E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	100K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205zct7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the description of the STM32F205xx and STM32F207xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32 family, please refer to *Section 2.1: Full compatibility throughout the family*.

The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices throughout the document.

For information on programming, erasing and protection of the internal Flash memory, please refer to the STM32F20x/STM32F21x Flash programming manual (PM0059).

The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the *www.arm.com* website.

2.1 Full compatibility throughout the family

The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members are fully pin-to-pin, software and feature compatible, allowing the user to try different memory densities and peripherals for a greater degree of freedom during the development cycle.

The STM32F205xx and STM32F207xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F205xx and STM32F207xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x family remains simple as only a few pins are impacted.

Figure 1, *Figure 2* and *Figure 3* provide compatible board designs between the STM32F20x and the STM32F10xxx family.

Figure 1. Compatible board design between STM32F10xx and STM32F2xx for LQFP64 package

Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package

1. RFU = reserved for future use.

The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.18: Low-power modes).

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or the V_{BAT} pin.

3.18 Low-power modes

The STM32F20x family supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped when the device enters the Stop or Standby mode.

3.19 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery or an external supercapacitor.

 V_{BAT} operation is activated when V_{DD} is not present.

The VBAT pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When using WLCSP64+2 package, if IRROFF pin is connected to V_{DD} , the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD} .

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	98	142	170	A3	PE1	I/O	FT	-	FSMC_NBL1, DCMI_D3, EVENTOUT	-
-	I	-	-	-	D5	V _{SS}	S	-	1	-	_
63	D8	-	-	-	-	V _{SS}	S	-	-	-	-
-	-	99	143	171	C6	RFU	-	-	(7)	-	-
64	D9	100	144	172	C5	V _{DD}	S	-	-	-	-
-	-	-	-	173	D4	Pl4	I/O	FT	-	TIM8_BKIN, DCMI_D5, EVENTOUT	-
-	I	-	-	174	C4	PI5	I/O	FT	-	TIM8_CH1, DCMI_VSYNC, EVENTOUT	-
-	-	-	-	175	C3	Pl6	I/O	FT	-	TIM8_CH2, DCMI_D6, EVENTOUT	-
-	-	-	-	176	C2	PI7	I/O	FT	-	TIM8_CH3, DCMI_D7, EVENTOUT	-
-	C8	-	-	-	-	IRROFF	I/O	-	-	-	_

Table 8. STM32F20x pin and ball definitions (continued)

1. Function availability depends on the chosen device.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

 Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to V_{DD} (Regulator OFF), then PA0 is used as an internal Reset (active low).

6. FSMC_NL pin is also named FSMC_NADV on memory devices.

7. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

Table 9. FSMC pin definition

Pins						
FIIIS	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	LQIFIOU	
PE2	-	A23	A23	-	Yes	
PE3	-	A19	A19	-	Yes	
PE4	-	A20	A20	-	Yes	

5 Memory mapping

The memory map is shown in *Figure 16*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz and 3 wait states from 90 to 120 MHz).
- When the peripherals are enabled HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2, except is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM ⁽¹⁾

Symbol	Baramatar	Conditions		Тур	Max ⁽²⁾		Unit
Symbol	Farameter	Conditions	HCLK	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			120 MHz	49	63	72	
		External clock ⁽³⁾ , all peripherals enabled ⁽⁴⁾	90 MHz	38	51	61	
			60 MHz	26	39	49	
			30 MHz	14	27	37	
			25 MHz	11	24	34	
			16 MHz ⁽⁵⁾	8	21	30	
			8 MHz	5	17	27	
			4 MHz	3	16	26	
1	Supply current		2 MHz	2	15	25	m۸
I _{DD}	in Run mode		120 MHz	21	34	44	ШA
			90 MHz	17	30	40	
			60 MHz	12	25	35	
		(3)	30 MHz	7	20	30	
		External clock ⁽³⁾ , all peripherals disabled	25 MHz	5	18	28	
		P -	16 MHz ⁽⁵⁾	4.0	17.0	27.0	
			8 MHz	2.5	15.5	25.5	
			4 MHz	2.0	14.7	24.8	
			2 MHz	1.6	14.5	24.6	

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

3. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. In this case HCLK = system clock/2.

			Тур	Мах			
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_STOP}	Supply current in Stop mode with main regulator in Run mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.55	1.2	11.00	20.00	
		Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.50	1.2	11.00	20.00	m۸
	Supply current in Stop mode with main regulator in Low-power mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.35	1.1	8.00	15.00	
		Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.30	1.1	8.00	15.00	

Table 23. Typical and maximum current consumptions in Stop mode

Figure 29. Typical current consumption vs. temperature in Stop mode

All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	-	26	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		V _{DD} =3.3 V, ESR= 30 Ω, C _L =5 pF@25 MHz	- 449 -			
DD		V _{DD} =3.3 V, ESR= 30 Ω, C _L =10 pF@25 MHz	-	532	-	μΑ
9 _m	Oscillator transconductance	Startup	5	-	-	mA/V
$t_{\rm SU(HSE}^{(3)}$	Startup time	V _{DD} is stabilized	-	2	-	ms

