STMicroelectronics - STM32F205VGT7TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details
Details

E·XF

2012	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205vgt7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

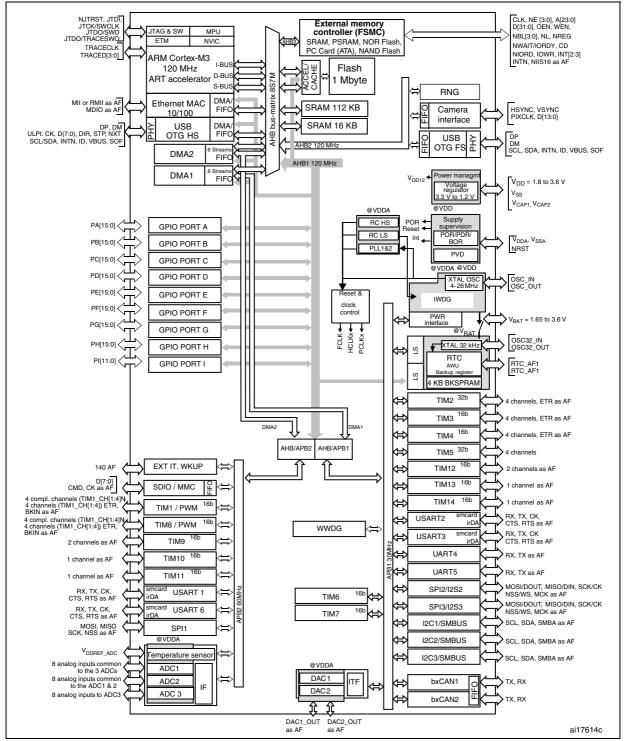


Figure 4. STM32F20x block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 60 MHz.

2. The camera interface and Ethernet are available only in STM32F207xx devices.

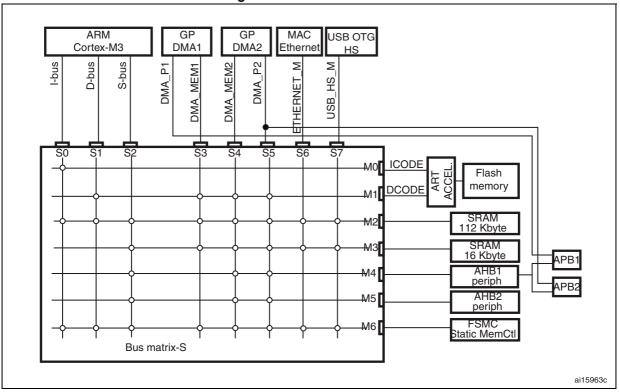


Figure 5. Multi-AHB matrix

3.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

3.11 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines.

3.12 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the system clock.

Several prescalers and PLLs allow the configuration of the three AHB buses, the highspeed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 120 MHz and the maximum frequency the high-speed APB domains is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.

The devices embed a dedicate PLL (PLLI2S) which allow to achieve audio class performance. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.13 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).

3.14 Power supply schemes

V_{DD} = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins. On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates

FSMC FSMC pin definition (continued)					
Pins	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100
PD13	-	A18	A18	-	Yes
PD14	D0	D0	DA0	D0	Yes
PD15	D1	D1	DA1	D1	Yes
PG2	-	A12	-	-	-
PG3	-	A13	-	-	-
PG4	-	A14	-	-	-
PG5	-	A15	-	-	-
PG6	-	-	-	INT2	-
PG7	-	-	-	INT3	-
PD0	D2	D2	DA2	D2	Yes
PD1	D3	D3	DA3	D3	Yes
PD3	-	CLK	CLK	-	Yes
PD4	NOE	NOE	NOE	NOE	Yes
PD5	NWE	NWE	NWE	NWE	Yes
PD6	NWAIT	NWAIT	NWAIT	NWAIT	Yes
PD7	-	NE1	NE1	NCE2	Yes
PG9	-	NE2	NE2	NCE3	-
PG10	NCE4_1	NE3	NE3	-	-
PG11	NCE4_2	-	-	-	-
PG12	-	NE4	NE4	-	-
PG13	-	A24	A24	-	-
PG14	-	A25	A25	-	-
PB7	-	NADV	NADV	-	Yes
PE0	-	NBL0	NBL0	-	Yes
PE1	-	NBL1	NBL1	-	Yes

