

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

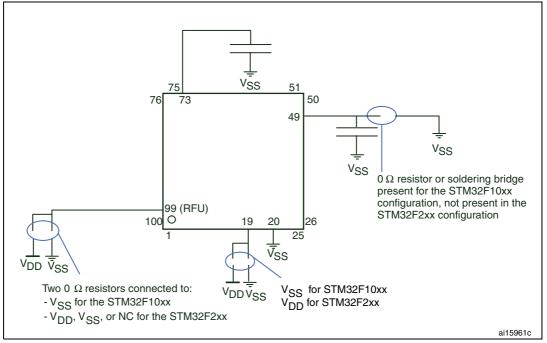
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f207ieh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. STM32F205xx features and peripheral counts (continued)

Peripherals	STM32F205Rx				STM32F205Vx	STM32F205Zx	
Operating temperatures	Ambient temperatures: -40 to +85 °C /-40 to +105 °C						
	Junction temperature: -40 to + 125 °C						
Package	LQFP64	LQFP64 WLCSP64 +2		FP64 CSP6 +2	LQFP100	LQFP144	


 For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

	Peripherals		STM3	2F207Vx				F207Zx			STM32	2F207lx	
Flash memory in I	Kbytes	256	512	768	1024	256	512	768	1024	256	512	768	1024
SRAM in Kbytes	System (SRAM1+SRAM2)		128 (112+16)										
	Backup		4										
FSMC memory controller			Yes ⁽¹⁾										
Ethernet		Yes											
	General-purpose	10											
	Advanced-control	2											
Timers	Basic	2											
	IWDG							Ye	es				
	WWDG							Ye	es				
RTC	1	Yes											
Random number	generator	Yes											

Table 3. STM32F207xx features and peripheral counts

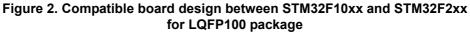
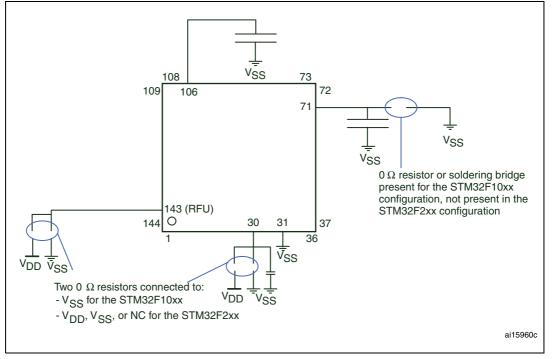



Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package

1. RFU = reserved for future use.

DocID15818 Rev 13

3.11 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines.

3.12 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the system clock.

Several prescalers and PLLs allow the configuration of the three AHB buses, the highspeed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 120 MHz and the maximum frequency the high-speed APB domains is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.

The devices embed a dedicate PLL (PLLI2S) which allow to achieve audio class performance. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.13 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).

3.14 Power supply schemes

V_{DD} = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins. On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates

			SMC	,	
Pins	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100
PD13	-	A18	A18	-	Yes
PD14	D0	D0	DA0	D0	Yes
PD15	D1	D1	DA1	D1	Yes
PG2	-	A12	-	-	-
PG3	-	A13	-	-	-
PG4	-	A14	-	-	-
PG5	-	A15	-	-	-
PG6	-	-	-	INT2	-
PG7	-	-	-	INT3	-
PD0	D2	D2	DA2	D2	Yes
PD1	D3	D3	DA3	D3	Yes
PD3	-	CLK	CLK	-	Yes
PD4	NOE	NOE	NOE	NOE	Yes
PD5	NWE	NWE	NWE	NWE	Yes
PD6	NWAIT	NWAIT	NWAIT	NWAIT	Yes
PD7	-	NE1	NE1	NCE2	Yes
PG9	-	NE2	NE2	NCE3	-
PG10	NCE4_1	NE3	NE3	-	-
PG11	NCE4_2	-	-	-	-
PG12	-	NE4	NE4	-	-
PG13	-	A24	A24	-	-
PG14	-	A25	A25	-	-
PB7	-	NADV	NADV	-	Yes
PE0	-	NBL0	NBL0	-	Yes
PE1	-	NBL1	NBL1	-	Yes