 Table 30. HSE 4-26 MHz oscillator characteristics^{(1) (2)}

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results, not tested in production.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 32*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note:

For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Figure 32. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 31*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

	(-L3E									
Symbol	Parameter Conditions		Min	Тур	Max	Unit				
R _F	Feedback resistor	-	-	18.4	-	MΩ				
I _{DD}	LSE current consumption	-	-	-	1	μA				
9 _m	Oscillator Transconductance	-	2.8	-	-	μA/V				
t _{SU(LSE)} ⁽²⁾	startup time	V _{DD} is stabilized	-	2	-	s				

Table 31. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)⁽¹⁾

1. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note: For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Figure 33. Typical application with a 32.768 kHz crystal

6.3.9 Internal clock source characteristics

The parameters given in *Table 32* and *Table 33* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user-trimming step ⁽²⁾	-	-	-	Max Unit - MHz 1 % 4.5 % 4 % 1 % 4.0 µs 80 µA	%
ACCusi		$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
ACCHSI	Accuracy of the HSI oscillator	$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	ax Unit - MHz 1 % .5 % 4 % 1 % .0 µs .0 µA
	$T_A = 25 \ ^{\circ}C^{(4)}$	– 1	-	1	%	
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4.0	μs
DD(HSI) ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

 Table 32. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

- 3. Guaranteed by characterization results.
- 4. Factory calibrated, parts not soldered.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
	Master 12S clock jitter	Cycle to cycle at	RMS	-	90	-	
		12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
Jitter ⁽³⁾		Average frequency of 12.288 MHz N=432, R=5 on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 k on 1000 samples	-	400	-	ps	
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DD}	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

Table	35. P	LLI2S	(audio	PLL)	characteristics	(continued)
			(·,		(

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design, not tested in production.

3. Value given with main PLL running.

4. Guaranteed by characterization results, not tested in production.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	$T_A = 0$ to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	6.9	-	S
V _{prog}	Programming voltage	-	2.7	-	3.6	V
V _{PP}	V _{PP} voltage range	-	7	-	9	V
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour

Table 39.	Flash memor	y programming	with V _F	ъР
-----------	-------------	---------------	---------------------	----

1. Guaranteed by design, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value	Unit
			Min ⁽¹⁾	
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

Table 40. Flash memory endurance and data retention

1. Guaranteed by characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

Symbol	Parameter		Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	$V_{IN} = V_{SS}$	30	40	50	
		PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	-	7	10	14	kO
R _{PD}	Weak pull-down equivalent resister ⁽⁷⁾	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	$V_{IN} = V_{DD}$	30	40	50	K22
resistor(*)		PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	-	7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacitance		-	-	5	-	pF

Table 46. I/O static characteristics (continued)

1. Guaranteed by design, not tested in production.

2. Guaranteed by tests in production.

3. With a minimum of 200 mV.

- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 45: I/O current injection susceptibility
- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45: I/O current injection susceptibility
- 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 38*.

Symbol	Parameter	Conditions	Min	Мах	Unit
		AHB/APB2	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	from 1, f _{TIMxCLK} = 120 MHz	8.3	-	ns
		AHB/APB2	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 60 MHz	16.7	-	ns
feve	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4		0	60	MHz
Res _{TIM}	Timer resolution	(-	16	bit
	16-bit counter clock period	$T_{\text{TIM}x\text{CLK}} = 120 \text{ MHz}$	1	65536	t _{TIMxCLK}
COUNTER	selected	AF 62 - 00 MHZ	0.0083	546	μs
	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
MAX_COUNT			-	35.79	S

 Table 51. Characteristics of TIMx connected to the APB2 domain⁽¹⁾

1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.

6.3.19 Communications interfaces

I²C interface characteristics

STM32F205xx and STM32F207xx I^2 C interface meets the requirements of the standard I^2 C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 52*. Refer also to *Section 6.3.16*: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

6.3.20 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 66* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	1.8 ⁽¹⁾	-	3.6	V
V _{REF+}	Positive reference voltage	-	1.8 ⁽¹⁾⁽²⁾	-	V _{DDA}	V
f		V_{DDA} = 1.8 ⁽¹⁾ to 2.4 V	0.6	-	15	MHz
'ADC		V _{DDA} = 2.4 to 3.6 V	0.6	-	30	MHz
f _{TRIG} ⁽³⁾	External trigger frequency	f _{ADC} = 30 MHz with 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽⁴⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V_{REF} +	V
R _{AIN} ⁽³⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	kΩ
$R_{ADC}^{(3)(5)}$	Sampling switch resistance	-	1.5	-	6	kΩ
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	4	-	pF
t _{lat} ⁽³⁾ Inject latenc	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
	latency	-	-	-	3 ⁽⁶⁾	1/f _{ADC}
t ₁₋₁ (3)	Regular trigger conversion latency	f _{ADC} = 30 MHz	-	-	0.067	μs
Patr		-	-	-	2 ⁽⁶⁾	1/f _{ADC}
to ⁽³⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
•5		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽³⁾	Power-up time	-	-	2	3	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.5	-	16.40	μs
t _{CONV} ⁽³⁾		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.3	-	16.20	μs
		9 to 492 (t _S for samplin approximation)	ng +n-bit resolutior	n for succ	essive	1/f _{ADC}

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 54* or *Figure 55*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

 V_{REF+} and V_{REF} inputs are both available on UFBGA176 package. V_{REF+} is also available on all packages except for LQFP64. When V_{REF+} and V_{REF} are not available, they are internally connected to V_{DDA} and V_{SSA}.

