STMicroelectronics - STM32F207VFT6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f207vft6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 38. Figure 39.	FT I/O input characteristics 1 I/O AC characteristics definition 1	06 09
Figure 40.	Recommended NRST pin protection	09
Figure 41.	I ² C bus AC waveforms and measurement circuit	13
Figure 42.	SPI timing diagram - slave mode and CPHA = 0 1	15
Figure 43.	SPI timing diagram - slave mode and CPHA = 1 1	15
Figure 44.	SPI timing diagram - master mode 1	16
Figure 45.	I^2 S slave timing diagram (Philips protocol) ⁽¹⁾ 1	18
Figure 46.	I ² S master timing diagram (Philips protocol) ⁽¹⁾ 1	18
Figure 47.	USB OTG FS timings: definition of data signal rise and fall time	20
Figure 48.	ULPI timing diagram	21
Figure 49.	Ethernet SMI timing diagram 1	22
Figure 50.	Ethernet RMII timing diagram 1	22
Figure 51.	Ethernet MII timing diagram 1	23
Figure 52.	ADC accuracy characteristics 1	26
Figure 53.	Typical connection diagram using the ADC 1	26
Figure 54.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	27
Figure 55.	Power supply and reference decoupling (V _{RFF+} connected to V _{DDA})	28
Figure 56.	12-bit buffered /non-buffered DAC	30
Figure 57.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	32
Figure 58.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	33
Figure 59.	Asynchronous multiplexed PSRAM/NOR read waveforms	34
Figure 60.	Asynchronous multiplexed PSRAM/NOR write waveforms	35
Figure 61.	Synchronous multiplexed NOR/PSRAM read timings	37
Figure 62.	Synchronous multiplexed PSRAM write timings.	38
Figure 63.	Synchronous non-multiplexed NOR/PSRAM read timings	39
Figure 64.	Synchronous non-multiplexed PSRAM write timings	40
Figure 65.	PC Card/CompactFlash controller waveforms for common memory read access 1	42
Figure 66.	PC Card/CompactFlash controller waveforms for common memory write access	42
Figure 67	PC Card/CompactElash controller waveforms for attribute memory read	
	access	43
Figure 68.	PC Card/CompactFlash controller waveforms for attribute memory write	
i iguro oo.	access	44
Figure 69	PC Card/CompactElash controller waveforms for I/O space read access	44
Figure 70	PC Card/CompactElash controller waveforms for I/O space write access	45
Figure 70.	NAND controller waveforms for read access	140
Figure 72	NAND controller waveforms for write access	47
Figure 73	NAND controller waveforms for common memory read access	148
Figure 74	NAND controller waveforms for common memory write access	148
Figure 75	SDIO high-speed mode	140
Figure 75.	SD default mode	50
Figure 77	I OED64 64 pin 10 x 10 mm low profile guad flat package outline	150
Figure 78	LOEP64 64 pin, 10 x 10 mm low profile guad flat package outline	51
Figure 70.	recommonded footprint	52
Eiguro 70	W/CSD64+2 66 holl 2 620 x 2 071 mm 0.4 mm nitch wafer level	152
Figure 79.	vvLCSP04+2 - 00-ball, 5.059 X 5.97 Fillin, 0.4 fillin pitch waler level	150
Figure 90	WI CSD6412 66 holl 4 520 x 4 011 mm 0.4 mm nitch wofer level chin acolo	100
Figure ou.	VVLCSP04+2 - 00-Dall, 4.559 X 4.911 min, 0.4 min pitch water level chip scale	
Figure 04	DED100 100 pin 14 x 14 pm low profile swed flat package authors	104
	LQFF100 - 100-pin, 14 x 14 mm low-profile quad flat package outline	100
riguie 8∠.	LQFF100 - 100-pin, 14 x 14 mm iow-prome quad flat	50
		150
Figure 83.		15/

3 Functional overview

3.1 **ARM[®] Cortex[®]-M3 core with embedded Flash and SRAM**

The ARM[®] Cortex[®]-M3 processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

With its embedded $\text{ARM}^{\text{®}}$ core, the STM32F20x family is compatible with all $\text{ARM}^{\text{®}}$ tools and software.