Table 9. FSMC pin definition (continued)

S	
-	
S	
22	
8	
ŏ	
2	

Pinouts and pin description

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
	Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	12C1/12C2/12C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_HS	DCMI	AF014	AF15
	PD0	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FSMC_D2	-	-	EVENTO
	PD1	-	-	-	-	-	-	-	-	-	CAN1_TX	-	-	FSMC_D3	-	-	EVENTOL
	PD2	-	-	TIM3_ETR	-	-	-	-	-	UART5_RX	-	-	-	SDIO_CMD	DCMI_D11	-	EVENTO
	PD3	-	-	-	-	-	-	-	USART2_CTS	-	-	-	-	FSMC_CLK	-	-	EVENTO
	PD4	-	-	-	-	-	-	-	USART2_RTS	-	-	-	-	FSMC_NOE	-	-	EVENTO
	PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	FSMC_NWE	-	-	EVENTO
	PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-	FSMC_NWAIT	-	-	EVENTO
D. I D	PD7	-	-	-	-	-	-	-	USART2_CK	-	-	-	-	FSMC_NE1/ FSMC_NCE2	-	-	EVENTO
Port D	PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	FSMC_D13	-	-	EVENTO
	PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	FSMC_D14	-	-	EVENTO
	PD10	-	-	-	-	-	-	-	USART3_CK	-	-	-	-	FSMC_D15	-	-	EVENTO
	PD11	-	-	-	-	-	-	-	USART3_CTS	-	-	-	-	FSMC_A16	-	-	EVENTO
	PD12	-	-	TIM4_CH1	-	-	-	-	USART3_RTS	-	-	-	-	FSMC_A17	-	-	EVENTO
	PD13	-	-	TIM4_CH2	-	-	-	-	-	-	-	-	-	FSMC_A18	-	-	EVENTO
	PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	FSMC_D0	-	-	EVENTO
	PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	FSMC_D1	-	-	EVENTO
	PE0	-	-	TIM4_ETR	-	-	-	-	-	-	-	-	-	FSMC_NBL0	DCMI_D2	-	EVENTO
	PE1	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_NBL1	DCMI_D3	-	EVENTO
	PE2	TRACECLK	-	-	-	-	-	-	-	-	-	-	ETH_MII_TXD3	FSMC_A23	-	-	EVENTO
	PE3	TRACED0	-	-	-	-	-	-	-	-	-	-	-	FSMC_A19	-	-	EVENTO
	PE4	TRACED1	-	-	-	-	-	-	-	-	-	-	-	FSMC_A20	DCMI_D4	-	EVENTO
	PE5	TRACED2	-	-	TIM9_CH1	-	-	-	-	-	-	-	-	FSMC_A21	DCMI_D6	-	EVENTO
	PE6	TRACED3	-	-	TIM9_CH2	-	-	-	-	-	-	-	-	FSMC_A22	DCMI_D7	-	EVENTO
Port E	PE7	-	TIM1_ETR	-	-	-	-	-	-	-	-	-	-	FSMC_D4	-	-	EVENTO
FUILE	PE8	-	TIM1_CH1N	-	-	-	-	-	-	-	-	-	-	FSMC_D5	-	-	EVENTO
	PE9	-	TIM1_CH1	-	-	-	-	-	-	-	-	-	-	FSMC_D6	-	-	EVENTO
	PE10	-	TIM1_CH2N	-	-	-	-	-	-	-	-	-	-	FSMC_D7	-	-	EVENTO
	PE11	-	TIM1_CH2	-	-	-	-	-	-	-	-	-	-	FSMC_D8	-	-	EVENTO
	PE12	-	TIM1_CH3N	-	-	-	-	-	-	-	-	-	-	FSMC_D9	-	-	EVENTO
	PE13	-	TIM1_CH3	-	-	-	-	-	-	-	-	-	-	FSMC_D10	-	-	EVENTO
	PE14	-	TIM1_CH4	-	-	-	-	-	-	-	-	-	-	FSMC_D11	-	-	EVENTO
	PE15	-	TIM1_BKIN	-	-	-	-	-	-	-	-	-	-	FSMC_D12	-	-	EVENTO

Table 10. Alternate function mapping (continued)

DocID15818 Rev 13

5

63/182

5 Memory mapping

The memory map is shown in *Figure 16*.

