E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
---------	--

2 0 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	68K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205vbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9	Revis	ion history	169
8	Part r	numbering	168
	7.7	Thermal characteristics	167
	7.6	UFBGA176+25 package information	165
	7.5	LQFP176 package information	162
	7.4	LQFP144 package information	158

		Table	2. STM3	82F205	xx feat	ures a	nd perip	heral co	ounts	5					
	Peripherals		ST	/132F205R	Rx			STM32	F205V	x		S	TM32F2	05Zx	
Flash memory in	n Kbytes	128	256	512	768	1024	128	256	512 768 1024			256	512	768	1024
SRAM in Kbytes	System (SRAM1+SRAM2)	64 (48+16)				64 (48+16)	96 (80+16)	128 (112+16)			96 128 (80+16) (112+1		128 (112+16	3)	
	Backup			4					4				4		
FSMC memory of	controller	No Yes ⁽¹⁾													
Ethernet	No														
	General-purpose	10													
	Advanced-control							2							
Timers	Basic							2							
	IWDG		Yes												
	WWDG		Yes												
RTC								Yes							
Random numbei	r generator		Yes												
	SPI/(I ² S)	3/(2) ⁽²⁾													
	l ² C	3													
Comm. interfaces	USART UART	4 2													
interfaces	USB OTG FS	Yes													
	USB OTG HS	Yes													
	CAN	2													
Camera interface	e	No													
GPIOs			51 82 114												
SDIO		Yes													
12-bit ADC			3												
Number of chan	16 16 24														
12-bit DAC Number of chanı	nels	Yes 2													
Maximum CPU f	frequency						1	I20 MHz							
Operating voltag	e						1.8	V to 3.6 V ⁽³⁾							

5

14/182

Table 2. STM32F205xx features and peripheral counts (continued)

Peripherals	ST	M32F205Rx			STM32F205Vx	STM32F205Zx			
Operating temperatures	Ambient temperatures: -40 to +85 °C /-40 to +105 °C								
	Junction temperature: -40 to + 125 °C								
Package	LQFP64	LQFP64 WLCSP64 +2		FP64 CSP6 +2	LQFP100	LQFP144			

 For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

	Peripherals		STM3	2F207Vx				F207Zx		STM32F207Ix				
Flash memory in I	Kbytes	256	256 512 768 1024 256 512 768 1024							256	512	768	1024	
SRAM in Kbytes	System (SRAM1+SRAM2)	128 (112+16)												
	Backup		4											
FSMC memory co	ontroller		Yes ⁽¹⁾											
Ethernet								Ye	es					
	General-purpose	10												
	Advanced-control	2												
Timers	Basic	2												
	IWDG	Yes												
	WWDG	Yes												
RTC	1	Yes												
Random number	generator	Yes												

Table 3. STM32F207xx features and peripheral counts

3.11 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines.

3.12 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the system clock.

Several prescalers and PLLs allow the configuration of the three AHB buses, the highspeed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 120 MHz and the maximum frequency the high-speed APB domains is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.

The devices embed a dedicate PLL (PLLI2S) which allow to achieve audio class performance. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.13 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).

3.14 Power supply schemes

V_{DD} = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins. On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates

3.30 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S application. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I^2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output).

3.31 Digital camera interface (DCMI)

The camera interface is not available in STM32F205xx devices.

STM32F207xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw Bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

3.32 True random number generator (RNG)

All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers produced by an integrated analog circuit.

