

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205zgt6v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.20.4	Independent watchdog
	3.20.5	Window watchdog
	3.20.6	SysTick timer
3.21	Inter-in	tegrated circuit interface (I ² C)
3.22	Univer: (UART	sal synchronous/asynchronous receiver transmitters s/USARTs)
3.23	Serial	peripheral interface (SPI)
3.24	Inter-in	Itegrated sound (I ² S)
3.25	SDIO	
3.26	Ethern	et MAC interface with dedicated DMA and IEEE 1588 support 36
3.27	Contro	Iler area network (CAN)
3.28	Univer	sal serial bus on-the-go full-speed (OTG_FS)
3.29	Univer	sal serial bus on-the-go high-speed (OTG_HS)
3.30	Audio	PLL (PLLI2S)
3.31	Digital	camera interface (DCMI)
3.32	True ra	andom number generator (RNG)
3.33	GPIOs	(general-purpose inputs/outputs) 38
3.34	ADCs	(analog-to-digital converters)
3.35	DAC (digital-to-analog converter)
3.36	Tempe	rature sensor
3.37	Serial	wire JTAG debug port (SWJ-DP) 40
3.38	Embec	lded Trace Macrocell™
Pino	uts and	pin description
Mem	ory ma	pping
Elect	trical ch	naracteristics
6.1	Param	eter conditions
	6.1.1	Minimum and maximum values68
	6.1.2	Typical values
	6.1.3	Typical curves
	6.1.4	Loading capacitor
	6.1.5	Pin input voltage68
	6.1.6	Power supply scheme

4

5

6

Figure 5. Multi-AHB matrix

3.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART and UART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC.

3.9 Flexible static memory controller (FSMC)

The FSMC is embedded in all STM32F20x devices. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash.

Functionality overview:

- Write FIFO
- Code execution from external memory except for NAND Flash and PC Card
- Maximum frequency (f_{HCLK}) for external access is 60 MHz

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.10 Nested vectored interrupt controller (NVIC)

The STM32F20x devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M3.

The NVIC main features are the following:

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

DocID15818 Rev 13

Figure 6. Regulator OFF/internal reset ON

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is faster than the time for V_{DD} to reach 1.8 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach 1.08 V and until V_{DD} reaches 1.8 V (see *Figure 8*).
- Otherwise, If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is slower than the time for V_{DD} to reach 1.8 V, then PA0 should be asserted low externally (see *Figure 9*).
- If V_{CAP_1} and V_{CAP_2} go below 1.08 V and V_{DD} is higher than 1.8 V, then a reset must be asserted on PA0 pin.

Regulator OFF/internal reset OFF

On WLCSP64+2 package, this mode activated by connecting REGOFF to V_{SS} and IRROFF to V_{DD}. IRROFF cannot be activated in conjunction with REGOFF. This mode is available only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source through V_{CAP_1} and V_{CAP_2} pins. In this mode, the integrated power-on reset (POR)/ power-down reset (PDR) circuitry is disabled.

An external power supply supervisor should monitor both the external 1.2 V and the external V_{DD} supply voltage, and should maintain the device in reset mode as long as they remain below a specified threshold. The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes allows to design low-power applications.

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control timer features are shared with those of the standard TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.20.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F20x devices (see *Table 5* for differences).

TIM2, TIM3, TIM4, TIM5

The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

They can also be used as simple time bases.

3.20.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

DocID15818 Rev 13

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE3	PE2	PE1	PE0	PB8	PB5	PG14	PG13	PB4	PB3	PD7	PC12	PA15	PA14	PA13
в	PE4	PE5	PE6	PB9	PB7	PB6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
с	VBAT	PI7	PI6	PI5	VDD	RFU	VDD	VDD	VDD	PG9	PD5	PD1	PI3	Pl2	PA11
D	PC13- TAMP1	PI8- TAMP2	PI9	PI4	VSS	BOOT0	VSS	VSS	VSS	PD4	PD3	PD2	PH15	PI1	PA10
Е	PC14- OSC32_IN	PF0	PI10	PI11								PH13	PH14	P10	PA9
F	PC15- OSC32_OUT	VSS	VDD	PH2		VSS	VSS	VSS	VSS	VSS		VSS	VCAP_2	PC9	PA8
G	PH0- OSC_IN	VSS	VDD	PH3		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PC8	PC7
н	PH1- OSC_OUT	PF2	PF1	PH4		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PG8	PC6
J	NRST	PF3	PF4	PH5		VSS	VSS	VSS	VSS	VSS		VDD	VDD	PG7	PG6
к	PF7	PF6	PF5	VDD		VSS	VSS	VSS	VSS	VSS		PH12	PG5	PG4	PG3
L	PF10	PF9	PF8	REGOFF								PH11	PH10	PD15	PG2
М	VSSA	PC0	PC1	PC2	PC3	PB2	PG1	VSS	VSS	VCAP_1	PH6	PH8	PH9	PD14	PD13
N	VREF-	PA1	PA0- WKUP	PA4	PC4	PF13	PG0	VDD	VDD	VDD	PE13	PH7	PD12	PD11	PD10
Ρ	VREF+	PA2	PA6	PA5	PC5	PF12	PF15	PE8	PE9	PE11	PE14	PB12	PB13	PD9	PD8
R	VDDA	PA3	PA7	PB1	PB0	PF11	PF14	PE7	PE10	PE12	PE15	PB10	PB11	PB14	PB15

