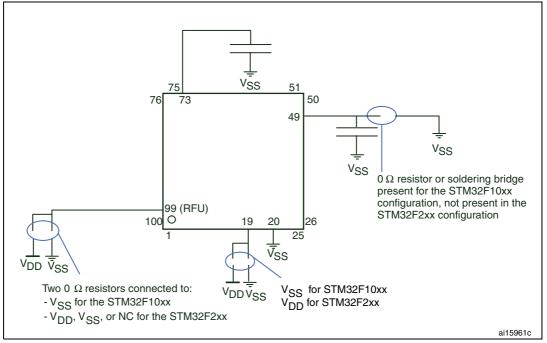


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f207igh6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

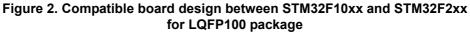
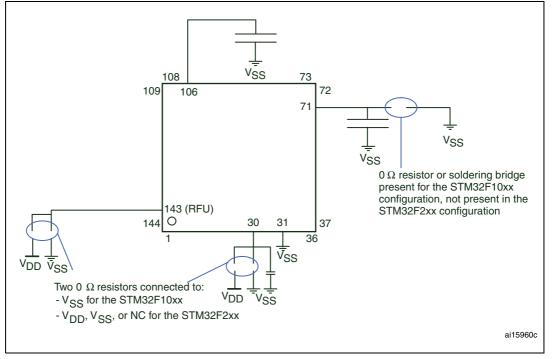



Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package

1. RFU = reserved for future use.

DocID15818 Rev 13

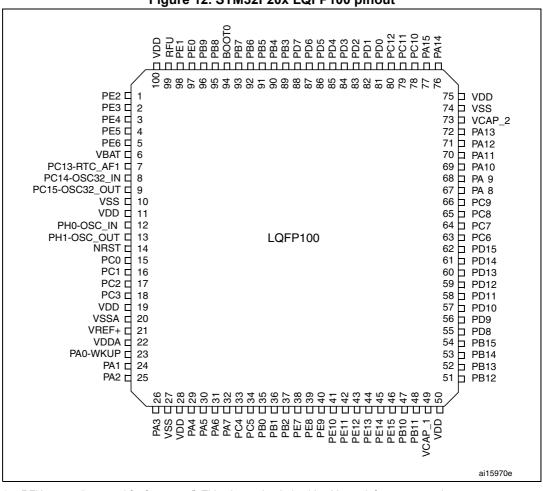
3.20 Timers and watchdogs

The STM32F20x devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 5 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock	Max timer clock
Advanced- control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	60 MHz	120 MHz
General	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	30 MHz	60 MHz
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	30 MHz	60 MHz
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	30 MHz	60 MHz
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	60 MHz	120 MHz
General	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	60 MHz	120 MHz
purpose	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	30 MHz	60 MHz
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	30 MHz	60 MHz


