STMicroelectronics - <u>STM32F205ZGT6W Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205zgt6w

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 93.	UFBGA176+25, - 201-ball, 10 x 10 mm, 0.65 mm pitch,	
	ultra fine pitch ball grid array package mechanical data	165
Table 94.	UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)	166
Table 95.	Package thermal characteristics	167
Table 96.	Ordering information scheme	168
Table 97.	Document revision history	169

8/182

		Table	2. STM3	82F205	xx feat	ures a	nd perip	heral co	ounts	5					
	Peripherals		ST	/132F205R	Rx			STM32	F205V	x		S	TM32F2	05Zx	
Flash memory in	n Kbytes	128	256	512	768	1024	128	256	512	768	1024	256	512	768	1024
SRAM in Kbytes	System (SRAM1+SRAM2)	64 (48+16)					64 (48+16)	96 (80+16)		128 (112+1	6)	96 (80+16)			3)
	Backup		4 4 4												
FSMC memory of	controller			No							Yes ⁽¹⁾				
Ethernet								No							
	General-purpose							10							
	Advanced-control							2							
Timers	Basic							2							
	IWDG							Yes							
	WWDG							Yes							
RTC								Yes							
Random numbei	r generator	Yes													
	SPI/(I ² S)	3/(2) ⁽²⁾													
	l ² C						3								
Comm. interfaces	USART UART	4 2													
interfaces	USB OTG FS	Yes													
	USB OTG HS		Yes												
	CAN		2												
Camera interface	e							No							
GPIOs				51				8	32				114		
SDIO								Yes							
12-bit ADC								3							
Number of chan	nels			16				1	16				24		
12-bit DAC Number of chanı	nels							Yes 2							
Maximum CPU f	frequency						1	I20 MHz							
Operating voltag	e						1.8	V to 3.6 V ⁽³⁾							

5

14/182

3.34 ADCs (analog-to-digital converters)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.35 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.36 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 and 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

DocID15818 Rev 13

		Pi	ns							ennitions (continued)	
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	14	20	J3	PF4	I/O	FT	(4)	FSMC_A4, EVENTOUT	ADC3_IN14
-	-	-	15	21	K3	PF5	I/O	FT	(4)	FSMC_A5, EVENTOUT	ADC3_IN15
-	H9	10	16	22	G2	V _{SS}	S	-	-	-	-
-	-	11	17	23	G3	V _{DD}	S	-	-	-	-
-	-	-	18	24	K2	PF6	I/O	FT	(4)	TIM10_CH1, FSMC_NIORD, EVENTOUT	ADC3_IN4
-	-	-	19	25	K1	PF7	I/O	FT	(4)	TIM11_CH1,FSMC_NREG, EVENTOUT	ADC3_IN5
-	-	-	20	26	L3	PF8	I/O	FT	(4)	TIM13_CH1, FSMC_NIOWR, EVENTOUT	ADC3_IN6
-	-	-	21	27	L2	PF9	I/O	FT	(4)	TIM14_CH1, FSMC_CD, EVENTOUT	ADC3_IN7
-	-	-	22	28	L1	PF10	I/O	FT	(4)	FSMC_INTR, EVENTOUT	ADC3_IN8
5	E9	12	23	29	G1	PH0/OSC_IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN ⁽⁴⁾
6	F9	13	24	30	H1	PH1/OSC_OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT ⁽⁴⁾
7	E8	14	25	31	J1	NRST	I/O		I	-	-
8	G9	15	26	32	M2	PC0	I/O	FT	(4)	OTG_HS_ULPI_STP, EVENTOUT	ADC123_ IN10
9	F8	16	27	33	М3	PC1	I/O	FT	(4)	ETH_MDC, EVENTOUT	ADC123_ IN11
10	D7	17	28	34	M4	PC2	I/O	FT	(4)	SPI2_MISO, OTG_HS_ULPI_DIR, ETH_MII_TXD2, EVENTOUT	ADC123_ IN12
11	G8	18	29	35	M5	PC3	I/O	FT	(4)	SPI2_MOSI, I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, EVENTOUT	ADC123_ IN13
-	-	19	30	36	-	V _{DD}	S	-	-	-	-
12	-	20	31	37	M1	V _{SSA}	S	-	-	-	-
-	-	-	-	-	N1	V _{REF-}	S	-	-	-	-
-	F7	21	32	38	P1	V _{REF+}	S	-	-	-	-

