

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205zgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.20.4	Independent watchdog	34
	3.20.5	Window watchdog	34
	3.20.6	SysTick timer	34
3.21	Inter-ir	ntegrated circuit interface (I ² C)	34
3.22		sal synchronous/asynchronous receiver transmitters s/USARTs)	34
3.23	Serial	peripheral interface (SPI)	35
3.24	Inter-ir	ntegrated sound (I ² S)	35
3.25	SDIO		35
3.26	Ethern	et MAC interface with dedicated DMA and IEEE 1588 support	36
3.27	Contro	Iller area network (CAN)	36
3.28	Univer	sal serial bus on-the-go full-speed (OTG_FS)	37
3.29	Univer	sal serial bus on-the-go high-speed (OTG_HS)	37
3.30	Audio	PLL (PLLI2S)	38
3.31		camera interface (DCMI)	
3.32	True ra	andom number generator (RNG)	38
3.33		(general-purpose inputs/outputs)	
3.34	ADCs	(analog-to-digital converters)	39
3.35	DAC (digital-to-analog converter)	39
3.36	Tempe	erature sensor	39
3.37	Serial	wire JTAG debug port (SWJ-DP)	40
3.38	Embeo	dded Trace Macrocell™	40
Pino	uts and	pin description	41
Mem	ory ma	pping	66
Elect	trical ch	naracteristics	68
6.1	Param	eter conditions	68
	6.1.1	Minimum and maximum values	68
	6.1.2	Typical values	68
	6.1.3	Typical curves	
	6.1.4		
	6.1.5	Pin input voltage	
	6.1.6	Power supply scheme	69

4

5

6

2.1 Full compatibility throughout the family

The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members are fully pin-to-pin, software and feature compatible, allowing the user to try different memory densities and peripherals for a greater degree of freedom during the development cycle.

The STM32F205xx and STM32F207xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F205xx and STM32F207xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x family remains simple as only a few pins are impacted.

Figure 1, *Figure 2* and *Figure 3* provide compatible board designs between the STM32F20x and the STM32F10xxx family.

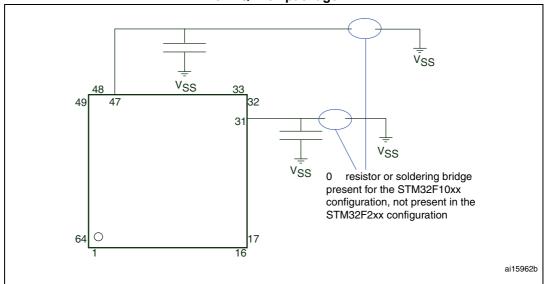


Figure 1. Compatible board design between STM32F10xx and STM32F2xx for LQFP64 package

3.4 Embedded Flash memory

The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes, 512 Kbytes, 768 Kbytes or 1 Mbyte available for storing programs and data.

The devices also feature 512 bytes of OTP memory that can be used to store critical user data such as Ethernet MAC addresses or cryptographic keys.

3.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.6 Embedded SRAM

All STM32F20x products embed:

- Up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0 wait states
- 4 Kbytes of backup SRAM.

The content of this area is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

3.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

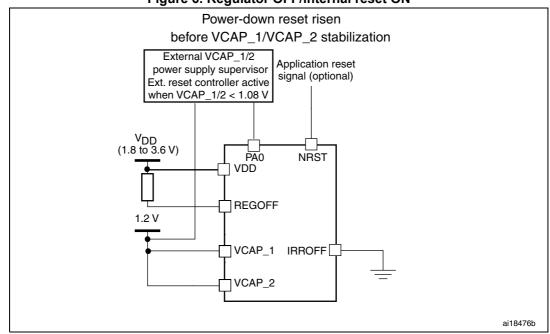


Figure 6. Regulator OFF/internal reset ON

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is faster than the time for V_{DD} to reach 1.8 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach 1.08 V and until V_{DD} reaches 1.8 V (see *Figure 8*).
- Otherwise, If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is slower than the time for V_{DD} to reach 1.8 V, then PA0 should be asserted low externally (see *Figure 9*).
- If V_{CAP_1} and V_{CAP_2} go below 1.08 V and V_{DD} is higher than 1.8 V, then a reset must be asserted on PA0 pin.