Figure 4 shows the general block diagram of the STM32F20x family.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M3 processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M3 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher operating frequencies.

To release the processor full 150 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	х	х	х	х	1.87	7.5	APB2 (max. 60 MHz)
USART2	х	х	х	х	х	x	1.87	3.75	APB1 (max. 30 MHz)
USART3	x	х	х	х	х	x	1.87	3.75	APB1 (max. 30 MHz)
UART4	x	-	х	-	х	-	1.87	3.75	APB1 (max. 30 MHz)
UART5	x	-	х	-	х	-	3.75	3.75	APB1 (max. 30 MHz)
USART6	x	х	х	х	х	х	3.75	7.5	APB2 (max. 60 MHz)

 Table 6. USART feature comparison

3.23 Serial peripheral interface (SPI)

The STM32F20x devices feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, while SPI2 and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.24 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, in half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx interfaces can be served by the DMA controller.

3.25 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

DocID15818 Rev 13

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE3	PE2	PE1	PE0	PB8	PB5	PG14	PG13	PB4	PB3	PD7	PC12	PA15	PA14	PA13
в	PE4	PE5	PE6	PB9	PB7	PB6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
с	VBAT	PI7	PI6	PI5	VDD	RFU	VDD	VDD	VDD	PG9	PD5	PD1	PI3	Pl2	PA11
D	PC13- TAMP1	PI8- TAMP2	PI9	PI4	VSS	BOOT0	VSS	VSS	VSS	PD4	PD3	PD2	PH15	PI1	PA10
Е	PC14- OSC32_IN	PF0	PI10	PI11								PH13	PH14	P10	PA9
F	PC15- OSC32_OUT	VSS	VDD	PH2		VSS	VSS	VSS	VSS	VSS		VSS	VCAP_2	PC9	PA8
G	PH0- OSC_IN	VSS	VDD	PH3		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PC8	PC7
н	PH1- OSC_OUT	PF2	PF1	PH4		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PG8	PC6
J	NRST	PF3	PF4	PH5		VSS	VSS	VSS	VSS	VSS		VDD	VDD	PG7	PG6
к	PF7	PF6	PF5	VDD		VSS	VSS	VSS	VSS	VSS		PH12	PG5	PG4	PG3
L	PF10	PF9	PF8	REGOFF								PH11	PH10	PD15	PG2
М	VSSA	PC0	PC1	PC2	PC3	PB2	PG1	VSS	VSS	VCAP_1	PH6	PH8	PH9	PD14	PD13
N	VREF-	PA1	PA0- WKUP	PA4	PC4	PF13	PG0	VDD	VDD	VDD	PE13	PH7	PD12	PD11	PD10
Ρ	VREF+	PA2	PA6	PA5	PC5	PF12	PF15	PE8	PE9	PE11	PE14	PB12	PB13	PD9	PD8
R	VDDA	PA3	PA7	PB1	PB0	PF11	PF14	PE7	PE10	PE12	PE15	PB10	PB11	PB14	PB15

Figure 15. STM32F20x UFBGA176 ballout

1. RFU means "reserved for future use". This pin can be tied to $V_{\text{DD}}, V_{\text{SS}}$ or left unconnected.

2. The above figure shows the package top view.

Table 7. Leo	end/abbreviations	used in	the	pinout	table
10.010 11 202				pinoat	

Name	Abbreviation	Definition				
Pin name	Unless otherwise reset is the same	specified in brackets below the pin name, the pin function during and after as the actual pin name				
	S	Supply pin				
Pin type	I	Input only pin				
	I/O	Input/ output pin				
	FT	5 V tolerant I/O				
I/O structuro	ТТа	3.3 V tolerant I/O				
NO structure	В	Dedicated BOOT0 pin				
	RST Bidirectional reset pin with embedded weak pull-up resistor					
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset				
Alternate functions	Functions selected	d through GPIOx_AFR registers				
Additional functions	Functions directly	selected/enabled through peripheral registers				