3.33 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O alternate function configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to 120 MHz that leads to a maximum I/O toggling speed of 60 MHz.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE3	PE2	PE1	PE0	PB8	PB5	PG14	PG13	PB4	PB3	PD7	PC12	PA15	PA14	PA13
в	PE4	PE5	PE6	PB9	PB7	PB6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
С	VBAT	PI7	PI6	PI5	VDD	RFU	VDD	VDD	VDD	PG9	PD5	PD1	PI3	Pl2	PA11
D	PC13- TAMP1	PI8- TAMP2	PI9	PI4	VSS	BOOT0	VSS	VSS	VSS	PD4	PD3	PD2	PH15	PI1	PA10
Е	PC14- OSC32_IN	PF0	PI10	PI11								PH13	PH14	P10	PA9
F	PC15- OSC32_OUT	VSS	VDD	PH2		VSS	VSS	VSS	VSS	VSS		VSS	VCAP_2	PC9	PA8
G	PH0- OSC_IN	VSS	VDD	PH3		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PC8	PC7
н	PH1- OSC_OUT	PF2	PF1	PH4		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PG8	PC6
J	NRST	PF3	PF4	PH5		VSS	VSS	VSS	VSS	VSS		VDD	VDD	PG7	PG6
к	PF7	PF6	PF5	VDD		VSS	VSS	VSS	VSS	VSS		PH12	PG5	PG4	PG3
L	PF10	PF9	PF8	REGOFF								PH11	PH10	PD15	PG2
м	VSSA	PC0	PC1	PC2	PC3	PB2	PG1	VSS	VSS	VCAP_1	PH6	PH8	PH9	PD14	PD13
N	VREF-	PA1	PA0- WKUP	PA4	PC4	PF13	PG0	VDD	VDD	VDD	PE13	PH7	PD12	PD11	PD10
Ρ	VREF+	PA2	PA6	PA5	PC5	PF12	PF15	PE8	PE9	PE11	PE14	PB12	PB13	PD9	PD8
R	VDDA	PA3	PA7	PB1	PB0	PF11	PF14	PE7	PE10	PE12	PE15	PB10	PB11	PB14	PB15

Figure 15. STM32F20x UFBGA176 ballout

1. RFU means "reserved for future use". This pin can be tied to $V_{\text{DD}}, V_{\text{SS}}$ or left unconnected.

2. The above figure shows the package top view.

	Table 7. Legend/abbreviations used in the p	inout table
--	---	-------------

Name	Abbreviation	Definition								
Pin name		specified in brackets below the pin name, the pin function during and after as the actual pin name								
	S Supply pin									
Pin type	I Input only pin									
	I/O	I/O Input/ output pin								
	FT 5 V tolerant I/O									
I/O structure	TTa	3.3 V tolerant I/O								
NO structure	B Dedicated BOOT0 pin									
	RST Bidirectional reset pin with embedded weak pull-up resistor									
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset								
Alternate functions	Functions selected	Functions selected through GPIOx_AFR registers								
Additional functions	Functions directly selected/enabled through peripheral registers									

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
22	H5	31	42	52	P3	PA6	I/O	FT	(4)	SPI1_MISO, TIM8_BKIN, TIM13_CH1, DCMI_PIXCLK, TIM3_CH1, TIM1_BKIN, EVENTOUT	ADC12_IN6
23	J7	32	43	53	R3	PA7	I/O	FT	(4)	SPI1_MOSI, TIM8_CH1N, TIM14_CH1, TIM3_CH2, ETH_MII_RX_DV, TIM1_CH1N, ETH_RMII_CRS_DV, EVENTOUT	ADC12_IN7
24	H4	33	44	54	N5	PC4	I/O	FT	(4)	ETH_RMII_RXD0, ETH_MII_RXD0, EVENTOUT	ADC12_IN14
25	G3	34	45	55	P5	PC5	I/O	FT	(4)	ETH_RMII_RXD1, ETH_MII_RXD1, EVENTOUT	ADC12_IN15
26	J6	35	46	56	R5	PB0	I/O	FT	(4)	TIM3_CH3, TIM8_CH2N, OTG_HS_ULPI_D1, ETH_MII_RXD2, TIM1_CH2N, EVENTOUT	ADC12_IN8
27	J5	36	47	57	R4	PB1	I/O	FT	(4)	TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, ETH_MII_RXD3, TIM1_CH3N, EVENTOUT	ADC12_IN9
28	J4	37	48	58	M6	PB2/BOOT1 (PB2)	I/O	FT	-	EVENTOUT	-
-	-	-	49	59	R6	PF11	I/O	FT	-	DCMI_D12, EVENTOUT	
-	-	-	50	60	P6	PF12	I/O	FT	-	FSMC_A6, EVENTOUT	-
-	-	-	51	61	M8	V _{SS}	S		-	-	-
-	-	-	52	62	N8	V _{DD}	S		-	-	-
-	-	-	53	63	N6	PF13	I/O	FT	-	FSMC_A7, EVENTOUT	-
-	-	-	54	64	R7	PF14	I/O	FT	-	FSMC_A8, EVENTOUT	-
-	-	-	55	65	P7	PF15	I/O	FT	-	FSMC_A9, EVENTOUT	-
-	-	-	56	66	N7	PG0	I/O	FT	-	FSMC_A10, EVENTOUT	-
-	-	-	57	67	M7	PG1	I/O	FT	-	FSMC_A11, EVENTOUT	-