Regulator OFF/internal reset OFF

On WLCSP64+2 package, this mode activated by connecting REGOFF to V_{SS} and IRROFF to V_{DD}. IRROFF cannot be activated in conjunction with REGOFF. This mode is available only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source through V_{CAP_1} and V_{CAP_2} pins. In this mode, the integrated power-on reset (POR)/ power-down reset (PDR) circuitry is disabled.

An external power supply supervisor should monitor both the external 1.2 V and the external V_{DD} supply voltage, and should maintain the device in reset mode as long as they remain below a specified threshold. The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes allows to design low-power applications.

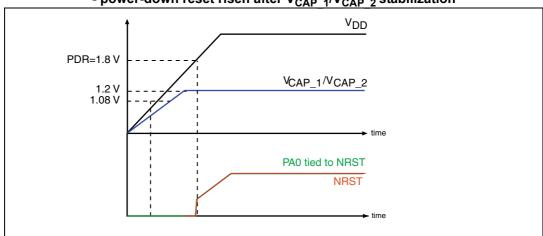
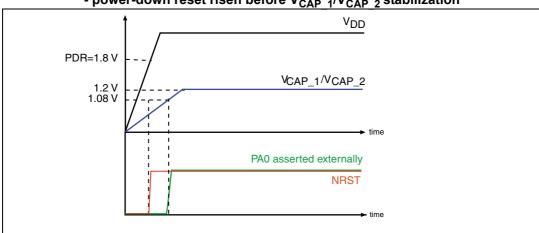



Figure 8. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP-1}/V_{CAP-2} stabilization

1. This figure is valid both whatever the internal reset mode (ON or OFF).

Figure 9. Startup in regulator OFF: fast V_{DD} slope - power-down reset risen before V_{CAP} ₁/ V_{CAP} ₂ stabilization

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	130	D13	PH15	I/O	FT	-	TIM8_CH3N, DCMI_D11, EVENTOUT	-
-	-	-	-	131	E14	PIO	I/O	FT	-	TIM5_CH4, SPI2_NSS, I2S2_WS, DCMI_D13, EVENTOUT	-
-	-	-	-	132	D14	PI1	I/O	FT	-	SPI2_SCK, I2S2_SCK, DCMI_D8, EVENTOUT	-
-	-	-	-	133	C14	PI2	I/O	FT	-	TIM8_CH4 ,SPI2_MISO, DCMI_D9, EVENTOUT	-
-	-	-	-	134	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI, I2S2_SD, DCMI_D10, EVENTOUT	-
-	-	-	-	135	D9	V _{SS}	S	-	-	-	-
-	-	-	-	136	C9	V _{DD}	S	-	-	-	-
49	A1	76	109	137	A14	PA14 (JTCK-SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
50	A2	77	110	138	A13	PA15 (JTDI)	I/O	FT	-	JTDI, SPI3_NSS, I2S3_WS,TIM2_CH1_ETR, SPI1_NSS, EVENTOUT	-
51	В3	78	111	139	B14	PC10	I/O	FT	-	SPI3_SCK, I2S3_SCK, UART4_TX, SDIO_D2, DCMI_D8, USART3_TX, EVENTOUT	-
52	C3	79	112	140	B13	PC11	I/O	FT	-	UART4_RX, SPI3_MISO, SDIO_D3, DCMI_D4,USART3_RX, EVENTOUT	-
53	A3	80	113	141	A12	PC12	I/O	FT	-	UART5_TX, SDIO_CK, DCMI_D9, SPI3_MOSI, I2S3_SD, USART3_CK, EVENTOUT	-
-	-	81	114	142	B12	PD0	I/O	FT	-	FSMC_D2,CAN1_RX, EVENTOUT	-
-	-	82	115	143	C12	PD1	I/O	FT	-	FSMC_D3, CAN1_TX, EVENTOUT	-

Table 8. STM32F20x pin and ball definitions (continued)