Table 8. STM32	F20>	c pin	and	ball definitions	

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	1	1	1	A2	PE2	I/O	FT	-	TRACECLK, FSMC_A23, ETH_MII_TXD3, EVENTOUT	-
-	-	2	2	2	A1	PE3	I/O	FT	-	TRACED0,FSMC_A19, EVENTOUT	-
-	-	3	3	3	B1	PE4	I/O	FT	-	TRACED1,FSMC_A20, DCMI_D4, EVENTOUT	-
-	-	4	4	4	B2	PE5	I/O	FT	-	TRACED2, FSMC_A21, TIM9_CH1, DCMI_D6, EVENTOUT	-
-	-	5	5	5	В3	PE6	I/O	FT	-	TRACED3, FSMC_A22, TIM9_CH2, DCMI_D7, EVENTOUT	-
1	A9	6	6	6	C1	V _{BAT}	S		-	-	-
-	-	-	-	7	D2	PI8	I/O	FT	(2)(3)	EVENTOUT	RTC_AF2
2	B8	7	7	8	D1	PC13	I/O	FT	(2)(3)	EVENTOUT	RTC_AF1
3	В9	8	8	9	E1	PC14/OSC32_IN (PC14)	I/O	FT	(2)(3)	EVENTOUT	OSC32_IN ⁽⁴⁾
4	C9	9	9	10	F1	PC15-OSC32_OUT (PC15)	I/O	FT	(2)(3)	EVENTOUT	OSC32_OUT ⁽⁴⁾
-	-	-	-	11	D3	PI9	I/O	FT	-	CAN1_RX,EVENTOUT	-
-	-	-	-	12	E3	PI10	I/O	FT	-	ETH_MII_RX_ER, EVENTOUT	-
-	-	-	-	13	E4	PI11	I/O	FT	-	OTG_HS_ULPI_DIR, EVENTOUT	-
-	-	-	-	14	F2	V _{SS}	S		-	-	-
-	-	-	-	15	F3	V _{DD}	S		-	-	-
-	-	-	10	16	E2	PF0	I/O	FT	-	FSMC_A0, I2C2_SDA, EVENTOUT	-
-	-	-	11	17	НЗ	PF1	I/O	FT	-	FSMC_A1, I2C2_SCL, EVENTOUT	-
-	-	-	12	18	H2	PF2	I/O	FT	-	FSMC_A2, I2C2_SMBA, EVENTOUT	-
-	-	-	13	19	J2	PF3	I/O	FT	(4)	FSMC_A3, EVENTOUT	ADC3_IN9

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	Pin type I/O structure Note		Alternate functions	Additional functions
-	-	98	142	170	A3	PE1	I/O	FT	-	FSMC_NBL1, DCMI_D3, EVENTOUT	-
-	I	-	-	-	D5	V _{SS}	S	-			_
63	D8	-	-	-	-	V _{SS}	S	-	-	-	-
-	-	99	143	171	C6	RFU	-	-	(7)	-	-
64	D9	100	144	172	C5	V _{DD}	S	-	-	-	-
-	-	-	-	173	D4	Pl4	I/O	FT	-	TIM8_BKIN, DCMI_D5, EVENTOUT	-
-	I	-	-	174	C4	PI5	I/O	FT	T - TIM8_CH1, DCMI_VSYNC, EVENTOUT		-
-	-	-	-	175	C3	Pl6	I/O FT - T		-	TIM8_CH2, DCMI_D6, EVENTOUT	-
-	-	-	-	176	C2	PI7	I/O	/0 FT -		TIM8_CH3, DCMI_D7, EVENTOUT	-
-	C8	-	-	-	-	IRROFF	I/O	-			_

Table 8. STM32F20x pin and ball definitions (continued)

1. Function availability depends on the chosen device.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

 Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to V_{DD} (Regulator OFF), then PA0 is used as an internal Reset (active low).