 Table 5. Timer feature comparison

3.20.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

1. RFU means "reserved for future use". This pin can be tied to $V_{\text{DD}}, V_{\text{SS}}$ or left unconnected.

2. The above figure shows the package top view.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE3	PE2	PE1	PE0	PB8	PB5	PG14	PG13	PB4	PB3	PD7	PC12	PA15	PA14	PA13
в	PE4	PE5	PE6	PB9	PB7	PB6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
С	VBAT	PI7	PI6	PI5	VDD	RFU	VDD	VDD	VDD	PG9	PD5	PD1	PI3	Pl2	PA11
D	PC13- TAMP1	PI8- TAMP2	PI9	PI4	VSS	BOOT0	VSS	VSS	VSS	PD4	PD3	PD2	PH15	PI1	PA10
Е	PC14- OSC32_IN	PF0	PI10	PI11								PH13	PH14	P10	PA9
F	PC15- OSC32_OUT	VSS	VDD	PH2		VSS	VSS	VSS	VSS	VSS		VSS	VCAP_2	PC9	PA8
G	PH0- OSC_IN	VSS	VDD	PH3		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PC8	PC7
н	PH1- OSC_OUT	PF2	PF1	PH4		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PG8	PC6
J	NRST	PF3	PF4	PH5		VSS	VSS	VSS	VSS	VSS		VDD	VDD	PG7	PG6
к	PF7	PF6	PF5	VDD		VSS	VSS	VSS	VSS	VSS		PH12	PG5	PG4	PG3
L	PF10	PF9	PF8	REGOFF								PH11	PH10	PD15	PG2
м	VSSA	PC0	PC1	PC2	PC3	PB2	PG1	VSS	VSS	VCAP_1	PH6	PH8	PH9	PD14	PD13
N	VREF-	PA1	PA0- WKUP	PA4	PC4	PF13	PG0	VDD	VDD	VDD	PE13	PH7	PD12	PD11	PD10
Ρ	VREF+	PA2	PA6	PA5	PC5	PF12	PF15	PE8	PE9	PE11	PE14	PB12	PB13	PD9	PD8
R	VDDA	PA3	PA7	PB1	PB0	PF11	PF14	PE7	PE10	PE12	PE15	PB10	PB11	PB14	PB15

Figure 15. STM32F20x UFBGA176 ballout

1. RFU means "reserved for future use". This pin can be tied to $V_{\text{DD}}, V_{\text{SS}}$ or left unconnected.

2. The above figure shows the package top view.

	Table 7. Legend/abbreviations used in the p	inout table
--	---	-------------

Name	Abbreviation	Definition					
Pin name		specified in brackets below the pin name, the pin function during and after as the actual pin name					
	S	Supply pin					
Pin type	I	Input only pin					
	I/O	Input/ output pin					
	FT	5 V tolerant I/O					
I/O structure	TTa	TTa 3.3 V tolerant I/O					
NO structure	В	B Dedicated BOOT0 pin					
	RST	Bidirectional reset pin with embedded weak pull-up resistor					
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset					
Alternate functions	Functions selected	Functions selected through GPIOx_AFR registers					
Additional functions	Functions directly selected/enabled through peripheral registers						

Figure 16. Memory map

DocID15818 Rev 13

				Тур	Ma	x ⁽¹⁾			
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit		
			120 MHz	38	51	61			
			90 MHz	30	43	53			
			60 MHz	20	33	43			
		- (2)	30 MHz	11	25	35			
		External clock ⁽²⁾ , all peripherals enabled ⁽³⁾	25 MHz	8	21	31			
			current in 16 16 81 41 21 120	16 MHz	6	19	29	1	
					8 MHz	3.6	17.0	27.0	1
	Supply current in Sleep mode				4 MHz	2.4	15.4	25.3	
					2 MHz	1.9	14.9	24.7	mA
I _{DD}							120 MHz	8	21
				90 MHz	7	20	30		
	60 MHz 5 30 MHz 3.5		60 MHz	5	18	28			
		16.0	26.0						
		External clock ⁽²⁾ , all peripherals disabled	25 MHz	2.5	16.0	25.0	1		
			16 MHz	2.1	15.1	25.0			
			8 MHz	1.7	15.0	25.0			
			4 MHz	1.5	14.6	24.6			
			2 MHz	1.4	14.2	24.3			

Table 22. Typical and maximum current	consumption in Sleep mode
---------------------------------------	---------------------------

1. Guaranteed by characterization results, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when $\rm f_{HCLK}$ > 25 MHz.