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	Note Note		Alternate functions	Additional functions
13	-	22	33	39	R1	V _{DDA}	S	-	-	-	-
14	E7	23	34	40	N3	PA0-WKUP (PA0)	I/O	FT	(4)(5)	USART2_CTS, UART4_TX, ETH_MII_CRS, TIM2_CH1_ETR, TIM5_CH1, TIM8_ETR, EVENTOUT	ADC123_IN0, WKUP
15	H8	24	35	41	N2	PA1	I/O	FT	(4)	USART2_RTS, UART4_RX, ETH_RMII_REF_CLK, ETH_MII_RX_CLK, TIM5_CH2, TIM2_CH2, EVENTOUT	ADC123_IN1
16	J9	25	36	42	P2	PA2	I/O	FT	(4)	USART2_TX,TIM5_CH3, TIM9_CH1, TIM2_CH3, ETH_MDIO, EVENTOUT	ADC123_IN2
-	-	-	-	43	F4	PH2	I/O	FT	-	ETH_MII_CRS, EVENTOUT	-
-	-	-	-	44	G4	PH3	I/O	FT	-	ETH_MII_COL, EVENTOUT	-
-	-	-	-	45	H4	PH4	I/O	FT	-	I2C2_SCL, OTG_HS_ULPI_NXT, EVENTOUT	-
-	-	-	-	46	J4	PH5	I/O	FT	-	I2C2_SDA, EVENTOUT	-
17	G7	26	37	47	R2	PA3	I/O	FT	(4)	USART2_RX, TIM5_CH4, TIM9_CH2, TIM2_CH4, OTG_HS_ULPI_D0, ETH_MII_COL, EVENTOUT	ADC123_IN3
18	F1	27	38	48	-	V _{SS}	S	-	-	-	-
	H7				L4	REGOFF	I/O	-	-	-	-
19	E1	28	39	49	K4	V _{DD}	S	-	-	-	-
20	J8	29	40	50	N4	PA4	I/O	ТТа	(4)	SPI1_NSS, SPI3_NSS, USART2_CK, DCMI_HSYNC, OTG_HS_SOF, I2S3_WS, EVENTOUT	ADC12_IN4, DAC_OUT1
21	H6	30	41	51	P4	PA5	I/O	ТТа	(4)	SPI1_SCK, OTG_HS_ULPI_CK, TIM2_CH1_ETR, TIM8_CH1N, EVENTOUT	ADC12_IN5, DAC_OUT2

Table 8. STM32F20x pin and ball definitions (continued)

	Pins										
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
22	H5	31	42	52	P3	PA6	I/O	FT	(4)	SPI1_MISO, TIM8_BKIN, TIM13_CH1, DCMI_PIXCLK, TIM3_CH1, TIM1_BKIN, EVENTOUT	ADC12_IN6
23	J7	32	43	53	R3	PA7	I/O	FT	(4)	SPI1_MOSI, TIM8_CH1N, TIM14_CH1, TIM3_CH2, ETH_MII_RX_DV, TIM1_CH1N, ETH_RMII_CRS_DV, EVENTOUT	ADC12_IN7
24	H4	33	44	54	N5	PC4	I/O	FT	(4)	ETH_RMII_RXD0, ETH_MII_RXD0, EVENTOUT	ADC12_IN14
25	G3	34	45	55	P5	PC5	I/O	FT	(4)	ETH_RMII_RXD1, ETH_MII_RXD1, EVENTOUT	ADC12_IN15
26	J6	35	46	56	R5	PB0	I/O	FT	(4)	TIM3_CH3, TIM8_CH2N, OTG_HS_ULPI_D1, ETH_MII_RXD2, TIM1_CH2N, EVENTOUT	ADC12_IN8
27	J5	36	47	57	R4	PB1	I/O	FT	(4)	TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, ETH_MII_RXD3, TIM1_CH3N, EVENTOUT	ADC12_IN9
28	J4	37	48	58	M6	PB2/BOOT1 (PB2)	I/O	FT	-	EVENTOUT	-
-	-	-	49	59	R6	PF11	I/O	FT	-	DCMI_D12, EVENTOUT	
-	-	-	50	60	P6	PF12	I/O	FT	-	FSMC_A6, EVENTOUT	-
-	-	-	51	61	M8	V _{SS}	S		-	-	-
-	-	-	52	62	N8	V _{DD}	S		-	-	-
-	-	-	53	63	N6	PF13	I/O	FT	-	FSMC_A7, EVENTOUT	-
-	-	-	54	64	R7	PF14	I/O	FT	-	FSMC_A8, EVENTOUT	-
-	-	-	55	65	P7	PF15	I/O	FT	-	FSMC_A9, EVENTOUT	-
-	-	-	56	66	N7	PG0	I/O	FT	-	FSMC_A10, EVENTOUT	-
-	-	-	57	67	M7	PG1	I/O	FT	-	FSMC_A11, EVENTOUT	-

