

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205zet6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4. STM32F20x block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 60 MHz.

2. The camera interface and Ethernet are available only in STM32F207xx devices.

Figure 6. Regulator OFF/internal reset ON

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is faster than the time for V_{DD} to reach 1.8 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach 1.08 V and until V_{DD} reaches 1.8 V (see *Figure 8*).
- Otherwise, If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is slower than the time for V_{DD} to reach 1.8 V, then PA0 should be asserted low externally (see *Figure 9*).
- If V_{CAP_1} and V_{CAP_2} go below 1.08 V and V_{DD} is higher than 1.8 V, then a reset must be asserted on PA0 pin.

Regulator OFF/internal reset OFF

On WLCSP64+2 package, this mode activated by connecting REGOFF to V_{SS} and IRROFF to V_{DD}. IRROFF cannot be activated in conjunction with REGOFF. This mode is available only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source through V_{CAP_1} and V_{CAP_2} pins. In this mode, the integrated power-on reset (POR)/ power-down reset (PDR) circuitry is disabled.

An external power supply supervisor should monitor both the external 1.2 V and the external V_{DD} supply voltage, and should maintain the device in reset mode as long as they remain below a specified threshold. The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes allows to design low-power applications.

Figure 8. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP-1}/V_{CAP-2} stabilization

1. This figure is valid both whatever the internal reset mode (ON or OFF).

Figure 9. Startup in regulator OFF: fast V_{DD} slope - power-down reset risen before V_{CAP} ₁/ V_{CAP} ₂ stabilization

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	х	х	х	х	1.87	7.5	APB2 (max. 60 MHz)
USART2	х	х	х	х	х	x	1.87	3.75	APB1 (max. 30 MHz)
USART3	x	х	х	х	х	x	1.87	3.75	APB1 (max. 30 MHz)
UART4	x	-	х	-	х	-	1.87	3.75	APB1 (max. 30 MHz)
UART5	x	-	х	-	х	-	3.75	3.75	APB1 (max. 30 MHz)
USART6	x	х	х	х	х	x	3.75	7.5	APB2 (max. 60 MHz)

 Table 6. USART feature comparison

3.23 Serial peripheral interface (SPI)

The STM32F20x devices feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, while SPI2 and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.24 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, in half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx interfaces can be served by the DMA controller.

3.25 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

DocID15818 Rev 13

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	14	20	J3	PF4	I/O	FT	(4)	FSMC_A4, EVENTOUT	ADC3_IN14
-	-	-	15	21	K3	PF5	I/O	FT	(4)	FSMC_A5, EVENTOUT	ADC3_IN15
-	H9	10	16	22	G2	V _{SS}	S	-	-	-	-
-	-	11	17	23	G3	V _{DD}	S	-	-	-	-
-	-	-	18	24	K2	PF6	I/O	FT	(4)	TIM10_CH1, FSMC_NIORD, EVENTOUT	ADC3_IN4
-	-	-	19	25	K1	PF7	I/O	FT	(4)	TIM11_CH1,FSMC_NREG, EVENTOUT	ADC3_IN5
-	-	-	20	26	L3	PF8	I/O	FT	(4)	TIM13_CH1, FSMC_NIOWR, EVENTOUT	ADC3_IN6
-	-	-	21	27	L2	PF9	I/O	FT	(4)	TIM14_CH1, FSMC_CD, EVENTOUT	ADC3_IN7
-	-	-	22	28	L1	PF10	I/O	FT	(4)	FSMC_INTR, EVENTOUT	ADC3_IN8
5	E9	12	23	29	G1	PH0/OSC_IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN ⁽⁴⁾
6	F9	13	24	30	H1	PH1/OSC_OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT ⁽⁴⁾
7	E8	14	25	31	J1	NRST	I/O		-	-	_
8	G9	15	26	32	M2	PC0	I/O	FT	(4)	OTG_HS_ULPI_STP, EVENTOUT	ADC123_ IN10
9	F8	16	27	33	M3	PC1	I/O	FT	(4)	ETH_MDC, EVENTOUT	ADC123_ IN11
10	D7	17	28	34	M4	PC2	I/O	FT	(4)	SPI2_MISO, OTG_HS_ULPI_DIR, ETH_MII_TXD2, EVENTOUT	ADC123_ IN12
11	G8	18	29	35	M5	PC3	I/O	FT	(4)	SPI2_MOSI, I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, EVENTOUT	ADC123_ IN13
-	-	19	30	36	-	V _{DD}	S	-	-	-	-
12	-	20	31	37	M1	V _{SSA}	S	-	-		
-	-	-	-	-	N1	V _{REF-}	S	-	-	-	-
-	F7	21	32	38	P1	V _{REF+}	S	-	-	-	-