Table 9. FSMC pin definition (continued)

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

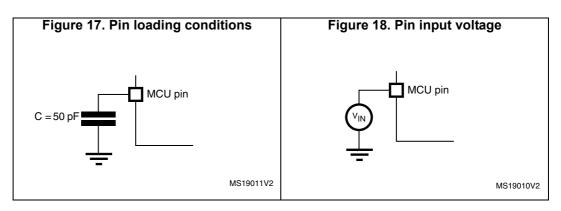
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 1.8 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

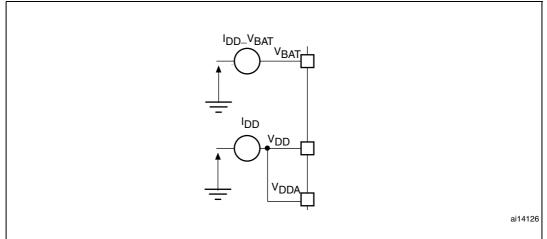
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 17*.


6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 18*.

6.1.7 Current consumption measurement

Figure 20. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} , V_{DD}) ⁽¹⁾	-0.3	4.0	
V	Input voltage on five-volt tolerant pin ⁽²⁾	V _{SS} -0.3	V _{DD} +4	V
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
V _{SSX} -V _{SS}	Variations between all the different ground pins	-	50	1110
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	naximum ectrical	-

Table 11. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

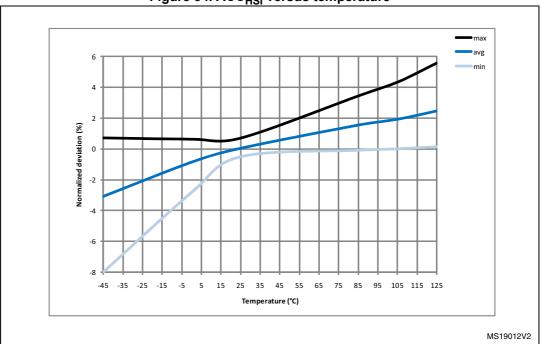


Figure 34. ACC_{HSI} versus temperature

Low-speed internal (LSI) RC oscillator

Table 33. LS	l oscillator	characteristics ⁽¹⁾
--------------	--------------	--------------------------------

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	17	32	47	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	15	40	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.4	0.6	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization results, not tested in production.

3. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
		Cycle to cycle at	RMS	-	90	-	
	Master I2S clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
Jitter ⁽³⁾		Average frequency of 12.288 MHz N=432, R=5 on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 I on 1000 samples	КНz	-	400	-	ps
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz		0.30 0.55	_	0.40 0.85	mA

Table 35.	PLLI2S (audio	PLL) characterist	ics (continued)
14810 001			

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

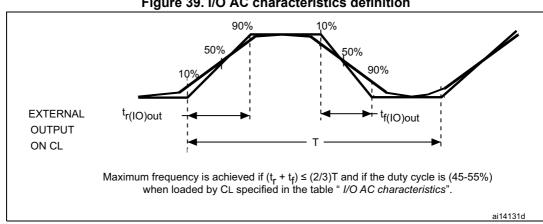
2. Guaranteed by design, not tested in production.

3. Value given with main PLL running.

4. Guaranteed by characterization results, not tested in production.

6.3.16 I/O port characteristics

General input/output characteristics


Unless otherwise specified, the parameters given in *Table 50* are derived from tests performed under the conditions summarized in *Table 14: General operating conditions*.