5 Memory mapping

The memory map is shown in *Figure 16*.

				Тур	Ma			
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			120 MHz	38	51	61		
			90 MHz	30	43	53		
			60 MHz	20	33	43		
		- (2)	30 MHz	11	25	35		
		External clock ⁽²⁾ , all peripherals enabled ⁽³⁾	25 MHz	8	21	31		
			16 MHz	6	19	29		
			8 MHz	3.6	17.0	27.0	- - - mA	
			4 MHz	2.4	15.4	25.3		
	Supply current in		2 MHz	1.9	14.9	24.7		
I _{DD}	Sleep mode		120 MHz	8	21	31	mA	
			90 MHz	7	20	30		
			60 MHz	5	18	28		
			30 MHz	3.5	16.0	26.0	-	
		External clock ⁽²⁾ , all peripherals disabled	25 MHz	2.5	16.0	25.0		
			16 MHz	2.1	15.1	25.0		
			8 MHz	1.7	15.0	25.0		
			4 MHz	1.5	14.6	24.6		
			2 MHz	1.4	14.2	24.3		

Table 22. Typical and maximum current	consumption in Sleep mode
---------------------------------------	---------------------------

1. Guaranteed by characterization results, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when $\rm f_{HCLK}$ > 25 MHz.

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

				Тур		Ма			
Symbol	Parameter	Conditions	Т	A = 25 °C	0	T _A = 85 °C	Unit		
			V _{DD} = 1.8 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} =	= 3.6 V		
	Supply current in Standby	Backup SRAM ON, low-speed oscillator and RTC ON	3.0	3.4	4.0	15.1	25.8		
		Backup SRAM OFF, low- speed oscillator and RTC ON	2.4	2.7	3.3	12.4	20.5	μA	
	mode	Backup SRAM ON, RTC OFF	2.4	2.6	3.0	12.5	24.8		
		Backup SRAM OFF, RTC OFF	1.7	1.9	2.2	9.8	19.2		

Table 24. Typical and maximum current consumptions in Standby mode

1. Guaranteed by characterization results, not tested in production.

Table 25. Typical and maximum current consumptions in $\mathrm{V}_{\mathrm{BAT}}$ mode

Symbol		Parameter Conditions		Тур			Max ⁽¹⁾		
	Parameter			T _A = 25 °C			T _A = 105 °C	Unit	
			V _{DD} = 1.8 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} =	= 3.6 V		
	Backup domain supply current	Backup SRAM ON, low-speed oscillator and RTC ON	1.29	1.42	1.68	12	19		
I _{DD_VBAT}		Backup SRAM OFF, low-speed oscillator and RTC ON	0.62	0.73	0.96	8	10	μA	
		Backup SRAM ON, RTC OFF	0.79	0.81	0.86	9	16		
		Backup SRAM OFF, RTC OFF	0.10	0.10	0.10	5	7		

1. Guaranteed by characterization results, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
R _F	Feedback resistor	-	-	18.4	-	MΩ			
I _{DD}	LSE current consumption	-	-	-	1	μA			
9 _m	Oscillator Transconductance	-	2.8	-	-	µA/V			
t _{SU(LSE)} ⁽²⁾	startup time	V _{DD} is stabilized	-	2	-	S			

Table 31. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)⁽¹⁾

1. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note: For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

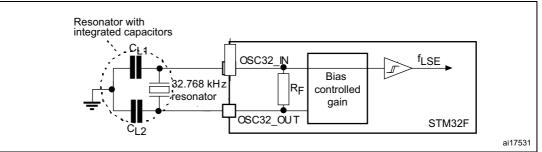


Figure 33. Typical application with a 32.768 kHz crystal

6.3.9 Internal clock source characteristics

The parameters given in *Table 32* and *Table 33* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user-trimming step ⁽²⁾	-	-	-	1	%
		$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	– 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4.0	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

 Table 32. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

- 3. Guaranteed by characterization results.
- 4. Factory calibrated, parts not soldered.