	Table 10. Limitations depending on the operating power supply range										
Operating power supply range	ADC operation	Maximum Flash memory access frequency (f _{Flashmax})	Number of wait states at maximum CPU frequency (f _{CPUmax} = 120 MHz) ⁽¹⁾	I/O operation	FSMC_CLK frequency for synchronous accesses	Possible Flash memory operations					
V _{DD} =1.8 to 2.1 V ⁽²⁾	Conversion time up to 1 Msps	16 MHz with no Flash memory wait state	7 ⁽³⁾	 Degraded speed performance No I/O compensation 	Up to 30 MHz	8-bit erase and program operations only					
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1 Msps	18 MHz with no Flash memory wait state	6 ⁽³⁾	 Degraded speed performance No I/O compensation 	Up to 30 MHz	16-bit erase and program operations					
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2 Msps	24 MHz with no Flash memory wait state	4 ⁽³⁾	 Degraded speed performance I/O compensation works 	Up to 48 MHz	16-bit erase and program operations					
V _{DD} = 2.7 to 3.6 V ⁽⁴⁾	Conversion time up to 2 Msps	30 MHz with no Flash memory wait state	3(3)	 Full-speed operation I/O compensation works 	$\begin{array}{l} - \mbox{ Up to } \\ 60 \mbox{ MHz } \\ \mbox{ when } \mbox{ V}_{\mbox{DD}} = \\ 3.0 \mbox{ to } 3.6 \mbox{ V} \\ - \mbox{ Up to } \\ 48 \mbox{ MHz } \\ \mbox{ when } \mbox{ V}_{\mbox{DD}} = \\ 2.7 \mbox{ to } 3.0 \mbox{ V} \end{array}$	32-bit erase and program operations					

Table 15. Limitations depending on the operating power supply range

1. The number of wait states can be reduced by reducing the CPU frequency (see Figure 21).

 On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

3. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

4. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.

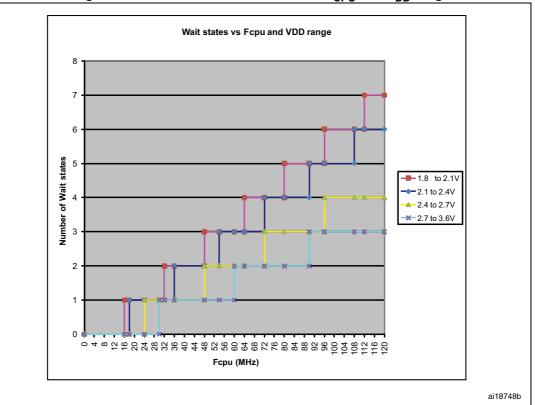


Figure 21. Number of wait states versus $f_{\mbox{CPU}}$ and $V_{\mbox{DD}}$ range

1. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 $^\circ\text{C}$ temperature range and IRROFF is set to V_DD.

6.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 16*.

1. Legend: ESR is the equivalent series resistance.

Table 16. VCAP1/VCAP2 operating conditions⁽¹⁾

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	2.2 µF
ESR	ESR of external capacitor	< 2 Ω