Figure 15. STM32F20x UFBGA176 ballout

1. RFU means "reserved for future use". This pin can be tied to $V_{\text{DD}}, V_{\text{SS}}$ or left unconnected.

2. The above figure shows the package top view.

Table 7. Leo	end/abbreviations	used in	the	pinout	table
10.010 11 202				pinoat	

Name	Abbreviation	Definition						
Pin name	Unless otherwise reset is the same	specified in brackets below the pin name, the pin function during and after as the actual pin name						
	S	Supply pin						
Pin type	I	Input only pin						
	I/O	Input/ output pin						
	FT	5 V tolerant I/O						
I/O structure	ТТа	3.3 V tolerant I/O						
NO structure	В	Dedicated BOOT0 pin						
	RST	Bidirectional reset pin with embedded weak pull-up resistor						
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset						
Alternate functions	Functions selected	d through GPIOx_AFR registers						
Additional functions	Functions directly	selected/enabled through peripheral registers						

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
38	F2	64	97	116	G15	PC7	I/O	FT	-	I2S3_MCK, TIM8_CH2, SDIO_D7, USART6_RX, DCMI_D1, TIM3_CH2, EVENTOUT	-
39	F3	65	98	117	G14	PC8	I/O	FT	-	TIM8_CH3,SDIO_D0, TIM3_CH3, USART6_CK, DCMI_D2, EVENTOUT	-
40	D1	66	99	118	F14	PC9	I/O	FT	-	I2S2_CKIN, I2S3_CKIN, MCO2, TIM8_CH4, SDIO_D1, I2C3_SDA, DCMI_D3, TIM3_CH4, EVENTOUT	-
41	E2	67	100	119	F15	PA8	I/O	FT	-	MCO1, USART1_CK, TIM1_CH1, I2C3_SCL, OTG_FS_SOF, EVENTOUT	-
42	E3	68	101	120	E15	PA9	I/O	FT	-	USART1_TX, TIM1_CH2, I2C3_SMBA, DCMI_D0, EVENTOUT	OTG_FS_ VBUS
43	D3	69	102	121	D15	PA10	I/O	FT	-	USART1_RX, TIM1_CH3, OTG_FS_ID,DCMI_D1, EVENTOUT	-
44	D2	70	103	122	C15	PA11	I/O	FT	-	USART1_CTS, CAN1_RX, TIM1_CH4,OTG_FS_DM, EVENTOUT	-
45	C1	71	104	123	B15	PA12	I/O	FT	-	USART1_RTS, CAN1_TX, TIM1_ETR, OTG_FS_DP, EVENTOUT	-
46	В2	72	105	124	A15	PA13 (JTMS-SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
47	C2	73	106	125	F13	V _{CAP_2}	S	-	-	-	-
-	B1	74	107	126	F12	V _{SS}	S	-	-	-	
48	A8	75	108	127	G13	V _{DD}	S	-	-	-	-
-	-	-	-	128	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, EVENTOUT	-
-	-	-	-	129	E13	PH14	I/O	FT	-	TIM8_CH2N, DCMI_D4, EVENTOUT	-

Table 8. STM32F20x	pin and ball definition	s (continued)
		0 (0011011000)