6.1.6 Power supply scheme

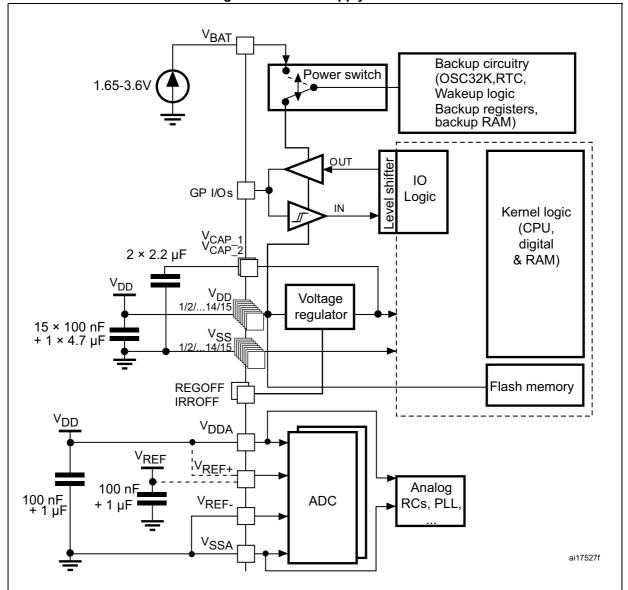


Figure 19. Power supply scheme

1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

2. To connect REGOFF and IRROFF pins, refer to Section 3.16: Voltage regulator.

3. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.

4. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pin.

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB, to ensure good device operation. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect device operation.

DocID15818 Rev 13

	Table To. Eliminations depending on the operating power supply range						
Operating power supply range	ADC operation	Maximum Flash memory access frequency (f _{Flashmax})	Number of wait states at maximum CPU frequency (f _{CPUmax} = 120 MHz) ⁽¹⁾	I/O operation	FSMC_CLK frequency for synchronous accesses	Possible Flash memory operations	
V _{DD} =1.8 to 2.1 V ⁽²⁾	Conversion time up to 1 Msps	16 MHz with no Flash memory wait state	7 ⁽³⁾	 Degraded speed performance No I/O compensation 	Up to 30 MHz	8-bit erase and program operations only	
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1 Msps	18 MHz with no Flash memory wait state	6 ⁽³⁾	 Degraded speed performance No I/O compensation 	Up to 30 MHz	16-bit erase and program operations	
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2 Msps	24 MHz with no Flash memory wait state	4 ⁽³⁾	 Degraded speed performance I/O compensation works 	Up to 48 MHz	16-bit erase and program operations	
V _{DD} = 2.7 to 3.6 V ⁽⁴⁾	Conversion time up to 2 Msps	30 MHz with no Flash memory wait state	3(3)	 Full-speed operation I/O compensation works 	$\begin{array}{l} - \mbox{ Up to } \\ 60 \mbox{ MHz } \\ \mbox{ when } \mbox{ V}_{DD} = \\ 3.0 \mbox{ to } 3.6 \mbox{ V} \\ - \mbox{ Up to } \\ 48 \mbox{ MHz } \\ \mbox{ when } \mbox{ V}_{DD} = \\ 2.7 \mbox{ to } 3.0 \mbox{ V} \end{array}$	32-bit erase and program operations	

Table 15. Limitations depending on the operating power supply range

1. The number of wait states can be reduced by reducing the CPU frequency (see Figure 21).

 On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

3. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

4. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.

6.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 19* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
V _{PVD}	Programmable voltage detector level selection	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
		PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	3.02	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
V _{POR/PDR}	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
	Brownout level 1	Falling edge	2.13	2.19	2.24	V
V _{BOR1}	threshold	Rising edge	2.23	2.29	2.33	V

		ning from Flash men		Тур	,	ax ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK}	-	T _A = 85 °C	T _A = 105 °C	Unit	
			120 MHz	61	81	93		
			90 MHz	48	68	80		
			60 MHz	33	53	65		
		(2)	30 MHz	18	38	50		
		External clock ⁽²⁾ , all peripherals enabled ⁽³⁾	25 MHz	14	34	46		
			16 MHz ⁽⁴⁾	10	30	42		
			8 MHz	6	26	38		
			4 MHz	4	24	36		
	Supply current				2 MHz	3	23	35
I _{DD}	in Run mode		120 MHz	33	54	66	mA	
			90 MHz	27	47	59		
			60 MHz	19	39	51		
			30 MHz	11	31	43	1	
		External clock ⁽²⁾ , all peripherals disabled	25 MHz	8	28	41		
			16 MHz ⁽⁴⁾	6	26	38		
			8 MHz	4	24	36		
			4 MHz	3	23	35		
			2 MHz	2	23	34		

Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

1. Guaranteed by characterization results, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

3. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

4. In this case HCLK = system clock/2.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 26*. The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled unless otherwise mentioned
 - The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with one peripheral clocked on (with only the clock applied)
- The code is running from Flash memory and the Flash memory access time is equal to 3 wait states at 120 MHz
- Prefetch and Cache ON
- When the peripherals are enabled, HCLK = 120MHz, f_{PCLK1} = $f_{HCLK}/4,$ and f_{PCLK2} = $f_{HCLK}/2$
- The typical values are obtained for V_{DD} = 3.3 V and T_A= 25 °C, unless otherwise specified.

	Peripheral ⁽¹⁾	Typical consumption at 25 °C	Unit
	GPIO A	0.45	
	GPIO B	0.43	
	GPIO C	0.46	
AHB1	GPIO D	0.44	
	GPIO E	0.44	
	GPIO F	0.42	
	GPIO G	0.44	
	GPIO H	0.42	
	GPIO I	0.43	
	OTG_HS + ULPI	3.64	
	CRC	1.17	mA
AHB2	BKPSRAM	0.21	
	DMA1	2.76	
	DMA2	2.85	
	ETH_MAC + ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	2.99	
	OTG_FS	3.16	
	DCMI	0.60	
AHB3	FSMC	1.74	

 Table 26. Peripheral current consumption

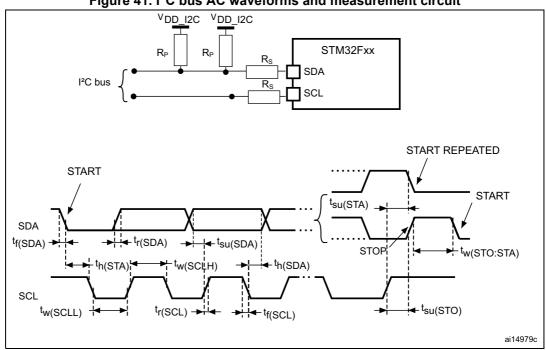


Figure 41. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. $V_{DD_{12C}}$ is the I²C bus power supply.

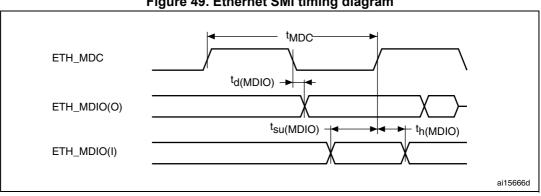

f (kU-)	I2C_CCR value
f _{SCL} (kHz)	R _P = 4.7 kΩ
400	0x8019
300	0x8021
200	0x8032
100	0x0096
50	0x012C
20	0x02EE

Table 53. SCL frequency (f_{PCLK1}= 30 MHz., V_{DD} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I²C speed,

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

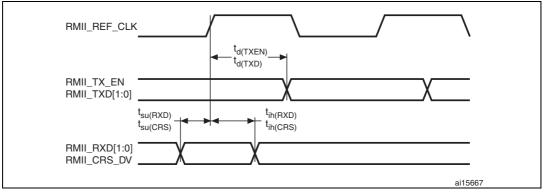
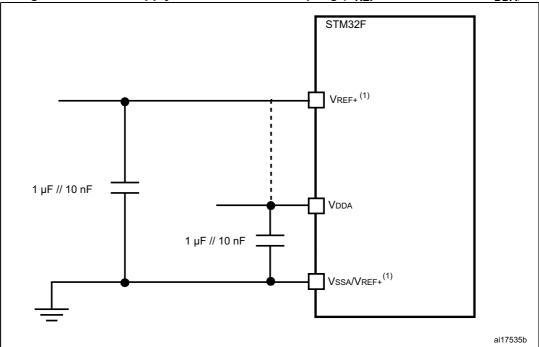
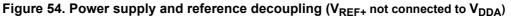