6. FSMC_NL pin is also named FSMC_NADV on memory devices.

7. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

Table 9. FSMC pin definition

Dine	FSMC										
FIIIS	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFF100						
PE2	-	A23	A23	-	Yes						
PE3	-	A19	A19	-	Yes						
PE4	-	A20	A20	-	Yes						

60/182

DocID15818 Rev 13

						Та	able 10. /	Alternat	te function	on map	ping						
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
	Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	12C1/12C2/12C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_HS	DCMI	AF014	AF15
	PA0-WKUP	-	TIM2_CH1_ETR	TIM 5_CH1	TIM8_ETR	-	-		USART2_CTS	UART4_TX	-	-	ETH_MII_CRS	-	-	-	EVENTOUT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-		USART2_RTS	UART4_RX	-	-	ETH_MII _RX_CLK ETH_RMII _REF_CLK	-	-	-	EVENTOUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	-		USART2_TX	-	-	-	ETH_MDIO	-	-	-	EVENTOUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	-		USART2_RX	-	-	OTG_HS_ULPI_DO	ETH _MII_COL	-	-	-	EVENTOUT
	PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	USART2_CK	-	-		-	OTG_HS_SOF	DCMI_HSYNC	-	EVENTOUT
	PA5	-	TIM2_CH1_ETR	-	TIM8_CH1N	-	SPI1_SCK	-	-	-	-	OTG_HS_ULPI_C K	-	-	-	-	EVENTOUT
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO	-	-	-	TIM13_CH1	-	-	-	DCMI_PIXCK	-	EVENTOUT
Port A	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	-	SPI1_MOSI	-	-	-	TIM14_CH1	-	ETH_MII_RX_DV ETH_RMII _CRS_DV	-	-	-	EVENTOUT
	PA8	MCO1	TIM1_CH1	-	-	I2C3_SCL	-	-	USART1_CK	-	-	OTG_FS_SOF	-	-	-	-	EVENTOUT
	PA9	-	TIM1_CH2	-	-	I2C3_SMBA	-	-	USART1_TX	-	-		-	-	DCMI_D0	-	EVENTOUT
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_RX	-	-	OTG_FS_ID	-	-	DCMI_D1	-	EVENTOUT
	PA11	-	TIM1_CH4	-	-	-	-	-	USART1_CTS	-	CAN1_RX	OTG_FS_DM	-	-	-	-	EVENTOUT
	PA12	-	TIM1_ETR	-	-	-	-	-	USART1_RTS	-	CAN1_TX	OTG_FS_DP	-	-	-	-	EVENTOUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA15	JTDI	TIM 2_CH1 TIM 2_ETR	-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	-	-	-	-	-	-	-	-	EVENTOUT

5

6.1.7 Current consumption measurement

Figure 20. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD}-V_{SS}$	External main supply voltage (including V_{DDA} , V_{DD}) ⁽¹⁾	-0.3	4.0	
V	Input voltage on five-volt tolerant pin ⁽²⁾	V _{SS} -0.3	V _{DD} +4	V
V IN	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	m\/
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins	-	50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	n 6.3.14: naximum ectrical	-

Table 11. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

			Тур Мах				
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_STOP}	Supply current in Stop mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.55	1.2	11.00	20.00	
	with main regulator in Run mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.50	1.2	11.00	20.00	m۸
	Supply current in Stop mode with main	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.35	1.1	8.00	15.00	
	with main regulator in Low-power mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.30	1.1	8.00	15.00	

Table 23. Typical and maximum current consumptions in Stop mode

Figure 29. Typical current consumption vs. temperature in Stop mode

All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes

	(·L3E							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
R _F	Feedback resistor	-	-	18.4	-	MΩ		
I _{DD}	LSE current consumption	-	-	-	1	μA		
9 _m	Oscillator Transconductance	-	2.8	-	-	μA/V		
t _{SU(LSE)} ⁽²⁾	startup time	V _{DD} is stabilized	-	2	-	s		

Table 31. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)⁽¹⁾

1. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note: For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Figure 33. Typical application with a 32.768 kHz crystal

6.3.9 Internal clock source characteristics

The parameters given in *Table 32* and *Table 33* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user-trimming step ⁽²⁾	-	-	-	1	%
ACC _{HSI}	Accuracy of the HSL oscillator	$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
		$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	– 1	Typ max Office 16 - MHz - 1 % - 4.5 % - 4 % - 1 % 2.2 4.0 µs 60 80 µA		
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4.0	μs
DD(HSI) ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