|--|

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	38	58	68	R8	PE7	I/O	FT	-	FSMC_D4,TIM1_ETR, EVENTOUT	-
-	-	39	59	69	P8	PE8	I/O	FT	-	FSMC_D5,TIM1_CH1N, EVENTOUT	-
-	-	40	60	70	P9	PE9	I/O	FT	-	FSMC_D6,TIM1_CH1, EVENTOUT	-
-	-	-	61	71	M9	V _{SS}	S		-	-	-
-	-	-	62	72	N9	V _{DD}	S		-	-	-
-	-	41	63	73	R9	PE10	I/O	FT	-	FSMC_D7,TIM1_CH2N, EVENTOUT	-
-	-	42	64	74	P10	PE11	I/O	FT	-	FSMC_D8,TIM1_CH2, EVENTOUT	-
-	-	43	65	75	R10	PE12	I/O	FT	-	FSMC_D9,TIM1_CH3N, EVENTOUT	-
-	-	44	66	76	N11	PE13	I/O	FT	-	FSMC_D10,TIM1_CH3, EVENTOUT	-
-	I	45	67	77	P11	PE14	I/O	FT	-	FSMC_D11,TIM1_CH4, EVENTOUT	-
-	-	46	68	78	R11	PE15	I/O	FT	-	FSMC_D12,TIM1_BKIN, EVENTOUT	-
29	H3	47	69	79	R12	PB10	I/O	FT	-	SPI2_SCK, I2S2_SCK, I2C2_SCL,USART3_TX,OT G_HS_ULPI_D3,ETH_MII_R X_ER,TIM2_CH3, EVENTOUT	-
30	J2	48	70	80	R13	PB11	I/O	FT	-	I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_RMII_TX_EN, ETH_MII_TX_EN, TIM2_CH4, EVENTOUT	-
31	J3	49	71	81	M10	V _{CAP_1}	S		-	-	-
32	-	50	72	82	N10	V _{DD}	S		-	-	-
-	-	-	-	83	M11	PH6	I/O	FT	-	I2C2_SMBA, TIM12_CH1, ETH_MII_RXD2, EVENTOUT	-

	Table 8. STM32F20x pin and ball definitions	(continued)
--	---	-------------

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	130	D13	PH15	I/O	FT	-	TIM8_CH3N, DCMI_D11, EVENTOUT	-
-	-	-	-	131	E14	PIO	I/O	FT	-	TIM5_CH4, SPI2_NSS, I2S2_WS, DCMI_D13, EVENTOUT	-
-	-	-	-	132	D14	PI1	I/O	FT	-	SPI2_SCK, I2S2_SCK, DCMI_D8, EVENTOUT	-
-	-	-	-	133	C14	PI2	I/O	FT	-	TIM8_CH4 ,SPI2_MISO, DCMI_D9, EVENTOUT	-
-	-	-	-	134	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI, I2S2_SD, DCMI_D10, EVENTOUT	-
-	-	-	-	135	D9	V _{SS}	S	-	-	-	-
-	I	-	-	136	C9	V _{DD}	S	-	I	-	-
49	A1	76	109	137	A14	PA14 (JTCK-SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
50	A2	77	110	138	A13	PA15 (JTDI)	I/O	FT	-	JTDI, SPI3_NSS, I2S3_WS,TIM2_CH1_ETR, SPI1_NSS, EVENTOUT	-
51	B3	78	111	139	B14	PC10	I/O	FT	-	SPI3_SCK, I2S3_SCK, UART4_TX, SDIO_D2, DCMI_D8, USART3_TX, EVENTOUT	-
52	C3	79	112	140	B13	PC11	I/O	FT	-	UART4_RX, SPI3_MISO, SDIO_D3, DCMI_D4,USART3_RX, EVENTOUT	-
53	A3	80	113	141	A12	PC12	I/O	FT	-	UART5_TX, SDIO_CK, DCMI_D9, SPI3_MOSI, I2S3_SD, USART3_CK, EVENTOUT	-
-	-	81	114	142	B12	PD0	I/O	FT	-	FSMC_D2,CAN1_RX, EVENTOUT	-
-	-	82	115	143	C12	PD1	I/O	FT	-	FSMC_D3, CAN1_TX, EVENTOUT	-

Table 8. STM32F20x pin and ball definitions (continued)