Figure 49. Ethernet SMI timing diagram

Table 63. Dynamics characteristics	Ethernet MAC signals for SMI
------------------------------------	------------------------------

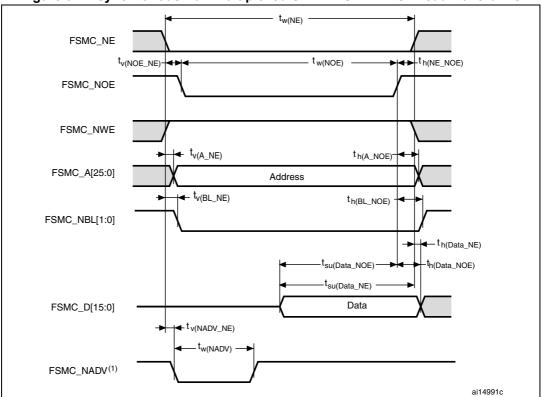
Symbol	Rating	Min	Тур	Мах	Unit
t _{MDC}	MDC cycle time (2.38 MHz)	411	420	425	ns
t _{d(MDIO)}	MDIO write data valid time	6	10	13	ns
t _{su(MDIO)}	Read data setup time	12	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	ns

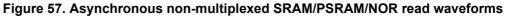
Table 64 gives the list of Ethernet MAC signals for the RMII and Figure 50 shows the corresponding timing diagram.


	-		•		
Symbol	Rating	Min	Тур	Мах	Unit
t _{su(RXD)}	Receive data setup time	1	-	-	
t _{ih(RXD)}	Receive data hold time	1.5	-	-	
t _{su(CRS)}	Carrier sense set-up time	0	-	-	20
t _{ih(CRS)}	Carrier sense hold time	-	-	ns	
t _{d(TXEN)}	Transmit enable valid delay time 9 11				
t _{d(TXD)}	Transmit data valid delay time	9	11.5	14	


DocID15818 Rev 13

General PCB design guidelines


Power supply decoupling should be performed as shown in *Figure 54* or *Figure 55*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.



 V_{REF+} and V_{REF} inputs are both available on UFBGA176 package. V_{REF+} is also available on all packages except for LQFP64. When V_{REF+} and V_{REF} are not available, they are internally connected to V_{DDA} and V_{SSA}.

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

	(1)(2)
Table 72. Asynchronous non-multi	plexed SRAM/PSRAM/NOR read timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0.5	2.5	ns
t _{w(NOE)}	FSMC_NOE low time	2T _{HCLK} - 1	2T _{HCLK} + 0.5	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	4	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0.5	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} + 0.5	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	T _{HCLK} + 2.5	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2.5	ns
t _{w(NADV})	FSMC_NADV low time	-	T _{HCLK} – 0.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