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	98	142	170	A3	PE1	I/O	FT	-	FSMC_NBL1, DCMI_D3, EVENTOUT	-
-	I	-	-	-	D5	V _{SS}	S	-	1	-	_
63	D8	-	-	-	-	V _{SS}	S	-	-	-	-
-	-	99	143	171	C6	RFU	-	-	(7)	-	-
64	D9	100	144	172	C5	V _{DD}	S	-	-	-	-
-	-	-	-	173	D4	Pl4	I/O	FT	-	TIM8_BKIN, DCMI_D5, EVENTOUT	-
-	I	-	-	174	C4	PI5	I/O	FT	-	TIM8_CH1, DCMI_VSYNC, EVENTOUT	-
-	-	-	-	175	C3	Pl6	I/O	FT	-	TIM8_CH2, DCMI_D6, EVENTOUT	-
-	-	-	-	176	C2	PI7	I/O	FT	-	TIM8_CH3, DCMI_D7, EVENTOUT	-
-	C8	-	-	-	-	IRROFF	I/O	-	-	-	_

Table 8. STM32F20x pin and ball definitions (continued)

1. Function availability depends on the chosen device.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

 Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to V_{DD} (Regulator OFF), then PA0 is used as an internal Reset (active low).

6. FSMC_NL pin is also named FSMC_NADV on memory devices.

7. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

Table 9. FSMC pin definition

Dine	FSMC						
FIIIS	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFF100		
PE2	-	A23	A23	-	Yes		
PE3	-	A19	A19	-	Yes		
PE4	-	A20	A20	-	Yes		

6.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A .

Symbol	Parameter	Min	Мах	Unit	
t	V _{DD} rise time rate	20	∞	us/\/	
۷DD	V _{DD} fall time rate	20	~	μs/v	

Table 17. Operating conditions at power-up / power-down (regulator ON)

6.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A .

Table 18. Operating conditions at power-up / power-down (regulator OF)	Table 18	3. Operating	conditions a	t power-up /	power-down	(regulator OF	F)
--	----------	--------------	--------------	--------------	------------	---------------	----

Symbol	Parameter	Conditions	Min	Мах	Unit			
t _{VDD}	V _{DD} rise time rate	Power-up	20	8				
	V _{DD} fall time rate	Power-down	20	8				
t _{VCAP}	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	µs/V			
	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8				

6.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 19* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter Conditions		Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
	F e F e	PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
V _{PVD}	Programmable voltage detector level selection	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
		PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	3.02	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
Vecer	Brownout level 1	Falling edge	2.13	2.19	2.24	V
V _{BOR1}	threshold	Rising edge	2.23	2.29	2.33	V

			Тур		Мах		
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in Stop mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.55	1.2	11.00	20.00	
	with main regulator in Run mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.50	1.2	11.00	20.00	
DD_STOP Supply current in Stop mode with main regulator in Low-power mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.35	1.1	8.00	15.00		
	with main regulator in Low-power mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.30	1.1	8.00	15.00	

Table 23. Typical and maximum current consumptions in Stop mode

Figure 29. Typical current consumption vs. temperature in Stop mode

All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	6.9	-	S
V _{prog}	Programming voltage	-	2.7	-	3.6	V
V _{PP}	V _{PP} voltage range	-	7	-	9	V
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour

Table 39.	Flash memor	y programming	with V _F	ъР
-----------	-------------	---------------	---------------------	----

1. Guaranteed by design, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value	Unit
			Min ⁽¹⁾	
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

Table 40. Flash memory endurance and data retention

1. Guaranteed by characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

DocID15818 Rev 13

6.3.16 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 50* are derived from tests performed under the conditions summarized in *Table 14: General operating conditions*.

All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	FT, TTa and NRST I/O	17/// 26//			0.35V _{DD} -0.04 ⁽¹⁾		
	input low level voltage	1.7 V S V DD S0.0 V	-	-	0.3V _{DD} ⁽²⁾		
V_{IL}	ΒΟΟΤ0 Ι/Ο	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	-	-	$0.1V_{}+0.1^{(1)}$	V	
	input low level voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-	-	0.100010.144		
	FT, TTa and NRST I/O	TTa and NRST I/O 17 V/Var 3.6 V 0.45V _{DD} +0.3 ⁽¹⁾		_	_		
	input high level voltage ⁽⁵⁾	1.7 V≤VDD <u>≤</u> 0.0 V	0.7V _{DD} ⁽²⁾	-			
V_{IH}	BOOT0 I/O	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	$0.17 (- + 0.7^{(1)})$	-		V	
i	input high level voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.17 VDD+0.7 V		-		
	FT, TTa and NRST I/O input hysteresis	1.7 V≤V _{DD} ≤3.6 V	0.45V _{DD} +0.3 ⁽¹⁾	-	-		
V _{HYS}	BOOT0 I/O	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	10%V _{DDIO} ⁽¹⁾⁽³⁾	-	-	V	
	input hysteresis	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	100 ⁽¹⁾	-	-		
I.,	I/O input leakage current (4)	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1		
'lkg	I/O FT input leakage current (5)	$V_{IN} = 5 V$	-	-	3	μA	