1. When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

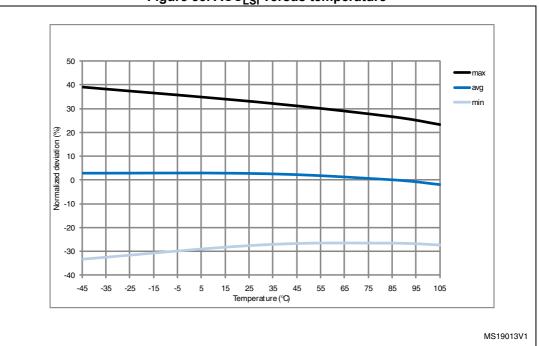


Figure 35. ACC_{LSI} versus temperature

6.3.10 PLL characteristics

The parameters given in *Table 34* and *Table 35* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10 ⁽²⁾	MHz	
f _{PLL_OUT}	PLL multiplier output clock	-	24	-	120	MHz	
f _{PLL48_} OUT	48 MHz PLL multiplier output clock	-	-	-	48	MHz	
f _{VCO_OUT}	PLL VCO output	-	192	-	432	MHz	
t _{LOCK}	PLL lock time	VCO freq = 192 MHz	75	-	200	116	
		VCO freq = 432 MHz	100	-	300	μs	

Table 34. Main PLL characteristics

Symbol	Parameter	Conditions	-	Min	Тур	Max	Unit
			RMS	-	25	-	
	Cycle-to-cycle jitter	System clock	peak to peak	-	±150	-	
		120 MHz	RMS	-	15	-	
Jitter ⁽³⁾	Period Jitter		peak to peak	-	<u>+200</u>	-	ps
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle at 5 on 1000 samples	cycle to cycle at 50 MHz n 1000 samples			-	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 25 MHz on 1000 samples		-	40	-	
	Bit Time CAN jitter	Cycle to cycle at 1 on 1000 samples	-	330	-		
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 192 M VCO freq = 432 M		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	VCO freq = 192 M VCO freq = 432 M		0.30 0.55	-	0.40 0.85	mA

Table 34.	Main PLL	. characteristics	(continued)
-----------	----------	-------------------	-------------

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design, not tested in production.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results, not tested in production.

Table 35. PLLI2S (audio PLL) characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10 ⁽²⁾	MHz
f _{PLLI2S_OUT}	PLLI2S multiplier output clock	-	-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output	-	192	-	432	MHz
t _{LOCK}	PLLI2S lock time	VCO freq = 192 MHz	75	-	200	
		VCO freq = 432 MHz	100	-	300	μs

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
Jitter ⁽³⁾	Master I2S clock jitter	Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5	RMS	-	90	-	
			peak to peak	-	±280	-	ps
		Average frequency of 12.288 MHz N=432, R=5 on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 I on 1000 samples	КНz	-	400	-	ps
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz		0.30 0.55	_	0.40 0.85	mA

Table 35.	PLLI2S (audio	PLL) characterist	ics (continued)
14810 001			

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design, not tested in production.

3. Value given with main PLL running.

4. Guaranteed by characterization results, not tested in production.

Figure 36 and *Figure 37* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

T_{mode} is the modulation period.

md is the modulation depth.

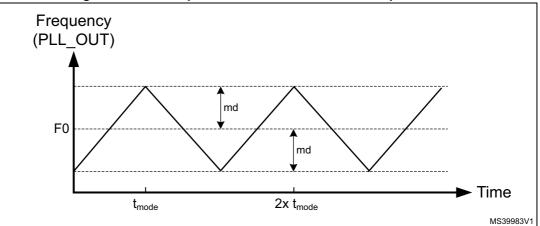
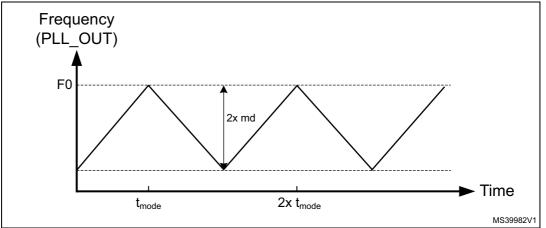
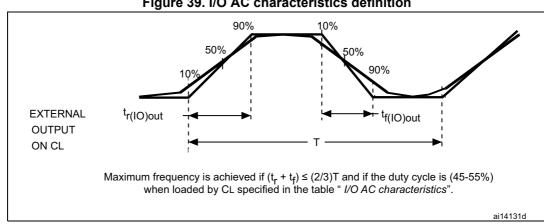



Figure 37. PLL output clock waveforms in down spread mode



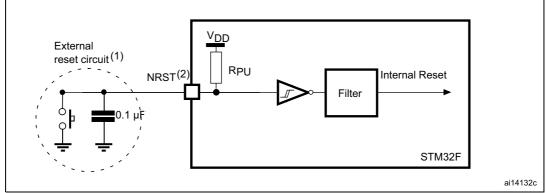
6.3.12 Memory characteristics

Flash memory

The characteristics are given at T_{A} = –40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

6.3.17 **NRST** pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see Table 49).


Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 14.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 49. NRST pin characteristics

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series 1. resistance must be minimum (~10% order).

2. Guaranteed by design, not tested in production.

Figure 40. Recommended NRST pin protection

- The reset network protects the device against parasitic resets. 1.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in 2. Table 49. Otherwise the reset is not taken into account by the device.

Symbol	Parameter Conditions		Min	Max	Unit
f _{CK} 1/t _{c(CK)}	I ² S clock frequency	Master, 16-bit data, audio frequency = 48 kHz, main clock disabled	1.23	1.24	MHz
0(01)		Slave	0	64F _S ⁽¹⁾	
t _{r(CK)} t _{f(CK)}	I ² S clock rise and fall time	Capacitive load $C_L = 50 \text{ pF}$	_ (2)		
t _{v(WS)} ⁽³⁾	WS valid time	Master	0.3	-	
t _{h(WS)} ⁽³⁾	WS hold time	Master	0	-	
t _{su(WS)} ⁽³⁾	WS setup time	Slave	3	-	
t _{h(WS)} ⁽³⁾	WS hold time	Slave	0	-	•
t _{w(CKH)} (3) t _{w(CKL)} (3)	CK high and low time	Master f _{PCLK} = 30 MHz	396	-	•
$t_{su(SD_MR)}^{(3)}_{(3)}$ $t_{su(SD_SR)}^{(3)}$	Data input setup time	Master receiver Slave receiver	45 0	-	ns
$t_{h(SD_MR)}^{(3)(4)}_{(3)(4)} t_{h(SD_SR)}^{(3)(4)}$	Data input hold time	Master receiver: f _{PCLK} = 30 MHz, Slave receiver: f _{PCLK} = 30 MHz	13 0	-	
t _{v(SD_ST)} (3)(4)	Data output valid time	Slave transmitter (after enable edge)	-	30	*
t _{h(SD_ST)} ⁽³⁾	Data output hold time	Slave transmitter (after enable edge)	10	-	*
t _{v(SD_MT)} ⁽³⁾⁽⁴⁾	Data output valid time	Master transmitter (after enable edge)	- 6		1
t _{h(SD_MT)} ⁽³⁾	Data output hold time	Master transmitter (after enable edge)	0	0 -	

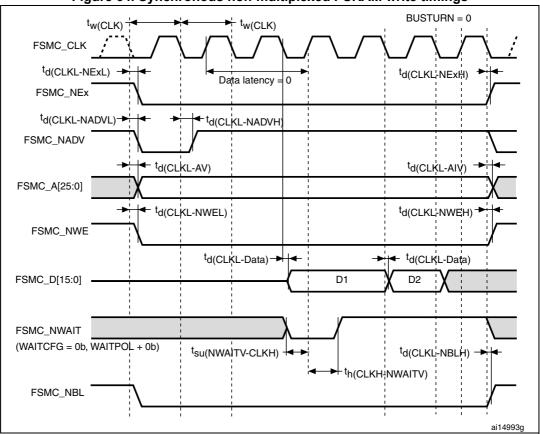
Table 55. I²S characteristics

F_S is the sampling frequency. Refer to the I2S section of the STM32F20xxx/21xxx reference manual for more details. f_{CK} values reflect only the digital peripheral behavior which leads to a minimum of (I2SDIV/(2*I2SDIV+ODD), a maximum of (I2SDIV+ODD)/(2*I2SDIV+ODD) and F_S maximum values for each mode/condition.