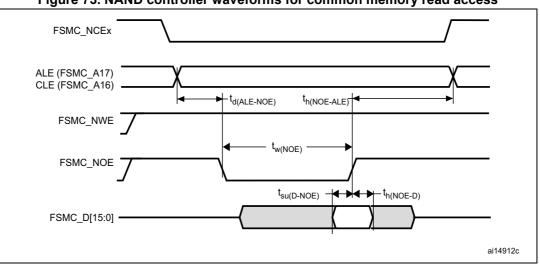


Figure 73. NAND controller waveforms for common memory read access

Figure 74. NAND controller waveforms for common memory write access

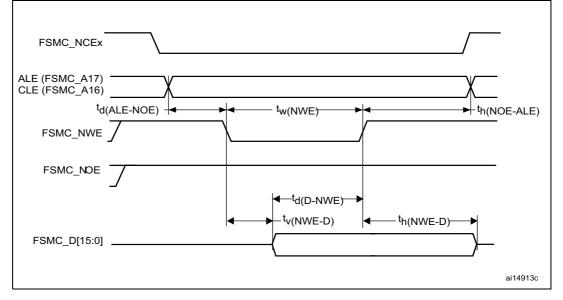
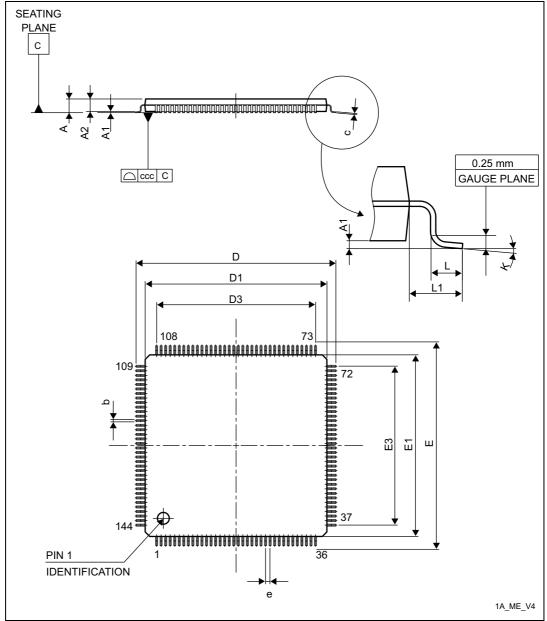


Table 82. Switching characteristics for NAND Flash read cycles⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(N0E)}	FSMC_NOE low width	4T _{HCLK} - 1	4T _{HCLK} + 2	ns
t _{su(D-NOE)}	FSMC_D[15-0] valid data before FSMC_NOE high	9	-	ns
t _{h(NOE-D})	FSMC_D[15-0] valid data after FSMC_NOE high	3	-	ns
t _{d(ALE-NOE)}	FSMC_ALE valid before FSMC_NOE low	-	3T _{HCLK}	ns
t _{h(NOE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} + 2	-	ns


1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

7.4 LQFP144 package information

Figure 84. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

O mark of	millimeters				inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.8740	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	-	17.500	-	-	0.6890	-	
Е	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	-	17.500	-	-	0.6890	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 91. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Table 93. UFBGA176+25, - 201-ball, 10 x 10 mm, 0.65 mm pitch,ultra fine pitch ball grid array package mechanical data (continued)

millimeters			inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 90. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 94. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Data		97. Document revision history (continued)
Date	Revision	Changes
24-Apr-2012	9 (continued)	Removed support of I2C for OTG PHY in Section 3.29: Universal serial bus on-the-go high-speed (OTG_HS). Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 8: STM32F20x pin and ball definitions and Table 10: Alternate function mapping. Renamed PH10 alternate function into TIM5_CH1 in Table 10: Alternate function mapping. Added Table 9: FSMC pin definition. Updated Note 1 in Table 14: General operating conditions, Note 2 in Table 15: Limitations depending on the operating power supply range, and Note 1 below Figure 21: Number of wait states versus fCPU and VDD range. Updated VpOR/PDR in Table 19: Embedded reset and power control block characteristics. Updated typical values in Table 24: Typical and maximum current consumptions in Standby mode and Table 25: Typical and maximum current consumptions in VBAT mode. Updated Table 30: HSE 4-26 MHz oscillator characteristics and Table 31: LSE oscillator characteristics (TaSE = 32.768 kHz). Updated Table 30: HSE 4-26 MHz oscillator characteristics and Table 31: LSE oscillator characteristics, Table 38: Flash memory programming, and Table 39: Flash memory programming with VPP. Updated Section : Output driving current. Updated Note 3 and removed note related to minimum hold time value in Table 52: I2C characteristics. Updated Note 1, C _{ADC} , I _{VREF+} , and I _{VDDA} in Table 66: ADC characteristics. Updated Note 1 in Table 67: ADC accuracy. Updated Note 1 in Table 68: DAC characteristics. Updated Note 1 in Table 67: ADC accuracy. Updated Note 3 and note concerning ADC accuracy vs. negative injection current in Table 67: ADC accuracy. Updated Note 1 in Table 68: DAC characteristics. Updated Section Figure 88: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 0.6 mm, package outlin

Table 97. Document revision history (continued)