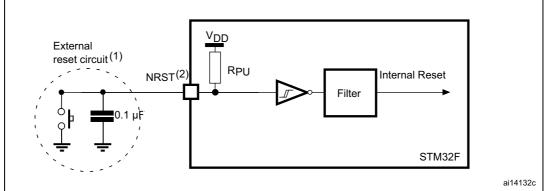
All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	FT, TTa and NRST I/O	1.7 V≤V _{DD} ≤3.6 V	-		0.35V _{DD} -0.04 ⁽¹⁾	-	
M	input low level voltage	1.75 V≤V _{DD} ≤3.6 V,			0.3V _{DD} ⁽²⁾		
V _{IL}	BOOT0 I/O	–40 °C≤T _A ≤105 °C	-	-	0.1V _{DD} +0.1 ⁽¹⁾	V	
	input low level voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-	-			
	FT, TTa and NRST I/O			_	_		
	input high level voltage ⁽⁵⁾	1.7 VSVDD <u>S</u> 0.0 V	0.7V _{DD} ⁽²⁾	_	_	V	
V_{IH}		1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	0.17V _{DD} +0.7 ⁽¹⁾		_		
	input high level voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.17 00010.7				
	FT, TTa and NRST I/O input hysteresis	1.7 V≤V _{DD} ≤3.6 V	0.45V _{DD} +0.3 ⁽¹⁾	-	-	-	
$V_{\rm HYS}$	BOOT0 I/O	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	10%V _{DDIO} ⁽¹⁾⁽³⁾	-	-	V	
	input hysteresis	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	100 ⁽¹⁾	-	-		
L.	I/O input leakage current ⁽⁴⁾	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA	
I _{lkg}	I/O FT input leakage current ⁽⁵⁾	$V_{IN} = 5 V$	-	-	3	μΑ	

Table 46. I/O	static	characteristics
---------------	--------	-----------------

6.3.17 **NRST** pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see Table 49).


Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 14.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 49. NRST pin characteristics

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series 1. resistance must be minimum (~10% order).

2. Guaranteed by design, not tested in production.

Figure 40. Recommended NRST pin protection

- The reset network protects the device against parasitic resets. 1.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in 2. Table 49. Otherwise the reset is not taken into account by the device.

6.3.18 TIM timer characteristics

The parameters given in *Table 50* and *Table 51* are guaranteed by design.

Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
		AHB/APB1	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	prescaler distinct from 1, f _{TIMxCLK} = 60 MHz	16.7	-	ns
		AHB/APB1	1	-	t _{TIMxCLK}
		prescaler = 1, f _{TIMxCLK} = 30 MHz	33.3	33.3 -	
f _{EXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4		0	30	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
	16-bit counter clock period		1	65536	t _{TIMxCLK}
t	when internal clock is selected	f _{TIMxCLK} = 60 MHz APB1= 30 MHz	0.0167	1092	μs
^t COUNTER	32-bit counter clock period		1	-	t _{TIMxCLK}
	when internal clock is selected		0.0167	71582788	μs
tury count	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
t _{MAX_COUNT}			-	71.6	s

Table 50. Characteristics of TIMx connected to the APE	31 domain ⁽¹⁾
--	--------------------------

1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

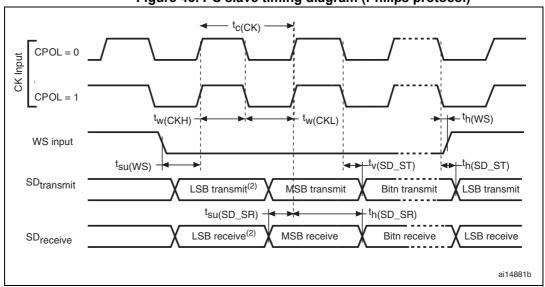


Figure 45. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

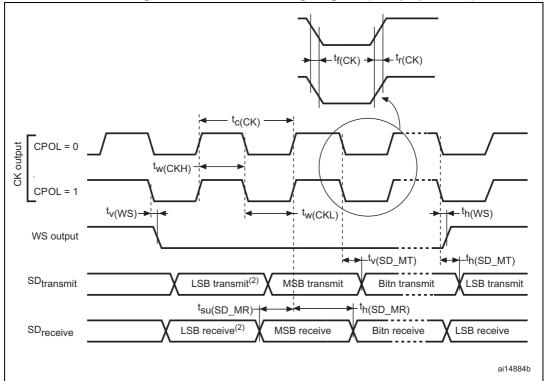


Figure 46. I²S master timing diagram (Philips protocol)⁽¹⁾

1. Guaranteed by characterization results, not tested in production.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

6.3.20 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 66* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 14*.