	FSMC							
Pins		•			LQFP100			
	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit				
PE5	-	A21	A21	-	Yes			
PE6	-	A22	A22	-	Yes			
PF0	A0	A0	-	-	-			
PF1	A1	A1	-	-	-			
PF2	A2	A2	-	-	-			
PF3	A3	A3	-	-	-			
PF4	A4	A4	-	-	-			
PF5	A5	A5	-	-	-			
PF6	NIORD	-	-	-	-			
PF7	NREG	-	-	-	-			
PF8	NIOWR	-	-	-	-			
PF9	CD	-	-	-	-			
PF10	INTR	-	-	-	-			
PF12	A6	A6	-	-	-			
PF13	A7	A7	-	-	-			
PF14	A8	A8	-	-	-			
PF15	A9	A9	-	-	-			
PG0	A10	A10	-	-	-			
PG1	-	A11	-	-	-			
PE7	D4	D4	DA4	D4	Yes			
PE8	D5	D5	DA5	D5	Yes			
PE9	D6	D6	DA6	D6	Yes			
PE10	D7	D7	DA7	D7	Yes			
PE11	D8	D8	DA8	D8	Yes			
PE12	D9	D9	DA9	D9	Yes			
PE13	D10	D10	DA10	D10	Yes			
PE14	D11	D11	DA11	D11	Yes			
PE15	D12	D12	DA12	D12	Yes			
PD8	D13	D13	DA13	D13	Yes			
PD9	D14	D14	DA14	D14	Yes			
PD10	D15	D15	DA15	D15	Yes			
PD11	-	A16	A16	CLE	Yes			
PD12	-	A17	A17	ALE	Yes			

Table 9. FSMC pin definition (continued)

Operating power supply range	ADC operation	Maximum Flash memory access frequency (f _{Flashmax})	Number of wait states at maximum CPU frequency (f _{CPUmax} = 120 MHz) ⁽¹⁾	I/O operation	FSMC_CLK frequency for synchronous accesses	Possible Flash memory operations
V _{DD} =1.8 to 2.1 V ⁽²⁾	Conversion time up to 1 Msps	16 MHz with no Flash memory wait state	7 ⁽³⁾	 Degraded speed performance No I/O compensation 	Up to 30 MHz	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1 Msps	18 MHz with no Flash memory wait state	6 ⁽³⁾	 Degraded speed performance No I/O compensation 	Up to 30 MHz	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2 Msps	24 MHz with no Flash memory wait state	4 ⁽³⁾	 Degraded speed performance I/O compensation works 	Up to 48 MHz	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽⁴⁾	Conversion time up to 2 Msps	30 MHz with no Flash memory wait state	3(3)	 Full-speed operation I/O compensation works 	$\begin{array}{c} - \mbox{ Up to} \\ 60\mbox{ MHz} \\ \mbox{when } \mbox{V}_{DD} = \\ 3.0\mbox{ to } 3.6\mbox{ V} \\ - \mbox{ Up to} \\ 48\mbox{ MHz} \\ \mbox{when } \mbox{V}_{DD} = \\ 2.7\mbox{ to } 3.0\mbox{ V} \end{array}$	32-bit erase and program operations

Table 15. Limitations depending on the operating power supply range

1. The number of wait states can be reduced by reducing the CPU frequency (see Figure 21).

 On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

3. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

4. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.

6.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A .

Symbol	Parameter	Min	Мах	Unit
t	V _{DD} rise time rate	20	∞	us/\/
۷DD	V _{DD} fall time rate	20	~	μ3/ ν

Table 17. Operating conditions at power-up / power-down (regulator ON)

6.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A .

Table 18. Operating conditions at power-up / power-down (regulator OF)	Table 18	3. Operating	conditions a	t power-up /	power-down	(regulator OF	F)
--	----------	--------------	--------------	--------------	------------	---------------	----

Symbol	Parameter	Conditions	Min	Мах	Unit
t	V _{DD} rise time rate	Power-up	20	8	
٩VDD	V _{DD} fall time rate	Power-down	20	8	
t	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	µs/V
'VCAP	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8	

Typical and maximum current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz and 3 wait states from 90 to 120 MHz).
- When the peripherals are enabled HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2, except is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM ⁽¹⁾

Symbol	Baramatar	Conditions		Тур	Ма	x ⁽²⁾	Unit
	Farameter	Conditions	HCLK	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			120 MHz	49	63	72	
			90 MHz	38	51	61	
			60 MHz	26	39	$ ax ^{(2)} Un C C C C C C $	
I _{DD}		(3)	30 MHz	14	27		
		External clock ⁽³⁾ , all peripherals enabled ⁽⁴⁾	25 MHz	11	24		
		F -	16 MHz ⁽⁵⁾	8	21		
			8 MHz	5	17	27	
			4 MHz	3	16	26	
	Supply current		2 MHz	2	15	25	m۸
	in Run mode		120 MHz	21	34	44	ША
			90 MHz	17	30	40	
			60 MHz	12	25	35	
		(3)	30 MHz	7	20	30	
		External clock ⁽³⁾ , all peripherals disabled	25 MHz	5	18	28	
		P -	16 MHz ⁽⁵⁾	4.0	17.0	27.0	
			8 MHz	2.5	15.5	25.5	
			4 MHz	2.0	14.7	24.8	
			2 MHz	1.6	14.5	24.6	

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

3. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. In this case HCLK = system clock/2.