 Table 32. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

- 3. Guaranteed by characterization results.
- 4. Factory calibrated, parts not soldered.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS ports	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 V < V_{DD} < 3.6 V$	V _{DD} -0.4	-	v
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL ports	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	v
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA	-	0.4	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} 0.4	-	V

Table 47. Or	utput voltage	characteristics ⁽¹⁾
--------------	---------------	--------------------------------

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

- 2. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.
- 3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.
- 4. Guaranteed by characterization results, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 39* and *Table 48*, respectively.

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			C _L = 50 pF, V _{DD >} 2.70 V	-	-	4	
	f _{max(IO)out}	ut Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} > 1.8 V	-	-	2	МНт
			C _L = 10 pF, V _{DD >} 2.70 V	-	-	8	
00			C _L = 10 pF, V _{DD >} 1.8 V	-	-	4	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.8 V to 3.6 V	-	-	100	ns

Table 48. I/O AC characteristics ⁽¹
--

Figure 45. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 46. I²S master timing diagram (Philips protocol)⁽¹⁾

1. Guaranteed by characterization results, not tested in production.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 47. USB OTG FS timings: definition of data signal rise and fall time

Table 58. USB OTG FS electrical characteristics⁽¹⁾

Driver characteristics									
Symbol	Parameter	Conditions	Min	Мах	Unit				
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns				
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns				
t _{rfm}	Rise/fall time matching	t _r /t _f	90	110	%				
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V				

1. Guaranteed by design, not tested in production.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

USB HS characteristics

Table 59 shows the USB HS operating voltage.

Table 59. USB HS DC electrical characteristics

Symbol		Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	V _{DD}	USB OTG HS operating voltage	2.7	3.6	V

1. All the voltages are measured from the local ground potential.

Table 60. Clock timing parameters

Parameter ⁽¹⁾		Symbol	Min	Nominal	Max	Unit
Frequency (first transition)	8-bit ±10%	F _{START_8BIT}	54	60	66	MHz
Frequency (steady state) ±500 ppm		F _{STEADY}	59.97	60	60.03	MHz
Duty cycle (first transition)	8-bit ±10%	D _{START_8BIT}	40	50	60	%
Duty cycle (steady state) ±500	D _{STEADY}	49.975	50	50.025	%	
Time to reach the steady state duty cycle after the first transiti	frequency and on	T _{STEADY}	-	-	1.4	ms
Clock startup time after the	Peripheral	T _{START_DEV}	-	-	5.6	me
de-assertion of SuspendM	Host	T _{START_HOST}	-	-	-	1115
PHY preparation time after the first transition of the input clock		T _{PREP}	-	-	-	μs

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _S ⁽³⁾		12-bit resolution Single ADC	-	-	2	Msps
	Sampling rate (f _{ADC} = 30 MHz)	12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	Msps
I _{VREF+} ⁽³⁾	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽³⁾	ADC VDDA DC current consumption in conversion mode	-	-	1.6	1.8	mA

Table 66. ADC characteristics (continued)

 On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

2. It is recommended to maintain the voltage difference between V_{REF+} and V_{DDA} below 1.8 V.

3. Guaranteed by characterization results, not tested in production.

4. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .

5. R_{ADC} maximum value is given for V_{DD}=1.8 V, and minimum value for V_{DD}=3.3 V.

6. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 66.

Equation 1: RAIN max formula

$$\mathsf{R}_{\mathsf{AIN}} = \frac{(k - 0.5)}{\mathsf{f}_{\mathsf{ADC}} \times \mathsf{C}_{\mathsf{ADC}} \times \mathsf{In}(2^{\mathsf{N}+2})} - \mathsf{R}_{\mathsf{ADC}}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	fронка = 60 MHz.	±1.5	±2.5	
EG	Gain error	$f_{ADC} = 30 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$	±1.5	±3	LSB
ED	Differential linearity error	$V_{DDA} = 1.8^{(3)}$ to 3.6 V	±1	±2	
EL	Integral linearity error		±1.5	±3	

Table	67.	ADC	accuracy	(1)
-------	-----	-----	----------	-----

1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.