The test results are given in *Table 41*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	4A

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

6.3.18 TIM timer characteristics

The parameters given in *Table 50* and *Table 51* are guaranteed by design.

Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
		AHB/APB1	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	prescaler distinct from 1, f _{TIMxCLK} = 60 MHz	16.7	-	ns
		AHB/APB1	1	-	t _{TIMxCLK}
		prescaler = 1, f _{TIMxCLK} = 30 MHz	33.3	-	ns
f _{EXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4		0	30	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
	16-bit counter clock period		1	65536	t _{TIMxCLK}
t	when internal clock is selected	f _{TIMxCLK} = 60 MHz APB1= 30 MHz	0.0167	1092	μs
^t COUNTER	32-bit counter clock period		1	-	t _{TIMxCLK}
	when internal clock is selected		0.0167	71582788	μs
tury count	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT			-	71.6	s

Table 50. Characteristics of TIMx connected to the APE	31 domain ⁽¹⁾
--	--------------------------

1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

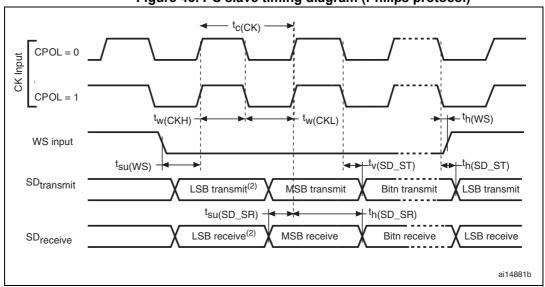


Figure 45. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

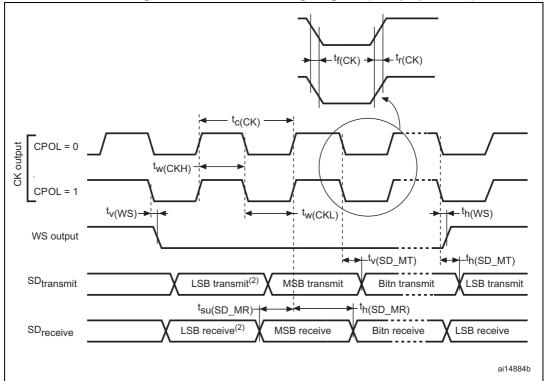


Figure 46. I²S master timing diagram (Philips protocol)⁽¹⁾

1. Guaranteed by characterization results, not tested in production.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 47. USB OTG FS timings: definition of data signal rise and fall time

Table 58. USB OTG FS electrical characteristics⁽¹⁾

Driver characteristics								
Symbol	ymbol Parameter Conditions Min Max Un							
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _{rfm}	Rise/fall time matching	t _r /t _f	90	110	%			
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V			

1. Guaranteed by design, not tested in production.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

USB HS characteristics

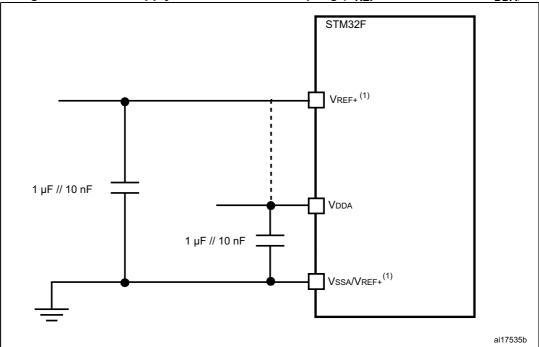
Table 59 shows the USB HS operating voltage.