Figure 35. ACC_{LSI} versus temperature

6.3.10 PLL characteristics

The parameters given in *Table 34* and *Table 35* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10 ⁽²⁾	MHz
f _{PLL_OUT}	PLL multiplier output clock	-	24	-	120	MHz
f _{PLL48_OUT}	48 MHz PLL multiplier output clock	-	-	-	48	MHz
f _{VCO_OUT}	PLL VCO output	-	192	-	432	MHz
t	PLL lock time	VCO freq = 192 MHz	75	-	200	116
LOCK		VCO freq = 432 MHz	100	-	300	μο

Table 34. Main PLL characteristics

Figure 49. Ethernet SMI timing diagram

Table 63. Dyi	namics characteris	tics: Ethernet M	MAC signals for SMI
---------------	--------------------	------------------	---------------------

Symbol	Rating	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time (2.38 MHz)	411	420	425	ns
t _{d(MDIO)}	MDIO write data valid time	6	10	13	ns
t _{su(MDIO)}	Read data setup time	12	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	ns

Table 64 gives the list of Ethernet MAC signals for the RMII and Figure 50 shows the corresponding timing diagram.

	-		-		
Symbol	Rating	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	1	-	-	
t _{ih(RXD)}	Receive data hold time	1.5	-	-	
t _{su(CRS)}	Carrier sense set-up time	0	-	-	200
t _{ih(CRS)}	Carrier sense hold time	2	-	-	115
t _{d(TXEN)}	Transmit enable valid delay time	9	11	13	
t _{d(TXD)}	Transmit data valid delay time	9	11.5	14	

DocID15818 Rev 13

being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.16 does not affect the ADC accuracy.

- Example of an actual transfer curve 1.
- 2. Ideal transfer curve
- End point correlation line. 3.
- E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. 4. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

Refer to Table 66 for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$ and C_{ADC} 1.

Symbol	Parameter	Min	Тур	Max	Unit	Comments
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output excursion
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V	of the DAC.
. (4)	DAC DC V _{REF} current	-	170	240		With no load, worst code (0x800) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
VREF+`´	mode (Standby mode)	-	50	75	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
	DAC DC V _{DDA} current	-	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	consumption in quiescent mode ⁽³⁾	-	475	625	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	and the value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error	-	-	±10	mV	-
Offset ⁽⁴⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	(0x800) and the ideal value = V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} ⁽⁴⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	3	6	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$

Table 68. DAC characteristics (continued)

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings (1/2)	Table 72. Asynchronous	non-multiplexed SRAM/PSRAM	M/NOR read timings ⁽¹⁾⁽²⁾
--	------------------------	----------------------------	--------------------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0.5	2.5	ns
t _{w(NOE)}	FSMC_NOE low time	2T _{HCLK} - 1	2T _{HCLK} + 0.5	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	4	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0.5	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} + 0.5	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	T _{HCLK} + 2.5	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2.5	ns
t _{w(NADV})	FSMC_NADV low time	-	T _{HCLK} – 0.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Symbol	Parameter	Min	Мах	Unit
t _{w(NIOWR)}	FSMC_NIOWR low width	8T _{HCLK} - 0.5	-	ns
t _{v(NIOWR-D)}	FSMC_NIOWR low to FSMC_D[15:0] valid	-	5Т _{НСLК} - 1	ns
t _{h(NIOWR-D)}	FSMC_NIOWR high to FSMC_D[15:0] invalid	8T _{HCLK} - 3	-	ns
t _{d(NCE4_1-NIOWR)}	FSMC_NCE4_1 low to FSMC_NIOWR valid	-	5T _{HCLK} + 1.5	ns
t _{h(NCEx-NIOWR)}	FSMC_NCEx high to FSMC_NIOWR invalid	5T _{HCLK}	-	ns
t _{d(NIORD-NCEx)}	FSMC_NCEx low to FSMC_NIORD valid	-	5T _{HCLK} + 1	ns
t _{h(NCEx-NIORD)}	FSMC_NCEx high to FSMC_NIORD) valid	5Т _{НСLК} – 0.5	-	ns
t _{w(NIORD)}	FSMC_NIORD low width	8T _{HCLK} + 1	-	ns
t _{su(D-NIORD)}	FSMC_D[15:0] valid before FSMC_NIORD high	9.5	-	ns
t _{d(NIORD-D)}	FSMC_D[15:0] valid after FSMC_NIORD high	0	-	ns