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

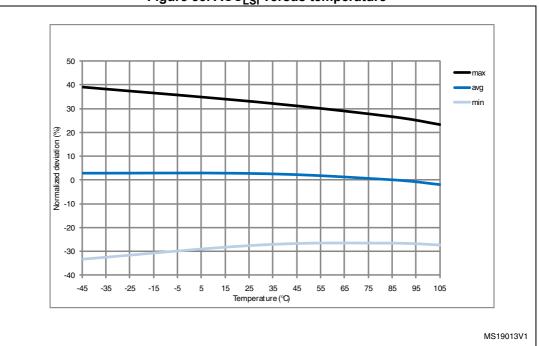


Figure 35. ACC_{LSI} versus temperature

6.3.10 PLL characteristics

The parameters given in *Table 34* and *Table 35* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10 ⁽²⁾	MHz	
f _{PLL_OUT}	PLL multiplier output clock	-	24	-	120	MHz	
f _{PLL48_} OUT	48 MHz PLL multiplier output clock	-	-	-	48	MHz	
f _{VCO_OUT}	PLL VCO output	-	192	-	432	MHz	
	PLL lock time	VCO freq = 192 MHz	75	-	200		
t _{LOCK}		VCO freq = 432 MHz	100	-	300	μs	

Table 34. Main PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD}		Write / Erase 8-bit mode V _{DD} = 1.8 V	-	5	-	
	Supply current	Write / Erase 16-bit mode V _{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode V _{DD} = 3.3 V	-	12	-	

Table 37. Flash memory characteristics

Table 38. Flash memory programming

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs	
		Program/erase parallelism (PSIZE) = x 8	-	400	800		
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms	
		Program/erase parallelism (PSIZE) = x 32	-	250	500		
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400		
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms	
		Program/erase parallelism (PSIZE) = x 32	-	550	1100		
		Program/erase parallelism (PSIZE) = x 8	-	2	4	4	
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s	
		Program/erase parallelism (PSIZE) = x 32	-	1	2		
		Program/erase parallelism (PSIZE) = x 8	-	16	32		
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	s	
		Program/erase parallelism (PSIZE) = x 32	-	8	16		
		32-bit program operation	2.7	-	3.6	V	
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V	
		8-bit program operation	1.8	-	3.6	V	

1. Guaranteed by characterization results, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

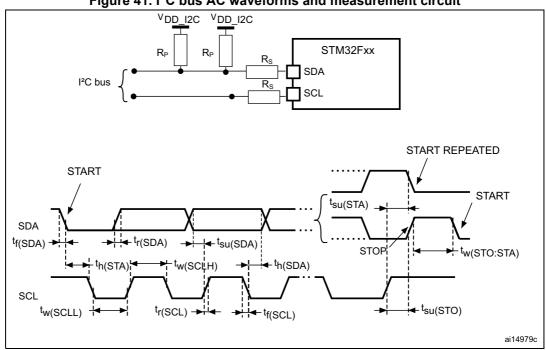


Figure 41. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. $V_{DD_{12C}}$ is the I²C bus power supply.

f (kU-)	I2C_CCR value
f _{SCL} (kHz)	R _P = 4.7 kΩ
400	0x8019
300	0x8021
200	0x8032
100	0x0096
50	0x012C
20	0x02EE

Table 53. SCL frequency (f_{PCLK1}= 30 MHz., V_{DD} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I²C speed,

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

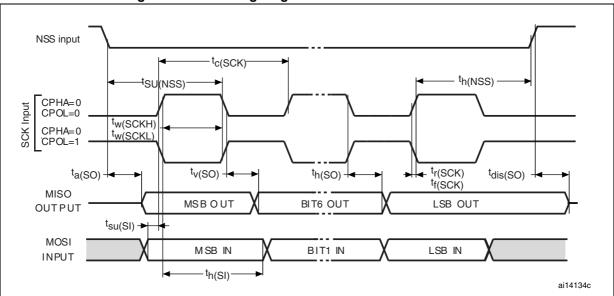
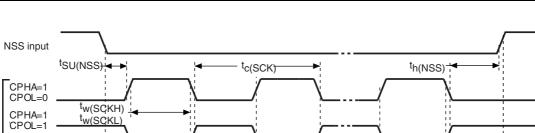