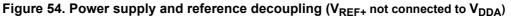
Table 59. USB HS DC electrical characteristics

Symbol		Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level V _{DD} USB OTG HS operating voltage		USB OTG HS operating voltage	2.7	3.6	V

1. All the voltages are measured from the local ground potential.

Table 60. Clock timing parameters


Parameter ⁽¹⁾	Symbol	Min	Nominal	Max	Unit	
Frequency (first transition) 8-bit ±10%		F _{START_8BIT}	54	60	66	MHz
Frequency (steady state) ±500	F _{STEADY}	59.97	60	60.03	MHz	
Duty cycle (first transition) 8-bit ±10%		D _{START_8BIT}	40	50	60	%
Duty cycle (steady state) ±500	D _{STEADY}	49.975	50	50.025	%	
Time to reach the steady state duty cycle after the first transiti		T _{STEADY}	-	-	1.4	ms
Clock startup time after the	Peripheral	T _{START_DEV}	-	-	5.6	ms
de-assertion of SuspendM	Host	T _{START_HOST}	-	-	-	1115
PHY preparation time after the of the input clock	T _{PREP}	-	-	-	μs	


1. Guaranteed by design, not tested in production.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 54* or *Figure 55*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

 V_{REF+} and V_{REF} inputs are both available on UFBGA176 package. V_{REF+} is also available on all packages except for LQFP64. When V_{REF+} and V_{REF} are not available, they are internally connected to V_{DDA} and V_{SSA}.

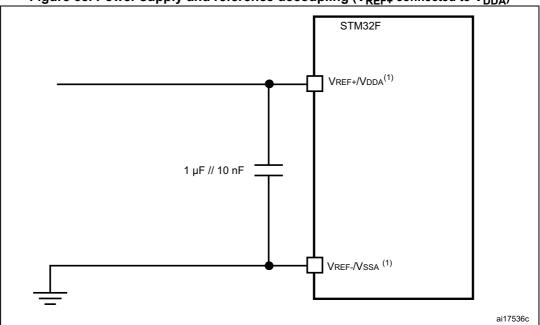
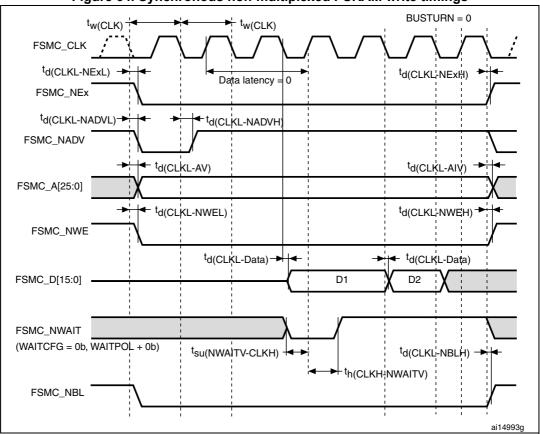


Figure 55. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

Symbol Parameter		Min	Тур	Мах	Unit	Comments			
V _{DDA}	Analog supply voltage	1.8 ⁽¹⁾	-	3.6	V	-			
V _{REF+}	Reference supply voltage	1.8 ⁽¹⁾	-	3.6	V	V _{REF+} ≤V _{DDA}			
V _{SSA}	Ground	0	-	0	V	-			
R _{LOAD} ⁽²⁾	Resistive load with buffer ON	5	-	-	kΩ	-			
R ₀ ⁽²⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω			
C _{LOAD} ⁽²⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).			
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	v	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at V _{REF+} = 3.6 V			
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	and (0x1C7) to (0xE38) at $V_{REF+} = 3.0 \text{ V}$ 1.8 V			

6.3.21 DAC electrical characteristics

 Table 68. DAC characteristics


V_{REF+} and V_{REF-} inputs are both available on UFBGA176 package. V_{REF+} is also available on all packages except for LQFP64. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA}.

Symbol	Symbol Parameter			
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	4	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	3	-	ns
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	8	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high		-	ns

Table 78. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Figure 64. Synchronous non-multiplexed PSRAM write timings

Table 79. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK} - 1	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	1	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	1	-	ns