TADIE OT. SWITCHING CHARACTERISTICS TOFFG GATU/GF TEAD AND WHITE CYCLES IN I/O SDACE' //	Table 81. Switching	characteristics for PC	Card/CF read and write	cycles in I/O space ⁽¹⁾⁽²⁾
--	---------------------	------------------------	------------------------	---------------------------------------

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

NAND controller waveforms and timings

Figure 71 through *Figure 74* represent synchronous waveforms, together with *Table 82* and *Table 83* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x01;
- COM.FSMC_WaitSetupTime = 0x03;
- COM.FSMC_HoldSetupTime = 0x02;
- COM.FSMC_HiZSetupTime = 0x01;
- ATT.FSMC SetupTime = 0x01;
- ATT.FSMC_WaitSetupTime = 0x03;
- ATT.FSMC_HoldSetupTime = 0x02;
- ATT.FSMC_HiZSetupTime = 0x01;
- Bank = FSMC_Bank_NAND;
- MemoryDataWidth = FSMC_MemoryDataWidth_16b;
- ECC = FSMC_ECC_Enable;
- ECCPageSize = FSMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

In all timing tables, the T_{HCLK} is the HCLK clock period.

Figure 73. NAND controller waveforms for common memory read access

Figure 74. NAND controller waveforms for common memory write access

Table 82. Switching characteristics for NAND Flash read cycles⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FSMC_NOE low width	4T _{HCLK} - 1	4T _{HCLK} + 2	ns
t _{su(D-NOE)}	FSMC_D[15-0] valid data before FSMC_NOE high	9	-	ns
t _{h(NOE-D})	FSMC_D[15-0] valid data after FSMC_NOE high	3	-	ns
t _{d(ALE-NOE)}	FSMC_ALE valid before FSMC_NOE low	-	3T _{HCLK}	ns
t _{h(NOE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} + 2	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.8740
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.6890	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ССС	-	-	0.080	-	-	0.0031

Table 91. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

9 Revision history

Dale	Revision	Changes				
05-Jun-2009	1	Initial release.				
09-Oct-2009	2	 Document status promoted from Target specification to Preliminary data. In Table 8: STM32F20x pin and ball definitions: Note 4 updated V_{DD_SA} and V_{DD_3} pins inverted (Figure 12: STM32F20x LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout and Figure 14: STM32F20x LQFP176 pinout corrected accordingly). Section : In order to meet environmental requirements, ST offers the devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. changed to LQFP with no exposed pad. 				
01-Feb-2010	3	LFBGA144 package removed. STM32F203xx part numbers removed. Part numbers with 128 and 256 Kbyte Flash densities added. Encryption features removed. PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPER- RTC renamed to PI8-RTC_AF2.				
13-Jul-2010	4	 Renamed high-speed SRAM, system SRAM. Removed combination: 128 KBytes Flash memory in LQFP144. Added UFBGA176 package. Added note 1 related to LQFP176 package in <i>Table 2, Figure 14</i>, and <i>Table 96</i>. Added information on ART accelerator and audio PLL (PLLI2S). Added <i>Table 6: USART feature comparison</i>. Several updates on <i>Table 8: STM32F20x pin and ball definitions</i> and <i>Table 10: Alternate function mapping</i>. ADC, DAC, oscillator, RTC_AF, WKUP and VBUS signals removed from alternate functions and moved to the "other functions" column in <i>Table 8: STM32F20x pin and ball definitions</i>. TRACESWO added in <i>Figure 4: STM32F20x block diagram, Table 8: STM32F20x pin and ball definition</i> mapping. XTAL oscillator frequency updated on cover page, in <i>Figure 4: STM32F20x block diagram</i> and in <i>Section 3.11: External interrupt/event controller (EXTI)</i>. Updated list of peripherals used for boot mode in <i>Section 3.13: Boot modes</i>. Added Regulator bypass mode in <i>Section 3.16: Voltage regulator</i>, and <i>Section 6.3.4: Operating conditions at power-up / power-down (regulator OFF)</i>. Updated Section 3.17: <i>Real-time clock (RTC), backup SRAM and backup registers</i>. Added Note Note: in <i>Section 3.23: Serial peripheral interface (SPI)</i>. 				

Table 97.	Document	revision	history
-----------	----------	----------	---------