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	98	142	170	A3	PE1	I/O	FT	-	FSMC_NBL1, DCMI_D3, EVENTOUT	-
-	-	-	-	-	D5	V _{SS}	S	-	-	-	-
63	D8	I	-	-	I	V _{SS}	S	-	I	-	-
-	-	99	143	171	C6	RFU	-	-	(7)	-	-
64	D9	100	144	172	C5	V _{DD}	S	-	-	-	-
-	-	-	-	173	D4	Pl4	I/O	FT	-	TIM8_BKIN, DCMI_D5, EVENTOUT	-
-	-	-	I	174	C4	PI5	I/O	FT	I	TIM8_CH1, DCMI_VSYNC, EVENTOUT	-
-	-	-	-	175	C3	Pl6	I/O	FT	-	TIM8_CH2, DCMI_D6, EVENTOUT	-
-	-	-	-	176	C2	PI7	I/O	FT	-	TIM8_CH3, DCMI_D7, EVENTOUT	-
-	C8	-	-	-	-	IRROFF	I/O	-	-	-	-

Table 8. STM32F20x pin and ball definitions (continued)

1. Function availability depends on the chosen device.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

 Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to V_{DD} (Regulator OFF), then PA0 is used as an internal Reset (active low).

6. FSMC_NL pin is also named FSMC_NADV on memory devices.

7. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

Table 9. FSMC pin definition

Pins		LQFP100			
FIIIS	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFF100
PE2	-	A23	A23	-	Yes
PE3	-	A19	A19	-	Yes
PE4	-	A20	A20	-	Yes

			n definition (continu	ed)	
Pins		F	SMC		LQFP100
1 113	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	Lairio
PE5	-	A21	A21	-	Yes
PE6	-	A22	A22	-	Yes
PF0	A0	A0	-	-	-
PF1	A1	A1	-	-	-
PF2	A2	A2	-	-	-
PF3	A3	A3	-	-	-
PF4	A4	A4	-	-	-
PF5	A5	A5	-	-	-
PF6	NIORD	-	-	-	-
PF7	NREG	-	-	-	-
PF8	NIOWR	-	-	-	-
PF9	CD	-	-	-	-
PF10	INTR	-	-	-	-
PF12	A6	A6	-	-	-
PF13	A7	A7	-	-	-
PF14	A8	A8	-	-	-
PF15	A9	A9	-	-	-
PG0	A10	A10	-	-	-
PG1	-	A11	-	-	-
PE7	D4	D4	DA4	D4	Yes
PE8	D5	D5	DA5	D5	Yes
PE9	D6	D6	DA6	D6	Yes
PE10	D7	D7	DA7	D7	Yes
PE11	D8	D8	DA8	D8	Yes
PE12	D9	D9	DA9	D9	Yes
PE13	D10	D10	DA10	D10	Yes
PE14	D11	D11	DA11	D11	Yes
PE15	D12	D12	DA12	D12	Yes
PD8	D13	D13	DA13	D13	Yes
PD9	D14	D14	DA14	D14	Yes
PD10	D15	D15	DA15	D15	Yes
PD11	-	A16	A16	CLE	Yes
PD12	-	A17	A17	ALE	Yes
	1				1

Table 9. FSMC pin definition (continued)

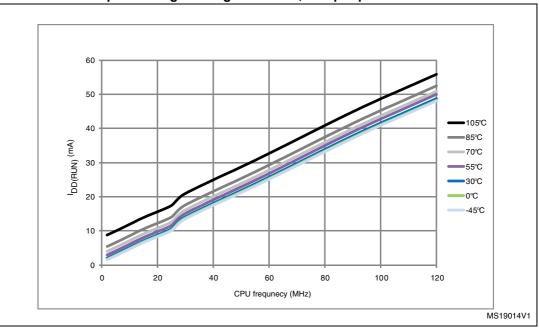
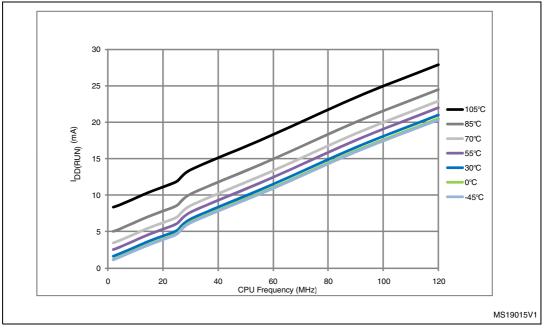
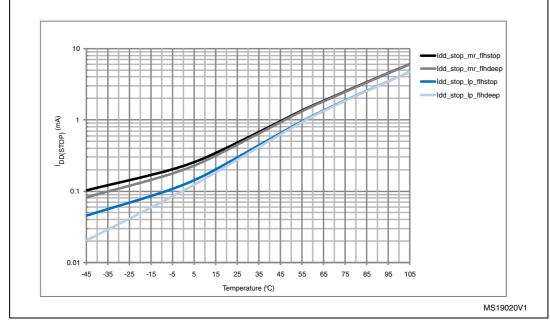