2. Guaranteed by characterization results, not tested in production.

 On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

Note:

ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion

7.2 WLCSP64+2 package information

Figure 79. WLCSP64+2 - 66-ball, 3.639 x 3.971 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

Table 88. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale
package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Мах
А	0.540	0.570	0.600	0.0213	0.0224	0.0236
A1	-	0.190	-	-	0.0075	-
A2	-	0.380	-	-	0.0150	-
A3	-	0.025	-	-	0.010	-
b ⁽²⁾	0.240	0.270	0.300	0.0094	0.0106	0.0118
D	3.604	3.939	3.674	0.1419	0.1551	0.1446
E	3.936	3.971	4.006	0.1550	0.1563	0.1577
е	-	0.400	-	-	0.0157	-
e1	-	3.200	-	-	0.1260	-
e2	-	3.200	-	-	0.1260	-

Table 88. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued)

Symbol		millimeters				
	Min	Тур	Max	Min	Тур	Max
F	-	0.220	-	-	0.0087	-
G	-	0.386	-	-	0.0152	-
ааа	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ССС	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 80. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

Table 89. WLCSP64 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

Symbol		millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 90. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Symbol		millimeters			inches ⁽¹⁾	nches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.8740	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	-	17.500	-	-	0.6890	-	
E	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	-	17.500	-	-	0.6890	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ССС	-	-	0.080	-	-	0.0031	

Table 91. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

	Dimensions						
Symbol		millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
HD	25.900	-	26.100	1.0197	-	1.0276	
ZD	-	1.250	-	-	0.0492	-	
E	23.900	-	24.100	0.9409	-	0.9488	
HE	25.900	-	26.100	1.0197	-	1.0276	
ZE	-	1.250	-	-	0.0492	-	
е	-	0.500	-	-	0.0197	-	
L ⁽²⁾	0.450	-	0.750	0.0177	-	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	-	7°	0°	-	7°	
ссс	-	-	0.080	-	-	0.0031	

Table 92. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.

Date	Revision Changes		
Date 22-Apr-2011	Revision 6 (continued)	Changes Changed t _w (SCKH) to t _w (SCLL), t _w (SCKL) to t _w (SCLL), t _r (SCK) to t _r (SCL), and t _f (SCK) to t _r (SCL) in Table 52: I2C characteristics and in Figure 41: I2C bus AC waveforms and measurement circuit. Added Table 57: USB OTG FS DC electrical characteristics and updated Table 58: USB OTG FS electrical characteristics. Updated V _{DD} minimum value in Table 62: Ethernet DC electrical characteristics. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 71: Embedded internal reference voltage. Modified FSMC_NOE waveform in Figure 57: Asynchronous non- multiplexed SRAM/PSRAM/NOR read waveforms. Shifted end of FSMC_NEx/NADV/addresses/NWE/NOE/NWAIT of a half FSMC_CLKL period, changed t _d (CLKH-NEH) to d _d (CLKL-NEH), t _d (CLKH-AIV) to t _d (CLKL-NWEH), and updated data latency from 1 to 0 in Figure 61: Synchronous non- multiplexed NOR/PSRAM read timings, Figure 62: Synchronous non- multiplexed NOR/PSRAM read timings, Figure 62: Synchronous non- multiplexed NOR/PSRAM read timings, and Figure 64: Synchronous non- multiplexed NOR/PSRAM read timings, Table 76, Table 77, Table 78, and Table 79. Updated note 2 in Table 72, Table 73, Table 74, Table 75, Table 76, Table 77, Table 78, and Table 79. Modified t _N (NIOWR-D) in Figure 70: PC Card/CompactFlash controller waveforms for I/O space write access. Modified FSMC_NCEx signal in Figure 71: NAND controller waveforms for write access, Figure 73: NAND controller waveforms for common memory read access, Rigure 74: NAND controller waveforms for common memory read access, Signe 74: NAND controller waveforms for common memory read access.	

Table 97. Document revision history (continued)