	,		(*******	
Symbol	Parameter	Min	Мах	Unit
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	5	-	ns
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	0	-	ns

Table 76. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Figure 62. Synchronous multiplexed PSRAM write timings

Table 77. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK} - 1	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	0	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	2	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	3	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	7	-	ns

7.3 LQFP100 package information

Figure 81. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

	mechanical data						
Symbol	millimeters						
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	

Table 90. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data

Table 93. UFBGA176+25, - 201-ball, 10 x 10 mm, 0.65 mm pitch,ultra fine pitch ball grid array package mechanical data (continued)

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 90. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 94. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

 Added USB OTG_FS features in Section 3.28: Universal serial bus of the-go full-speed (OTG_FS). Updated V_{CAP_1} and V_{CAP_2} capacitor value to 2.2 µF in Figure 19: Power supply scheme. Removed DAC, modified ADC limitations, and updated I/O compensation for 1.8 to 2.1 V range in Table 15: Limitations dependir on the operating power supply range. Added V_{BORL}, V_{BORM}, V_{BORH} and I_{RUSH} in Table 19: Embedded rese and power control block characteristics. Removed table Typical current consumption in Sleep mode with Flast memory in Deep power down mode. Merged typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled), Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM, Table 22: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM, Table 22: Typical and maximum current consumptions in Stop mode, Table 23: Typical and maximum current consumptions in Stop mode, Table 24: Typical and maximum current consumptions in Stand mode, and Table 25: Typical and maximum current consumptions in VBAT mode. Update Table 34: Main PLL characteristics and added Section 6.3.11: PLL spread spectrum clock generation (SSCG) characteristics. Added Note 8 for CIO in Table 48: I/O AC characteristics. Added Note 8 for CIO in Table 49: NRST pin characteristics. 	Date	Revision	Changes
 Updated Table 52: 12C characteristics. Removed 8-bit data in and data out waveforms from Figure 48: ULPI timing diagram. Removed note related to ADC calibration in Table 67. Section 6.3.20: 12-bit ADC characteristics: ADC characteristics tables merged into or single table; tables ADC conversion time and ADC accuracy removed Updated Table 68: DAC characteristics. Updated Section 6.3.22: Temperature sensor characteristics and Section 6.3.23: VBAT monitoring characteristics. Update Section 6.3.26: Camera interface (DCMI) timing specification: Added Section 6.3.27: SD/SDIO MMC card host interface (SDIO) characteristics, and Section 6.3.28: RTC characteristics. Added Section 7.7: Thermal characteristics. Updated Table 91: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data and Figure 86: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline. Changed tape and reel code to TX in Table 96: Ordering information scheme. Added Table 101: Main applications versus package for STM32F2xxx microcontrollers. Updated figures in Appendix A.2: USB OTG full specifications and the section of the section o	Date	Revision 4 (continued)	Changes Added USB OTG_FS features in Section 3.28: Universal serial bus on- the-go full-speed (OTG_FS). Updated V _{CAP_1} and V _{CAP_2} capacitor value to 2.2 µF in Figure 19: Power supply scheme. Removed DAC, modified ADC limitations, and updated I/O compensation for 1.8 to 2.1 V range in Table 15: Limitations depending on the operating power supply range. Added V _{BORL} , V _{BORH} and I _{RUSH} in Table 19: Embedded reset and power control block characteristics. Removed table Typical current consumption in Sleep mode with Flash memory in Deep power down mode. Merged typical and maximum current consumption sections and added Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled), Table 20: Typical and maximum current consumption in Sube 20: Typical and maximum current consumptions in Stop mode, Table 23: Typical and maximum current consumptions in Stop mode, Table 23: Typical and maximum current consumptions in Stop mode, Table 24: Typical and maximum current consumptions in Stop mode, Table 24: Typical and maximum current consumptions in Stop mode, Table 24: Typical and maximum current consumptions in Stop mode, Table 24: Typical and maximum current consumptions in Stop mode, Table 24: Typical and maximum current consumptions in VBAT mode. Update Table 34: Main PLL characteristics and added Section 6.3.11: PLL spread spectrum clock generation (SSCG) characteristics. Updated Table 52: IZC characteristics.

Table 97	. Document	revision	history	(continued)
----------	------------	----------	---------	-------------