Figure 23. Typical current consumption vs. temperature, Run mode, code with data processing running from RAM, and peripherals ON

Figure 24. Typical current consumption vs. temperature, Run mode, code with data processing running from RAM, and peripherals OFF



			Тур		Max			
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
I _{DD_STOP} -	Supply current in Stop mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.55	1.2	11.00	20.00		
	with main regulator in Run mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.50	1.2	11.00	20.00		
	Supply current in Stop mode with main regulator in Low-power mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.35	1.1	8.00	15.00	mA	
		Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.30	1.1	8.00	15.00		

Table 23. Typical and maximum current consumptions in Stop mode

Figure 29. Typical current consumption vs. temperature in Stop mode

All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
R _F	Feedback resistor	-	-	18.4	-	MΩ				
I _{DD}	LSE current consumption	-	-	-	1	μA				
9 _m	Oscillator Transconductance	-	2.8	-	-	µA/V				
t _{SU(LSE)} ⁽²⁾	startup time	V _{DD} is stabilized	-	2	-	S				

Table 31. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)⁽¹⁾

1. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note: For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

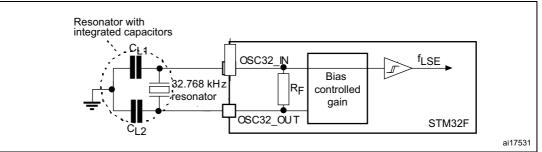


Figure 33. Typical application with a 32.768 kHz crystal

6.3.9 Internal clock source characteristics

The parameters given in *Table 32* and *Table 33* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
ACC _{HSI}	HSI user-trimming step ⁽²⁾	-	-	-	1	%
		$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
	Accuracy of the HSI oscillator	$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	– 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4.0	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

 Table 32. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

- 3. Guaranteed by characterization results.
- 4. Factory calibrated, parts not soldered.

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS ports I _{IO} = +8 mA	-	0.4	v	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$1_{O} - 70 \text{ mA}$ 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	V	
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL ports I _{IO} =+ 8mA	-	0.4	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	v	
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	l _{IO} = +20 mA	-	1.3	V	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v	
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA	-	0.4	V	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4 -		v	

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

- 2. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.
- 3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.
- 4. Guaranteed by characterization results, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 39* and *Table 48*, respectively.

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} > 2.70 V	-	-	4	
			C _L = 50 pF, V _{DD >} 1.8 V	-	-	2	MHz
			C _L = 10 pF, V _{DD >} 2.70 V	-	-	8	
00			C _L = 10 pF, V _{DD >} 1.8 V	-	-	4	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.8 V to 3.6 V	-	-	100	ns

Table 4	48.	I/O	AC	characteristics ⁽¹⁾
---------	-----	-----	----	--------------------------------

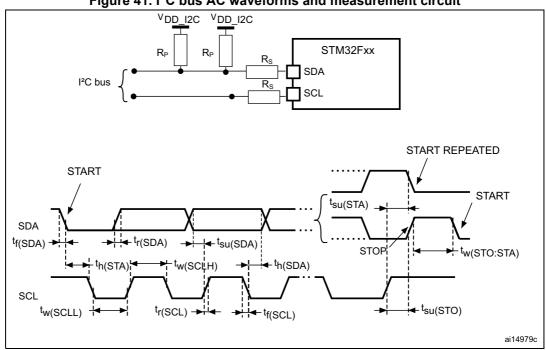


Figure 41. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. $V_{DD_{12C}}$ is the I²C bus power supply.

f (kU-)	I2C_CCR value
f _{SCL} (kHz)	R _P = 4.7 kΩ
400	0x8019
300	0x8021
200	0x8032
100	0x0096
50	0x012C
20	0x02EE

Table 53. SCL frequency (f_{PCLK1}= 30 MHz., V_{DD} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I²C speed,