2. Refer to Table 48: I/O AC characteristics.

3. Guaranteed by design, not tested in production.

4. Depends on $f_{PCLK}.$ For example, if f_{PCLK} =8 MHz, then T_{PCLK} = 1/f_{PLCLK} =125 ns.



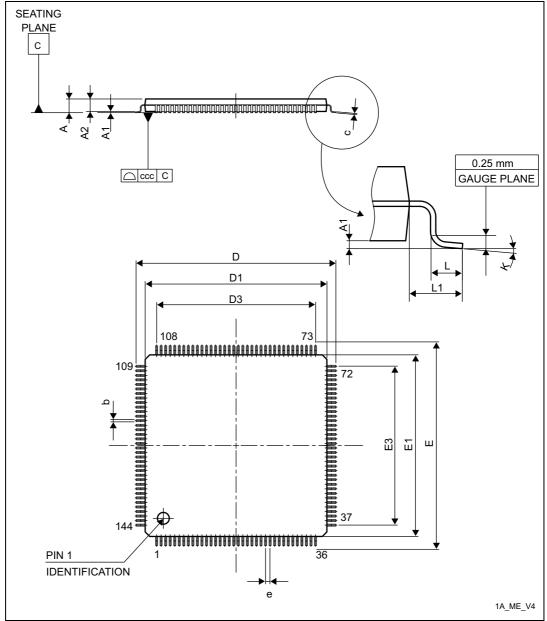
Symbol	Parameter Min M			
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high		-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)		-	ns
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	8	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high 0		-	ns

Table 78. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Figure 64. Synchronous non-multiplexed PSRAM write timings


Table 79. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK} - 1	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	1	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02) 1 -		-	ns

7.4 LQFP144 package information

Figure 84. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 97. Document revision history (continued) Date Revision Changes				
Date R				

Date
Date

	Table 97. Document revision history (continued)				
Date	Revision	Changes			
14-Jun-2011	7	Added SDIO in <i>Table 2: STM32F205xx features and peripheral counts.</i> Updated V _{IN} for 5V tolerant pins in <i>Table 11: Voltage characteristics.</i> Updated jitter parameters description in <i>Table 34: Main PLL characteristics.</i> Remove jitter values for system clock in <i>Table 35: PLLI2S (audio PLL) characteristics.</i> Updated <i>Table 42: EMI characteristics.</i> Updated <i>Table 42: EMI characteristics.</i> Updated <i>Note 2</i> in <i>Table 52: I2C characteristics.</i> Updated Avg_Slope typical value and T_{S_temp} minimum value in <i>Table 69: Temperature sensor characteristics.</i> Updated T_{S_vbat} minimum value in <i>Table 70: VBAT monitoring characteristics.</i> Updated $T_{S_vrefint}$ minimum value in <i>Table 71: Embedded internal reference voltage.</i> Added Software option in <i>Section 8: Part numbering.</i> In <i>Table 101: Main applications versus package for STM32F2xxx microcontrollers,</i> renamed USB1 and USB2, USB OTG FS and USB OTG HS, respectively; and removed USB OTG HS on 64-pin package; added <i>Note 1</i> and <i>Note 2.</i>			
20-Dec-2011	8	Updated SDIO register addresses in <i>Figure 16: Memory map</i> . Updated <i>Figure 3: Compatible board design between STM32F10xx and</i> <i>STM32F2xx for LQFP144 package, Figure 2: Compatible board design</i> <i>between STM32F10xx and STM32F2xx for LQFP100 package,</i> <i>Figure 1: Compatible board design between STM32F10xx and</i> <i>STM32F2xx for LQFP64 package,</i> and added <i>Figure 4: Compatible</i> <i>board design between STM32F10xx and STM32F2xx for LQFP176</i> <i>package.</i> Updated <i>Section 3.3: Memory protection unit.</i> Updated <i>Section 3.6: Embedded SRAM.</i> Updated <i>Section 3.6: Embedded SRAM.</i> Updated <i>Section 3.28: Universal serial bus on-the-go full-speed</i> (<i>OTG_FS</i>) to remove external FS OTG PHY support. In <i>Table 8: STM32F20x pin and ball definitions:</i> changed SPI2_MCK and SPI3_MCK to I2S2_MCK and I2S3_MCK, respectively. Added ETH _RMII_TX_EN attlernate function to PG11. Added EVENTOUT in the list of alternate functions for I/O pin/balls. Removed OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate functions. In <i>Table 10: Alternate function mapping:</i> changed I2S3_SCK to I2S3_MCK for PC7/AF6, added FSMC_NCE3 for PG9, FSMC_NE3 for PG10, and FSMC_NCE2 for PD7. Removed OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate functions. Changed I2S3_SCK into I2S3_MCK for PC7/AF6. Updated peripherals corresponding to AF12. Removed CEXT and ESR from <i>Table 14: General operating conditions</i> .			

