E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f207vgt6j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32F20x family is based on the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.

The devices also feature an adaptive real-time memory accelerator (ART Accelerator[™]) which allows to achieve a performance equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz. This performance has been validated using the CoreMark benchmark.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true number random generator (RNG). They also feature standard and advanced communication interfaces. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), and a camera interface for CMOS sensors. The devices also feature standard peripherals.

- Up to three I²Cs
- Three SPIs, two I²Ss. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external PLL to allow synchronization.
- 4 USARTs and 2 UARTs
- A USB OTG high-speed with full-speed capability (with the ULPI)
- A second USB OTG (full-speed)
- Two CANs
- An SDIO interface
- Ethernet and camera interface available on STM32F207xx devices only.

Note: The STM32F205xx and STM32F207xx devices operate in the -40 to +105 °C temperature range from a 1.8 V to 3.6 V power supply. On devices in WLCSP64+2 package, if IRROFF is set to V_{DD} , the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

A comprehensive set of power-saving modes allow the design of low-power applications.

STM32F205xx and STM32F207xx devices are offered in various packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen. These features make the STM32F205xx and STM32F207xx microcontroller family suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

Figure 4 shows the general block diagram of the device family.

Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package

1. RFU = reserved for future use.

DocID15818 Rev 13

The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.18: Low-power modes).

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or the V_{BAT} pin.

3.18 Low-power modes

The STM32F20x family supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped when the device enters the Stop or Standby mode.

3.19 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery or an external supercapacitor.

 V_{BAT} operation is activated when V_{DD} is not present.

The VBAT pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When using WLCSP64+2 package, if IRROFF pin is connected to V_{DD} , the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD} .

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control timer features are shared with those of the standard TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.20.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F20x devices (see *Table 5* for differences).

TIM2, TIM3, TIM4, TIM5

The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

They can also be used as simple time bases.

3.20.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

DocID15818 Rev 13

The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

3.26 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

Peripheral available only on the STM32F207xx devices.

The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The STM32F207xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) or 50 MHz (RMII) output from the STM32F207xx.

The STM32F207xx includes the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F20x and STM32F21x reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes, that is 4 Kbytes in total
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

3.27 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one

DocID15818 Rev 13

1. RFU means "reserved for future use". This pin can be tied to $V_{\text{DD}}, V_{\text{SS}}$ or left unconnected.

2. The above figure shows the package top view.

		Pi	ns									
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions	
-	-	38	58	68	R8	PE7	I/O	FT	-	FSMC_D4,TIM1_ETR, EVENTOUT	-	
-	-	39	59	69	P8	PE8	I/O	FT	-	FSMC_D5,TIM1_CH1N, EVENTOUT	-	
-	-	40	60	70	P9	PE9	I/O	FT	-	FSMC_D6,TIM1_CH1, EVENTOUT	-	
-	-	-	61	71	M9	V _{SS}	S		-	-	-	
-	-	-	62	72	N9	V _{DD}	S		-	-	-	
-	-	41	63	73	R9	PE10	I/O	FT	-	FSMC_D7,TIM1_CH2N, EVENTOUT	-	
-	-	42	64	74	P10	PE11	I/O	FT	-	FSMC_D8,TIM1_CH2, EVENTOUT	-	
-	-	43	65	75	R10	PE12	I/O	FT	-	FSMC_D9,TIM1_CH3N, EVENTOUT	-	
-	-	44	66	76	N11	PE13	I/O	FT	-	FSMC_D10,TIM1_CH3, EVENTOUT	-	
-	I	45	67	77	P11	PE14	I/O	FT	-	FSMC_D11,TIM1_CH4, EVENTOUT	-	
-	-	46	68	78	R11	PE15	I/O	FT	-	FSMC_D12,TIM1_BKIN, EVENTOUT	-	
29	H3	47	69	79	R12	PB10	I/O	FT	-	SPI2_SCK, I2S2_SCK, I2C2_SCL,USART3_TX,OT G_HS_ULPI_D3,ETH_MII_R X_ER,TIM2_CH3, EVENTOUT	-	
30	J2	48	70	80	R13	PB11	I/O	FT	-	I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_RMII_TX_EN, ETH_MII_TX_EN, TIM2_CH4, EVENTOUT	-	
31	J3	49	71	81	M10	V _{CAP_1}	S		-	-	-	
32	-	50	72	82	N10	V _{DD}	S		-	-	-	
-	-	-	-	83	M11	PH6	I/O	FT	-	I2C2_SMBA, TIM12_CH1, ETH_MII_RXD2, EVENTOUT	-	