Table 46. I/O static characterist

Figure 41. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. $V_{DD_{12C}}$ is the I²C bus power supply.

f (kH=)	I2C_CCR value
ISCL (KIIZ)	R _P = 4.7 kΩ
400	0x8019
300	0x8021
200	0x8032
100	0x0096
50	0x012C
20	0x02EE

Table 53. SCL frequency (f_{PCLK1}= 30 MHz., V_{DD} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I²C speed,

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

USB OTG FS characteristics

The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol	Parameter	Мах	Unit		
t _{STARTUP} ⁽¹⁾	USB OTG FS transceiver startup time	1	μs		

Table 56. USB OTG FS startup time

1. Guaranteed by design, not tested in production.

Symbol		Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit	
	V _{DD}	USB OTG FS operating voltage		3.0 ⁽²⁾	-	3.6	V	
Input	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-		
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V	
	$V_{SE}^{(3)}$	Single ended receiver threshold		1.3	-	2.0		
Output	V _{OL}	Static output level low	$\rm R_L$ of 1.5 k\Omega to 3.6 $\rm V^{(4)}$	-	-	0.3	V	
levels	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(4)}$	2.8	-	3.6	v	
R _{PD}		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM))/ _)/	17	21	24		
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	PB13 _FS_VBUS, _HS_VBUS)		1.1	2.0	kΩ	
		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1		
R _F	٧	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	-	

Table 57. USB OTG FS DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The STM32F205xx and STM32F207xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

3. Guaranteed by design, not tested in production.

4. R_L is the load connected on the USB OTG FS drivers

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings (1/2)	Table 72. Asynchronous	non-multiplexed SRAM/PSRAM	M/NOR read timings ⁽¹⁾⁽²⁾
--	------------------------	----------------------------	--------------------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0.5	2.5	ns
t _{w(NOE)}	FSMC_NOE low time	2T _{HCLK} - 1	2T _{HCLK} + 0.5	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	4	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0.5	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} + 0.5	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	T _{HCLK} + 2.5	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2.5	ns
t _{w(NADV})	FSMC_NADV low time	-	T _{HCLK} – 0.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 73. Asynchronous	non-multiplexed SRA	M/PSRAM/NO	R write timin	gs ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	3T _{HCLK}	3T _{HCLK} + 4	ns
t _{v(NWE_NE})	FSMC_NEx low to FSMC_NWE low	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{w(NWE)}	FSMC_NWE low time	T _{HCLK} – 0.5	T _{HCLK} + 3	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	T _{HCLK}	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	T _{HCLK} - 3	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	T _{HCLK} – 1	-	ns
t _{v(Data_NE)}	Data to FSMC_NEx low to Data valid	-	T _{HCLK} + 5	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2	ns
t _{w(NADV)}	FSMC_NADV low time	-	T _{HCLK} + 1.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Table 88. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
F	-	0.220	-	-	0.0087	-
G	-	0.386	-	-	0.0152	-
ааа	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ССС	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 80. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