Figure 42. SPI timing diagram - slave mode and CPHA = 0

4

^tv(SO) →

th(SI) _

MSBOUT

►¦i◄

M SB IN

► tr(SCK)

LSB IN

I dis(SO)

LSB OUT

th(SO) +

BIT6 OUT

BIT1 IN

SCK Input

MISO

OUTPUT

MOSI

INPUT

tw(SCKL)

t_{su(SI)} –

ta(SO) →

ai14135

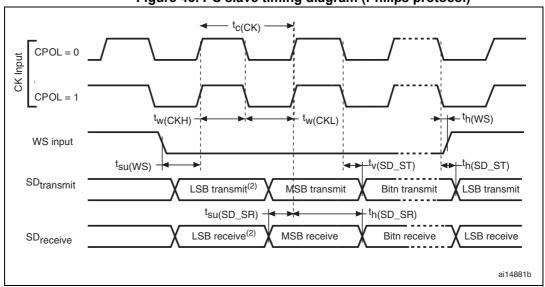


Figure 45. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

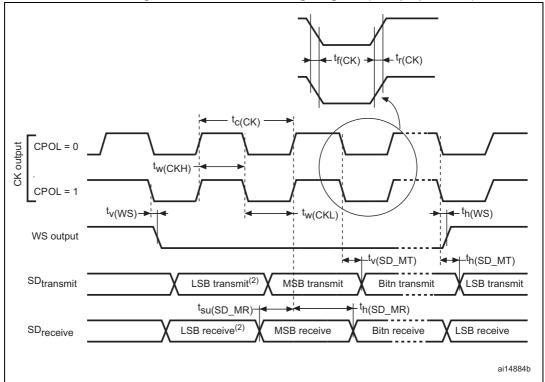


Figure 46. I²S master timing diagram (Philips protocol)⁽¹⁾

1. Guaranteed by characterization results, not tested in production.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 47. USB OTG FS timings: definition of data signal rise and fall time

Table 58. USB OTG FS electrical characteristics⁽¹⁾

	Driver characteristics										
Symbol	Parameter	Conditions	Min	Max	Unit						
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns						
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns						
t _{rfm}	Rise/fall time matching	t _r /t _f	90	110	%						
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V						

1. Guaranteed by design, not tested in production.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

USB HS characteristics

Table 59 shows the USB HS operating voltage.

Table 59. USB HS DC electrical characteristics

	Symbol Input level V _{DD}		Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
			USB OTG HS operating voltage	2.7	3.6	V

1. All the voltages are measured from the local ground potential.

Table 60. Clock timing parameters

Parameter ⁽¹⁾	Symbol	Min	Nominal	Max	Unit	
Frequency (first transition) 8-bit ±10%		F _{START_8BIT}	54	60	66	MHz
Frequency (steady state) ±500 ppm		F _{STEADY}	59.97	60	60.03	MHz
Duty cycle (first transition) 8-bit ±10%		D _{START_8BIT}	40	50	60	%
Duty cycle (steady state) ±500	D _{STEADY}	49.975	50	50.025	%	
Time to reach the steady state frequency and duty cycle after the first transition		T _{STEADY}	-	-	1.4	ms
Clock startup time after the	Peripheral	T _{START_DEV}	-	-	5.6	ms
de-assertion of SuspendM	Host	T _{START_HOST}	-	-	-	
PHY preparation time after the first transition of the input clock		T _{PREP}	-	-	-	μs