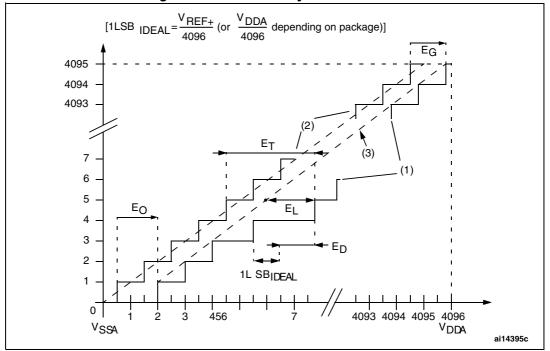
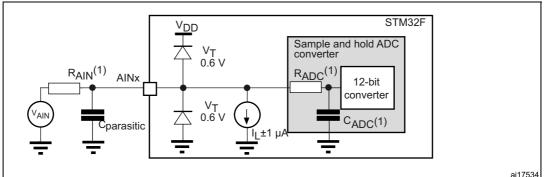

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Power supply	-	1.8 ⁽¹⁾	-	3.6	V
V _{REF+}	Positive reference voltage	-	1.8 ⁽¹⁾⁽²⁾	-	V _{DDA}	V
£	ADC clock frequency	V_{DDA} = 1.8 ⁽¹⁾ to 2.4 V	0.6	-	15	MHz
f _{ADC}	ADC Clock frequency	V _{DDA} = 2.4 to 3.6 V	0.6	-	30	MHz
f _{TRIG} ⁽³⁾	External trigger frequency	f _{ADC} = 30 MHz with 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽⁴⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽³⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	kΩ
R _{ADC} ⁽³⁾⁽⁵⁾	Sampling switch resistance	-	1.5	-	6	kΩ
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	4	-	pF
t _{lat} (3)	Injection trigger conversion latency	f _{ADC} = 30 MHz	-	-	0.100	μs
'lat` ´		-	-	-	3 ⁽⁶⁾	1/f _{ADC}
t _{latr} (3)	Regular trigger conversion latency	f _{ADC} = 30 MHz	-	-	0.067	μs
4atr` ´	Regular ingger conversion latency	-	-	-	2 ⁽⁶⁾	1/f _{ADC}
t _S ⁽³⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
LS(*)		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽³⁾	Power-up time	-	-	2	3	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 12-bit resolution	0.5	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
		f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.3	-	16.20	μs
		9 to 492 (t _S for samplir approximation)	ng +n-bit resolutior	for succ	cessive	1/f _{ADC}

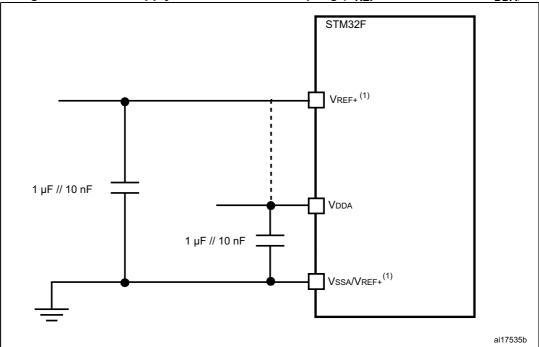
Table	66. /	ADC	characteristics
Table			characteristics

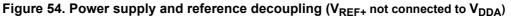
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.


Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.16 does not affect the ADC accuracy.

- Example of an actual transfer curve 1.
- 2. Ideal transfer curve
- End point correlation line. 3.
- E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. 4. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.


