} ⁽³⁾	WS valid time	Master	0.3	-	
t _{h(WS)} ⁽³⁾	WS hold time	Master	0	-	
t _{su(WS)} ⁽³⁾	WS setup time	Slave	3	-	
t _{h(WS)} ⁽³⁾	WS hold time	Slave	0	-	•
t _{w(CKH)} (3) t _{w(CKL)} (3)	CK high and low time	Master f _{PCLK} = 30 MHz	396	-	•
$t_{su(SD_MR)}^{(3)}_{(3)}$ $t_{su(SD_SR)}^{(3)}$	Data input setup time	Master receiver Slave receiver	45 0	-	ns
$t_{h(SD_MR)}^{(3)(4)}_{(3)(4)} t_{h(SD_SR)}^{(3)(4)}$	Data input hold time	Master receiver: f _{PCLK} = 30 MHz, Slave receiver: f _{PCLK} = 30 MHz	13 0	-	
t _{v(SD_ST)} (3)(4)	Data output valid time	Slave transmitter (after enable edge)	-	30	*
t _{h(SD_ST)} ⁽³⁾	Data output hold time	Slave transmitter (after enable edge)	10	-	*
t _{v(SD_MT)} ⁽³⁾⁽⁴⁾	Data output valid time	Master transmitter (after enable edge)	-	6	1
t _{h(SD_MT)} ⁽³⁾	Data output hold time	Master transmitter (after enable edge)	0	-	1

Table 55. I²S characteristics

F_S is the sampling frequency. Refer to the I2S section of the STM32F20xxx/21xxx reference manual for more details. f_{CK} values reflect only the digital peripheral behavior which leads to a minimum of (I2SDIV/(2*I2SDIV+ODD), a maximum of (I2SDIV+ODD)/(2*I2SDIV+ODD) and F_S maximum values for each mode/condition.

2. Refer to Table 48: I/O AC characteristics.


3. Guaranteed by design, not tested in production.


4. Depends on $f_{PCLK}.$ For example, if f_{PCLK} =8 MHz, then T_{PCLK} = 1/f_{PLCLK} =125 ns.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 54* or *Figure 55*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

 V_{REF+} and V_{REF} inputs are both available on UFBGA176 package. V_{REF+} is also available on all packages except for LQFP64. When V_{REF+} and V_{REF} are not available, they are internally connected to V_{DDA} and V_{SSA}.

	Table 68. DAC characteristics (continued)							
Symbol	Parameter	Min	Тур	Max	Unit	Comments		
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output excursion		
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V	of the DAC.		
. (4)	DAC DC V _{REF} current consumption in quiescent	-	170	240	μA	With no load, worst code (0x800) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs		
I _{VREF+} ⁽⁴⁾	mode (Standby mode)	-	50	75	μ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs		
	DAC DC V _{DDA} current	-	280	380	μA	With no load, middle code (0x800) on the inputs		
I _{DDA} ⁽⁴⁾	consumption in quiescent mode ⁽³⁾	-	475	625	μA	With no load, worst code (0xF1C) at $V_{REF+} = 3.6 V$ in terms of DC consumption on the inputs		
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.		
consecutive code-1LSB)		-	-	±2	LSB	Given for the DAC in 12-bit configuration.		
	Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±1	LSB	Given for the DAC in 10-bit configuration.		
INL ⁽⁴⁾		-	-	±4	LSB	Given for the DAC in 12-bit configuration.		
	Offset error	-	-	±10	mV	-		
Offset ⁽⁴⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V		
	(0x800) and the ideal value = V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V_{REF+} = 3.6 V		
Gain error ⁽⁴⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration		
t _{SETTLING} ⁽⁴⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	3	6	μs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ		
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$		

Table 68. DAC characteristics (continued)

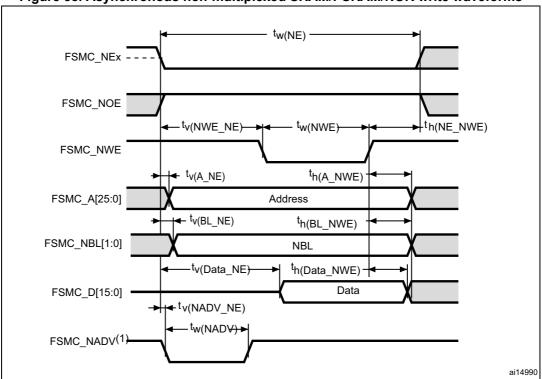


Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 73. A	Asynchronous non-multiplexed SRAM	M/PSRAM/NO	R write timin	gs ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	3T _{HCLK}	3T _{HCLK} + 4	ns
t _{v(NWE_NE})	FSMC_NEx low to FSMC_NWE low	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{w(NWE)}	FSMC_NWE low time	T _{HCLK} – 0.5	T _{HCLK} + 3	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	T _{HCLK}	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	T _{HCLK} - 3	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	T _{HCLK} – 1	-	ns
t _{v(Data_NE)}	Data to FSMC_NEx low to Data valid	-	T _{HCLK} + 5	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2	ns
t _{w(NADV)}	FSMC_NADV low time	-	T _{HCLK} + 1.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

7.2 WLCSP64+2 package information

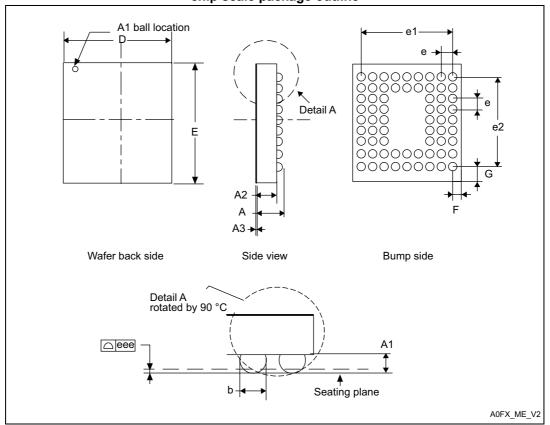


Figure 79. WLCSP64+2 - 66-ball, 3.639 x 3.971 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

Table 88. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale
package mechanical data

Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах	
А	0.540	0.570	0.600	0.0213	0.0224	0.0236	
A1	-	0.190	-	-	0.0075	-	
A2	-	0.380	-	-	0.0150	-	
A3	-	0.025	-	-	0.010	-	
b ⁽²⁾	0.240	0.270	0.300	0.0094	0.0106	0.0118	
D	3.604	3.939	3.674	0.1419	0.1551	0.1446	
E	3.936	3.971	4.006	0.1550	0.1563	0.1577	
е	-	0.400	-	-	0.0157	-	
e1	-	3.200	-	-	0.1260	-	
e2	-	3.200	-	-	0.1260	-	