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

USB OTG FS characteristics

The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol Parameter		Мах	Unit			
t _{STARTUP} ⁽¹⁾	USB OTG FS transceiver startup time	1	μs			

Table 56. USB OTG FS startup time

1. Guaranteed by design, not tested in production.

Sym	bol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
	V_{DD}	USB OTG FS operating voltage		3.0 ⁽²⁾	-	3.6	V
Input	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-	
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V
	$V_{SE}^{(3)}$	Single ended receiver threshold		1.3	-	2.0	
Output	V _{OL}	Static output level low	$\rm R_L$ of 1.5 k\Omega to 3.6 $\rm V^{(4)}$	-	-	0.3	V
levels	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(4)}$	2.8	-	3.6	v
R _P		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	V _{IN} = V _{DD}	17	21	24	
	D	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDD	0.65	1.1	2.0	kΩ
	PA12, PB15 (USB_FS_DP, USB_HS_DP)		V _{IN} = V _{SS}	1.5	1.8	2.1	
R _{PU}		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	

Table 57. USB OTG FS DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The STM32F205xx and STM32F207xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

3. Guaranteed by design, not tested in production.

4. R_L is the load connected on the USB OTG FS drivers

6.3.20 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 66* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	1.8 ⁽¹⁾	-	3.6	V
V _{REF+}	Positive reference voltage	-	1.8 ⁽¹⁾⁽²⁾	-	V _{DDA}	V
£	ADC clock frequency	V_{DDA} = 1.8 ⁽¹⁾ to 2.4 V	0.6	-	15	MHz
f _{ADC}	ADC Clock frequency	V _{DDA} = 2.4 to 3.6 V	0.6	-	30	MHz
f _{TRIG} ⁽³⁾	External trigger frequency	f _{ADC} = 30 MHz with 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽⁴⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽³⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	kΩ
R _{ADC} ⁽³⁾⁽⁵⁾	Sampling switch resistance	-	1.5	-	6	kΩ
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	4	-	pF
t _{lat} (3)	Injection trigger conversion latency	f _{ADC} = 30 MHz	-	-	0.100	μs
'lat` ´		-	-	-	3 ⁽⁶⁾	1/f _{ADC}
t _{latr} (3)	Regular trigger conversion latency	f _{ADC} = 30 MHz	-	-	0.067	μs
4atr` ´	Regular ingger conversion latency	-	-	-	2 ⁽⁶⁾	1/f _{ADC}
t _S ⁽³⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
LS(*)	Sampling une	-	3	-	480	1/f _{ADC}
t _{STAB} ⁽³⁾	Power-up time	-	-	2	3	μs
t _{CONV} ⁽³⁾	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 12-bit resolution	0.5	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
		f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.3	-	16.20	μs
		9 to 492 (t _S for samplir approximation)	ng +n-bit resolutior	for succ	cessive	1/f _{ADC}

Table	66. /	ADC	characteristics
Table			Characteristics

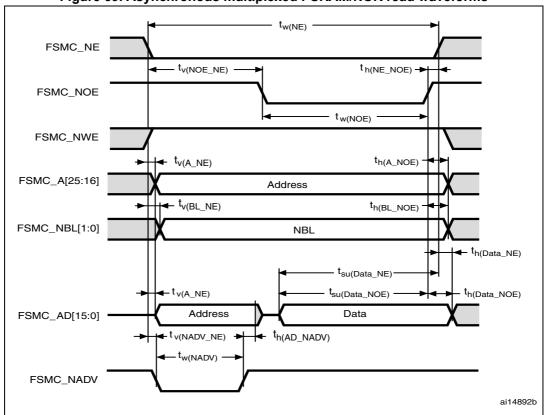
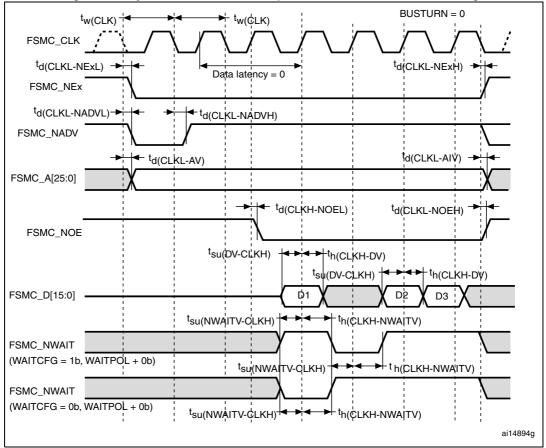


Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 74. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	3T _{HCLK} -1	3T _{HCLK} +1	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	2T _{HCLK}	2T _{HCLK} +0.5	ns
t _{w(NOE)}	FSMC_NOE low time	T _{HCLK} -1	T _{HCLK} +1	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	2	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	1	2.5	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} – 1.5	T _{HCLK}	ns
t _{h(AD_NADV)}	FSMC_AD(adress) valid hold time after FSMC_NADV high)	T _{HCLK}	-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	T _{HCLK}	-	ns
t _{h(BL_NOE)}	FSMC_BL time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} + 2	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	T _{HCLK} + 3	-	ns



Symbol	Parameter	Min	Max	Unit
t _{d(CLKL-NWEL)}	FSMC_CLK low to FSMC_NWE low	-	1	ns
t _{d(CLKL-NWEH)}	FSMC_CLK low to FSMC_NWE high	0	-	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0	-	ns
t _{d(CLKL-DATA})	FSMC_A/D[15:0] valid data after FSMC_CLK low	-	2	ns
t _{d(CLKL-NBLH)}	FSMC_CLK low to FSMC_NBL high	0.5	-	ns

Table 77. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings

able 78. Synchronous non-multiplexed NOR/PSRAM read timings ⁽¹⁾⁽²⁾)
able 10. Synchronous non-multiplexed NOIVI SIXAM read unnings	

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK}	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	0	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	1	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	2.5	ns

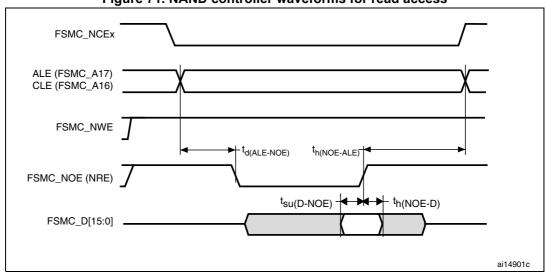
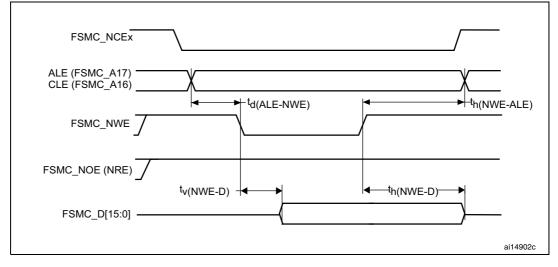



Figure 71. NAND controller waveforms for read access

Figure 72. NAND controller waveforms for write access

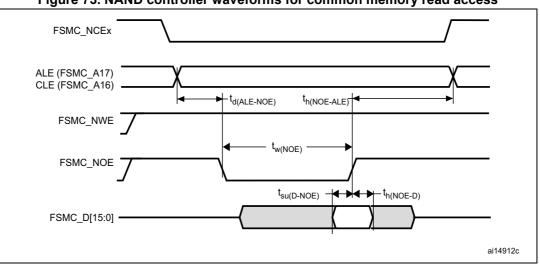


Figure 73. NAND controller waveforms for common memory read access

Figure 74. NAND controller waveforms for common memory write access

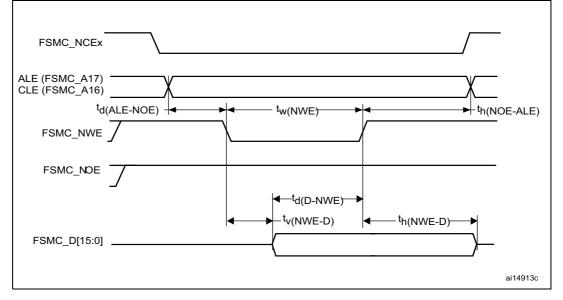


Table 82. Switching characteristics for NAND Flash read cycles⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(N0E)}	FSMC_NOE low width	4T _{HCLK} - 1	4T _{HCLK} + 2	ns
t _{su(D-NOE)}	FSMC_D[15-0] valid data before FSMC_NOE high	9	-	ns
t _{h(NOE-D})	FSMC_D[15-0] valid data after FSMC_NOE high	3	-	ns
t _{d(ALE-NOE)}	FSMC_ALE valid before FSMC_NOE low	-	3T _{HCLK}	ns
t _{h(NOE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} + 2	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