 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.



Refer to Table 66 for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$ and C_{ADC} 1.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 54* or *Figure 55*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

 V_{REF+} and V_{REF} inputs are both available on UFBGA176 package. V_{REF+} is also available on all packages except for LQFP64. When V_{REF+} and V_{REF} are not available, they are internally connected to V_{DDA} and V_{SSA}.

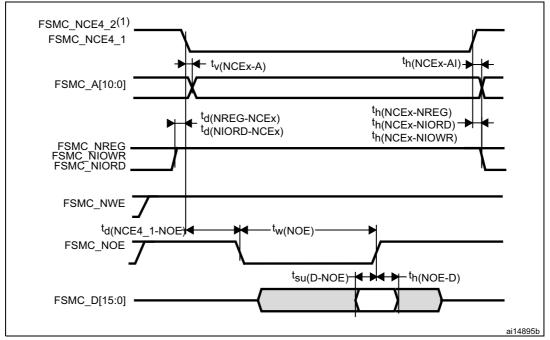
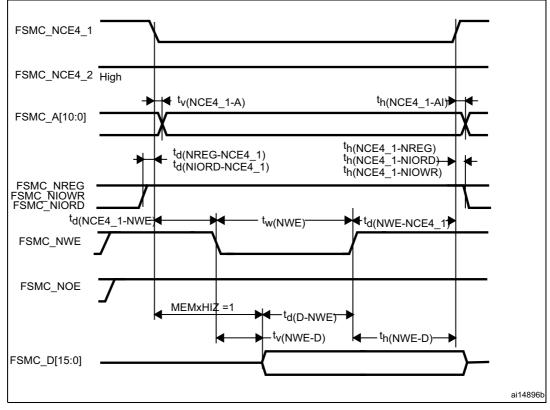



Figure 65. PC Card/CompactFlash controller waveforms for common memory read access

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

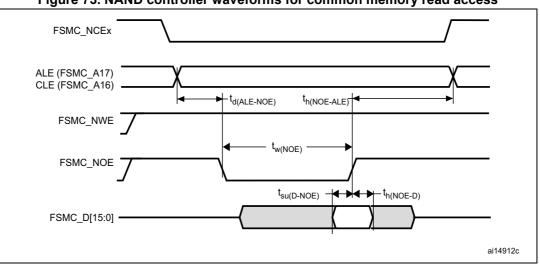


Figure 73. NAND controller waveforms for common memory read access

Figure 74. NAND controller waveforms for common memory write access

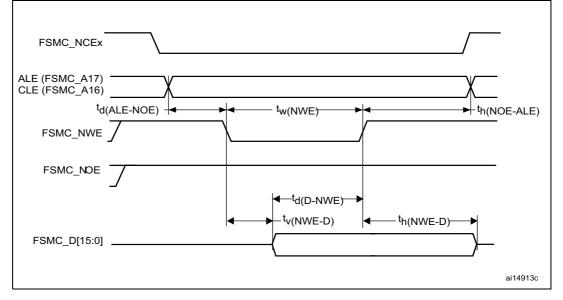


Table 82. Switching characteristics for NAND Flash read cycles⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(N0E)}	FSMC_NOE low width	4T _{HCLK} - 1	4T _{HCLK} + 2	ns
t _{su(D-NOE)}	FSMC_D[15-0] valid data before FSMC_NOE high	9	-	ns
t _{h(NOE-D})	FSMC_D[15-0] valid data after FSMC_NOE high	3	-	ns
t _{d(ALE-NOE)}	FSMC_ALE valid before FSMC_NOE low	-	3T _{HCLK}	ns
t _{h(NOE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} + 2	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