1. Guaranteed by design, not tested in production.

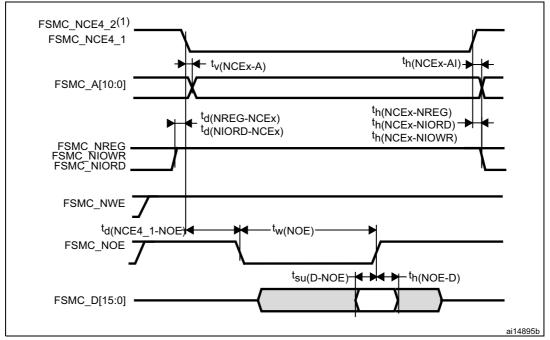
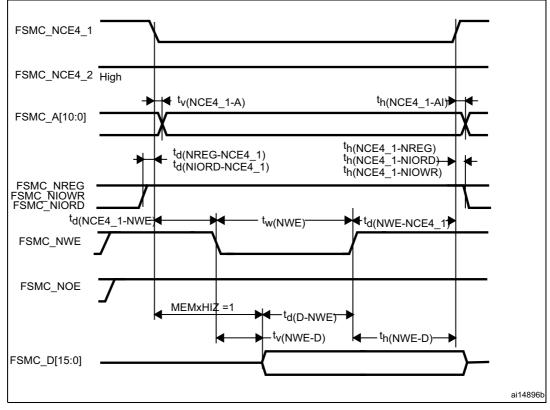
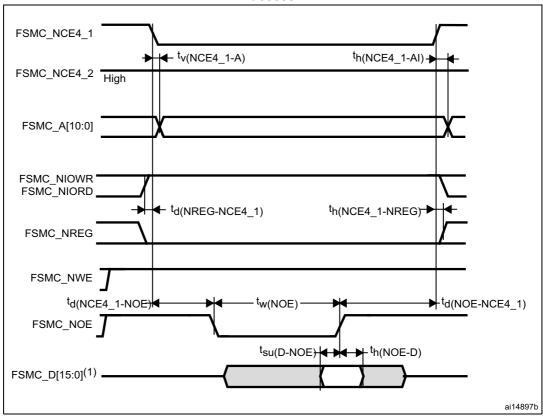
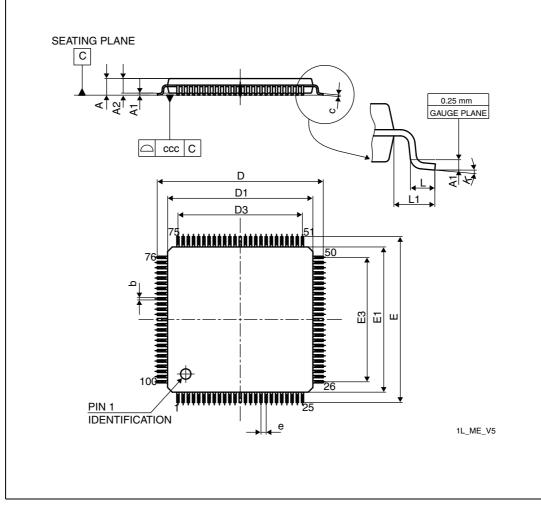



Figure 65. PC Card/CompactFlash controller waveforms for common memory read access

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.




Figure 67. PC Card/CompactFlash controller waveforms for attribute memory read access

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

7.3 LQFP100 package information

Figure 81. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

mechanical data								
Symbol	millimeters			inches ⁽¹⁾				
Symbol	Min	Тур	Мах	Min	Тур	Max		
А	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	-	0.200	0.0035	-	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		

Table 90. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data

O mark of	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.8740
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.6890	-
Е	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 91. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

	Dimensions						
Symbol	millimeters			inches ⁽¹⁾			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
HD	25.900	-	26.100	1.0197	-	1.0276	
ZD	-	1.250	-	-	0.0492	-	
E	23.900	-	24.100	0.9409	-	0.9488	
HE	25.900	-	26.100	1.0197	-	1.0276	
ZE	-	1.250	-	-	0.0492	-	
е	-	0.500	-	-	0.0197	-	
L ⁽²⁾	0.450	-	0.750	0.0177	-	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	-	7°	0°	-	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 92. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.