Table 97. Document revision history (continued)

Date	Revision	able 97. Document revision history (continued)		
Dute	100131011			
		In the whole document, updated notes related to WLCSP64+2 usage with IRROFF set to V _{DD} . Updated Section 3.14: Power supply schemes, Section 3.15: Power supply supervisor, Section 3.16.1: Regulator ON and Section 3.16.2: Regulator OFF. Added Section 3.16.3: Regulator ON/OFF and internal reset ON/OFF availability. Added note related to WLCSP64+2 package.		
		Restructured RTC features and added reference clock detection in <i>Section 3.17: Real-time clock (RTC), backup SRAM and backup registers.</i>		
		Added note indicating the package view below <i>Figure 10:</i> STM32F20x LQFP64 pinout, Figure 12: STM32F20x LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout, and Figure 14: STM32F20x LQFP176 pinout.		
		Added Table 7: Legend/abbreviations used in the pinout table. Table 8: STM32F20x pin and ball definitions: content reformatted; removed indexes on V _{SS} and V _{DD} ; updated PA4, PA5, PA6, PC4, BOOT0; replaced DCMI_12 by DCMI_D12, TIM8_CHIN by TIM8_CH1N, ETH_MII_RX_D0 by ETH_MII_RXD0, ETH_MII_RX_D1 by ETH_MII_RXD1, ETH_RMII_RX_D0 by ETH_RMII_RXD0, ETH_RMII_RX_D1 by ETH_RMII_RXD1, and RMII_CRS_DV by ETH_RMII_CRS_DV.		
04-Nov-2013	11	<i>Table 10: Alternate function mapping</i> : replaced FSMC_BLN1 by FSMC_NBL1, added EVENTOUT as AF15 alternated function for PC13, PC14, PC15, PH0, PH1, and Pl8.		
		Updated Figure 17: Pin loading conditions and Figure 18: Pin input voltage.		
		Added V _{IN} in Table 14: General operating conditions.		
		Removed note applying to V _{POR/PDR} minimum value in <i>Table 19:</i> <i>Embedded reset and power control block characteristics</i> .		
		Updated notes related to C_{L1} and C_{L2} in Section : Low-speed external clock generated from a crystal/ceramic resonator.		
		Updated conditions in <i>Table 41: EMS characteristics</i> . Updated <i>Table 42: EMI characteristics</i> . Updated V_{IL} , V_{IH} and V_{Hys} in <i>Table 46: I/O static characteristics</i> . Added Section : Output driving currentand updated Figure 39: I/O AC characteristics definition.		
		Updated V _{IL(NRST)} and V _{IH(NRST)} in <i>Table 49: NRST pin characteristics</i> , updated <i>Figure 39: I/O AC characteristics definition</i> .		
		Removed tests conditions in <i>Section : I2C interface characteristics</i> . Updated <i>Table 52: I2C characteristics</i> and <i>Figure 41: I2C bus AC</i> <i>waveforms and measurement circuit</i> .		
		Updated I _{VREF+} and I _{VDDA} in <i>Table 66: ADC characteristics</i> . Updated Offset comments in <i>Table 68: DAC characteristics</i> .		
		Updated minimum t _{h(CLKH-DV)} value in <i>Table 78: Synchronous non-multiplexed NOR/PSRAM read timings</i> .		