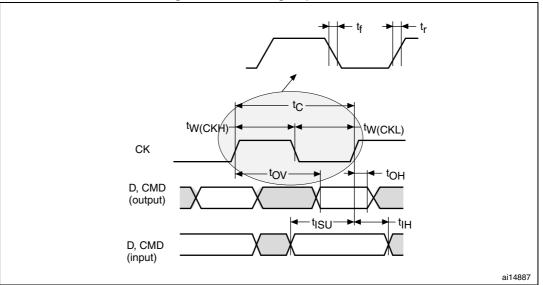
Symbol	Parameter	Min Max		Unit
t _{w(NWE)}	FSMC_NWE low width	4T _{HCLK} - 1	4T _{HCLK} + 3	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15-0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15-0] invalid	3T _{HCLK}	-	ns
t _{d(D-NWE)}	FSMC_D[15-0] valid before FSMC_NWE high	5T _{HCLK}	-	ns
t _{d(ALE-NWE)}	FSMC_ALE valid before FSMC_NWE low	-	3T _{HCLK} + 2	ns
t _{h(NWE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} - 2	-	ns

 Table 83. Switching characteristics for NAND Flash write cycles⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

6.3.26 Camera interface (DCMI) timing specifications


Symbol	Parameter	Conditions	Min	Мах
-	Frequency ratio DCMI_PIXCLK/f _{HCLK}	DCMI_PIXCLK= 48 MHz	-	0.4

6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 85* are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*.

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK).

Figure 75. SDIO high-speed mode

Table 97. Document revision history (continued)				
Date	Revision	Changes		
Date		Changes Changed minimum supply voltage from 1.65 to 1.8 V. Updated number of AHB buses in Section 2: Description and Section 3.12: Clocks and startup. Removed Figure 4. Compatible board design between STM32F10xx and STM32F2xx for LQFP176 package. Updated Note 2 below Figure 4: STM32F20x block diagram. Changed System memory to System memory + OTP in Figure 16: Memory map. Added Note 1 below Table 16: VCAP1/VCAP2 operating conditions. Updated V _{DDA} and V _{REF+} decouping capacitor in Figure 19: Power supply scheme and updated Note 3. Changed simplex mode into half-duplex mode in Section 3.24: Inter- integrated sound (I2S). Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and DAC_OUT2, respectively.Changed TIM2_CH1/TIM2_ETR into TIM2_CH1_ETR for PA0 and PA5 in Table 10: Alternate function mapping. Updated note applying to I _{DD} (external clock and all peripheral disabled) in Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled). Updated Note 3 below Table 22: Typical and maximum current consumption in Sleep mode. Removed f _{HSE_ext} typical value in Table 28: High-speed external user clock characteristics. Updated master 12S clock jitter conditions and vlaues in Table 35: PLLI2S (audio PLL) characteristics. Updated quations in Section 6.3.11: PLL spread spectrum clock generation (SSCG) characteristics. Updated TL and CMOS port conditions for V _{OL} and V _{OH} in Table 47: Output voltage characteristics.		
		Swapped TTL and CMOS port conditions for V_{OL} and V_{OH} in <i>Table 47:</i> <i>Output voltage characteristics.</i> Updated $V_{IL(NRST)}$ and $V_{IH(NRST)}$ in <i>Table 49: NRST pin characteristics.</i> Updated <i>Table 54: SPI characteristics</i> and <i>Table 55: I2S characteristics.</i> Removed note 1 related to measurement points below <i>Figure 43: SPI timing diagram - slave mode and CPHA = 1, Figure 44: SPI timing diagram - master mode,</i> and <i>Figure 45: I2S slave timing diagram (Philips protocol)(1).</i> Updated t _{HC} in <i>Table 61: ULPI timing.</i>		
		Updated Figure 49: Ethernet SMI timing diagram, Table 63: Dynamics characteristics: Ethernet MAC signals for SMI and Table 65: Dynamics characteristics: Ethernet MAC signals for MII. Update f _{TRIG} in Table 66: ADC characteristics.		
		Updated I _{DDA} description in <i>Table 68: DAC characteristics</i> . Updated note below <i>Figure 54: Power supply and reference decoupling</i> (<i>VREF+ not connected to VDDA</i>) and <i>Figure 55: Power supply and reference decoupling</i> (<i>VREF+ connected to VDDA</i>).		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID15818 Rev 13