	Table 97. Document revision history (continued)					
Date	Revision	Changes				
14-Jun-2011	7	Added SDIO in <i>Table 2: STM32F205xx features and peripheral counts.</i> Updated V _{IN} for 5V tolerant pins in <i>Table 11: Voltage characteristics.</i> Updated jitter parameters description in <i>Table 34: Main PLL characteristics.</i> Remove jitter values for system clock in <i>Table 35: PLLI2S (audio PLL) characteristics.</i> Updated <i>Table 42: EMI characteristics.</i> Updated <i>Table 42: EMI characteristics.</i> Updated <i>Note 2</i> in <i>Table 52: I2C characteristics.</i> Updated Avg_Slope typical value and T_{S_temp} minimum value in <i>Table 69: Temperature sensor characteristics.</i> Updated T_{S_vbat} minimum value in <i>Table 70: VBAT monitoring characteristics.</i> Updated $T_{S_vrefint}$ minimum value in <i>Table 71: Embedded internal reference voltage.</i> Added Software option in <i>Section 8: Part numbering.</i> In <i>Table 101: Main applications versus package for STM32F2xxx microcontrollers,</i> renamed USB1 and USB2, USB OTG FS and USB OTG HS, respectively; and removed USB OTG HS on 64-pin package; added <i>Note 1</i> and <i>Note 2.</i>				
20-Dec-2011 8		Updated SDIO register addresses in <i>Figure 16: Memory map</i> . Updated <i>Figure 3: Compatible board design between STM32F10xx and</i> <i>STM32F2xx for LQFP144 package, Figure 2: Compatible board design</i> <i>between STM32F10xx and STM32F2xx for LQFP100 package,</i> <i>Figure 1: Compatible board design between STM32F10xx and</i> <i>STM32F2xx for LQFP64 package,</i> and added <i>Figure 4: Compatible</i> <i>board design between STM32F10xx and STM32F2xx for LQFP176</i> <i>package.</i> Updated <i>Section 3.3: Memory protection unit.</i> Updated <i>Section 3.6: Embedded SRAM.</i> Updated <i>Section 3.6: Embedded SRAM.</i> Updated <i>Section 3.28: Universal serial bus on-the-go full-speed</i> (<i>OTG_FS</i>) to remove external FS OTG PHY support. In <i>Table 8: STM32F20x pin and ball definitions:</i> changed SPI2_MCK and SPI3_MCK to I2S2_MCK and I2S3_MCK, respectively. Added ETH _RMII_TX_EN attlernate function to PG11. Added EVENTOUT in the list of alternate functions for I/O pin/balls. Removed OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate functions. In <i>Table 10: Alternate function mapping:</i> changed I2S3_SCK to I2S3_MCK for PC7/AF6, added FSMC_NCE3 for PG9, FSMC_NE3 for PG10, and FSMC_NCE2 for PD7. Removed OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate functions. Changed I2S3_SCK into I2S3_MCK for PC7/AF6. Updated peripherals corresponding to AF12. Removed CEXT and ESR from <i>Table 14: General operating conditions</i> .				

Table 97. Document revision history (continued)

Date	Revision	Changes
29-Oct-2012	10 (continued)	Replaced t _{d(CLKL-NOEL)} by t _{d(CLKH-NOEL)} in Table 76: Synchronous multiplexed NOR/PSRAM read timings, Table 78: Synchronous non- multiplexed NOR/PSRAM read timings, Figure 61: Synchronous multiplexed NOR/PSRAM read timings and Figure 63: Synchronous non-multiplexed NOR/PSRAM read timings. Added Figure 87: LQFP176 recommended footprint. Added Note 2 below Figure 86: Regulator OFF/internal reset ON. Updated device subfamily in Table 96: Ordering information scheme. Remove reference to note 2 for USB IOTG FS in Table 101: Main applications versus package for STM32F2xxx microcontrollers.

Table 97.	Document	revision	historv	(continued)	
	Document	101131011	motory	(continued)	/

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID15818 Rev 13