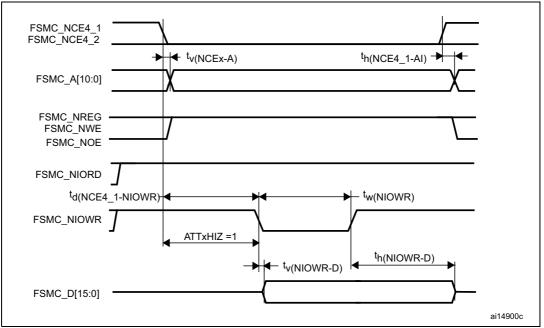


Figure 70. PC Card/CompactFlash controller waveforms for I/O space write access

Table 80. Switching characteristics for PC Card/CF read and write cycles in attribute/common space⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{v(NCEx-A)}	FSMC_Ncex low to FSMC_Ay valid	-	0	ns
t _{h(NCEx_AI)}	FSMC_NCEx high to FSMC_Ax invalid	4	-	ns
t _{d(NREG-NCEx)}	FSMC_NCEx low to FSMC_NREG valid	-	3.5	ns
t _{h(NCEx-NREG)}	FSMC_NCEx high to FSMC_NREG invalid	T _{HCLK} + 4	-	ns
t _{d(NCEx-NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5T _{HCLK} + 1	ns
t _{d(NCEx-NOE)}	FSMC_NCEx low to FSMC_NOE low	-	5T _{HCLK}	ns
t _{w(NOE)}	FSMC_NOE low width	8T _{HCLK} - 0.5	8T _{HCLK} + 1	ns
t _{d(NOE_NCEx)}	FSMC_NOE high to FSMC_NCEx high	5T _{HCLK} + 2.5	-	ns
t _{su (D-NOE)}	FSMC_D[15:0] valid data before FSMC_NOE high	4	-	ns
t _{h (N0E-D)}	FSMC_N0E high to FSMC_D[15:0] invalid	2	-	ns
t _{w(NWE)}	FSMC_NWE low width	8T _{HCLK} - 1	8T _{HCLK} + 4	ns
t _{d(NWE_NCEx})	FSMC_NWE high to FSMC_NCEx high	5T _{HCLK} + 1.5	-	ns
t _{d(NCEx-NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5HCLK+ 1	ns
t _{v (NWE-D)}	FSMC_NWE low to FSMC_D[15:0] valid	-	0	ns
t _{h (NWE-D)}	FSMC_NWE high to FSMC_D[15:0] invalid	8T _{HCLK}	-	ns
t _{d (D-NWE)}	FSMC_D[15:0] valid before FSMC_NWE high	13T _{HCLK}	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP64 package information

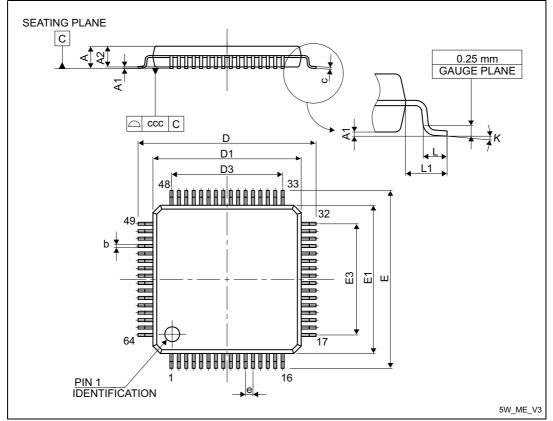


Figure 77. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 87. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106

Table 97. Document revision history (continued)			
Date	Revision	Changes	
04-Nov-2013	11 (continued)	Removed Appendix A Application block diagrams. Updated Figure 77: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and Table 87: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. Updated Figure 80: LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline, Figure 83: LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline, Figure 86: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline. Updated Figure 88: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline and Figure 88: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline.	
27-Oct-2014	12	Updated V _{BAT} voltage range in <i>Figure 19: Power supply scheme</i> . Added caution note in <i>Section 6.1.6: Power supply scheme</i> . Updated V _{IN} in <i>Table 14: General operating conditions</i> . Removed note 1 in <i>Table 23: Typical and maximum current consumptions in Stop mode</i> . Updated <i>Table 45: I/O current injection susceptibility</i> , <i>Section 6.3.16: I/O port characteristics</i> and <i>Section 6.3.17: NRST pin characteristics</i> . Removed note 3 in <i>Table 69: Temperature sensor characteristics</i> . Updated <i>Figure 79: WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline</i> and <i>Table 88: WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data</i> . Added <i>Figure 83: LQFP100 marking (package top view)</i> and <i>Figure 86: LQFP144 marking (package top view)</i> .	
2-Feb-2016	13	 Updated Section 1: Introduction. Updated Table 32: HSI oscillator characteristics and its footnotes. Updated Figure 36: PLL output clock waveforms in center spread mode, Figure 37: PLL output clock waveforms in down spread mode, Figure 54: Power supply and reference decoupling (VREF+ not connected to VDDA) and Figure 55: Power supply and reference decoupling (VREF+ connected to VDDA). Updated Section 7: Package information and its subsections. 	

Table 97. Document revision history (continued)