Table 89. WLCSP64 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

9 Revision history

Data	Povision	Changes
Dale	Revision	Changes
05-Jun-2009	1	Initial release.
09-Oct-2009	2	 Document status promoted from Target specification to Preliminary data. In Table 8: STM32F20x pin and ball definitions: Note 4 updated V_{DD_SA} and V_{DD_3} pins inverted (Figure 12: STM32F20x LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout and Figure 14: STM32F20x LQFP176 pinout corrected accordingly). Section : In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. changed to LQFP with no exposed pad.
01-Feb-2010	3	LFBGA144 package removed. STM32F203xx part numbers removed. Part numbers with 128 and 256 Kbyte Flash densities added. Encryption features removed. PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPER- RTC renamed to PI8-RTC_AF2.
13-Jul-2010	4	 Renamed high-speed SRAM, system SRAM. Removed combination: 128 KBytes Flash memory in LQFP144. Added UFBGA176 package. Added note 1 related to LQFP176 package in <i>Table 2, Figure 14</i>, and <i>Table 96</i>. Added information on ART accelerator and audio PLL (PLLI2S). Added <i>Table 6: USART feature comparison</i>. Several updates on <i>Table 8: STM32F20x pin and ball definitions</i> and <i>Table 10: Alternate function mapping</i>. ADC, DAC, oscillator, RTC_AF, WKUP and VBUS signals removed from alternate functions and moved to the "other functions" column in <i>Table 8: STM32F20x pin and ball definitions</i>. TRACESWO added in <i>Figure 4: STM32F20x block diagram, Table 8: STM32F20x pin and ball definitions</i>. TRACESWO added in <i>Figure 4: STM32F20x block diagram, Table 8: STM32F20x pin and ball definitions</i>. TRACESWO added in <i>Figure 4: STM32F20x block diagram, Table 8: STM32F20x pin and ball definitions</i>, and <i>Table 10: Alternate function mapping</i>. XTAL oscillator frequency updated on cover page, in <i>Figure 4: STM32F20x block diagram</i> and in <i>Section 3.11: External interrupt/event controller (EXTI)</i>. Updated list of peripherals used for boot mode in <i>Section 3.13: Boot modes</i>. Added Regulator bypass mode in <i>Section 3.16: Voltage regulator</i>, and <i>Section 6.3.4: Operating conditions at power-up / power-down (regulator OFF)</i>. Updated Section 3.17: <i>Real-time clock (RTC), backup SRAM and backup registers</i>. Added Note Note: in <i>Section 3.23: Serial peripheral interface (SPI)</i>.

Table 97.	Document	revision	history
-----------	----------	----------	---------

Date	Revision	Changes
20-Dec-2011	8 (continued)	Added maximum power consumption at $T_A=25$ °C in Table 23: Typical and maximum current consumptions in Stop mode. Updated md minimum value in Table 36: SSCG parameters constraint. Added examples in Section 6.3.11: PLL spread spectrum clock generation (SSCG) characteristics. Updated Table 54: SPI characteristics and Table 55: I2S characteristics. Updated Figure 48: ULPI timing diagram and Table 61: ULPI timing. Updated Table 54: SPI characteristics: Ethernet MAC signals for SMI, Table 64: Dynamics characteristics: Ethernet MAC signals for RMII, and Table 65: Dynamics characteristics: Ethernet MAC signals for RMII, and Table 65: Dynamics characteristics: Ethernet MAC signals for RMII, and Table 65: Dynamics characteristics: Updated Table 72 to Table 83, changed C _L value to 30 pF, and modified FSMC configuration for asynchronous timings and waveforms. Updated Figure 62: Synchronous multiplexed PSRAM write timings. Updated Table 84: DCMI characteristics. Updated Table 92: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data. Updated Table 96: Ordering information scheme. Appendix A.2: USB OTG full speed (FS) interface solutions: updated Figure 87: USB OTG FS (full speed) host-only connection and added Note 2, updated Figure 88: OTG FS (full speed) connection dual-role with internal PHY and added Note 3 and Note 4, modified Figure 89: OTG HS (high speed) device connection, host and dual-role in high- speed mode with external PHY and added Note 2. Appendix A.3: USB OTG HJS device-only connection in FS mode and USB OTG HS host-only connection in FS mode and USB OTG HS host-only connection in FS mode and USB OTG HS host-only connection in FS mode, updated Figure 89: OTG HS (high speed) device connection, host and dual-role in high- speed mode with external PHY. Added Appendix A.4: Ethernet interface solutions. Updated disclaimer on last page.
24-Apr-2012	9	Updated V _{DD} minimum value in <i>Section 2: Description</i> . Updated number of USB OTG HS and FS, modified packages for STM32F207Ix part numbers, added <i>Note 1</i> related to FSMC and <i>Note 2</i> related to SPI/I2S, and updated <i>Note 3</i> in <i>Table 2: STM32F205xx</i> <i>features and peripheral counts</i> and <i>Table 3: STM32F207xx features and</i> <i>peripheral counts</i> . Added <i>Note 2</i> and update TIM5 in <i>Figure 4: STM32F20x block diagram</i> . Updated maximum number of maskable interrupts in <i>Section 3.10:</i> <i>Nested vectored interrupt controller (NVIC)</i> . Updated V _{DD} minimum value in <i>Section 3.14: Power supply schemes</i> . Updated <i>Note a</i> in <i>Section 3.16.1: Regulator ON</i> . Removed STM32F205xx in <i>Section 3.28: Universal serial bus on-the-go</i> <i>full-speed (OTG_FS)</i> .