	Table 8. STM32F20x pin and ball definitions	(continued)
--	---	-------------

FSMC								
Pins								
PE5 PE6 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF12 PF13 PF14 PF15 PG0 PG1 PE7 PE8	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit				
PE5	-	A21	A21	-	Yes			
PE6	-	A22	A22	-	Yes			
PF0	A0	A0	-	-	-			
PF1	A1	A1	-	-	-			
PF2	A2	A2	-	-	-			
PF3	A3	A3	-	-	-			
PF4	A4	A4	-	-	-			
PF5	A5	A5	-	-	-			
PF6	NIORD	-	-	-	-			
PF7	NREG	-	-	-	-			
PF8	NIOWR	-	-	-	-			
PF9	CD	-	-	-	-			
PF10	INTR	-	-	-	-			
PF12	A6	A6	-	-	-			
PF13	A7	A7	-	-	-			
PF14	A8	A8	-	-	-			
PF15	A9	A9	-	-	-			
PG0	A10	A10	-	-	-			
PG1	1 - A11		-	-	-			
PE7	D4	D4	DA4	D4	Yes			
PE8	D5	D5	DA5	D5	Yes			
PE9	D6	D6	DA6	D6	Yes			
PE10	D7	D7	DA7	D7	Yes			
PE11	D8	D8	DA8	D8	Yes			
PE12	D9	D9	DA9	D9	Yes			
PE13	D10	D10	DA10	D10	Yes			
PE14	D11	D11	DA11	D11	Yes			
PE15	D12	D12	DA12	D12	Yes			
PD8	D13	D13	DA13	D13	Yes			
PD9	D14	D14	DA14	D14	Yes			
PD10	D15	D15	DA15	D15	Yes			
PD11	-	A16	A16	CLE	Yes			
PD12	-	A17	A17	ALE	Yes			

Table 9. FSMC pin definition (continued)

Figure 30. High-speed external clock source AC timing diagram

Figure 31. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 30*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

The test results are given in *Table 41*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	4A

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	44.	Electrical	sensitivities
IUNIC		LICCUICUI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.15 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 45.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
I _{INJ}	Injected current on BOOT0 pin	-0	NA	
	Injected current on NRST pin	-0	NA	m (
	Injected current on TTa pins: PA4 and PA5	-0	+5	ШA
	Injected current on all FT pins	-5	NA	

Table 45. I/O current injection susceptibility⁽¹⁾

1. NA stands for "not applicable".

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.16 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 50* are derived from tests performed under the conditions summarized in *Table 14: General operating conditions*.

All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{IL}	FT, TTa and NRST I/O				0.35V _{DD} -0.04 ⁽¹⁾		
	input low level voltage	1.7 v≤v _{DD} ≤3.0 v	-	-	0.3V _{DD} ⁽²⁾		
	ΒΟΟΤ0 Ι/Ο	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	-	-	$0.1V_{}+0.1^{(1)}$	V	
	input low level voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-	-	- 0.1V _{DD} +0.1(*)		
V _{IH}	FT, TTa and NRST I/O	17\/<\/<36\/	0.45V _{DD} +0.3 ⁽¹⁾	_	_		
	input high level voltage ⁽⁵⁾	1.7 V≤VDD <u>≤</u> 0.0 V	0.7V _{DD} ⁽²⁾	-	_	V	
	BOOT0 I/O	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	$0.17 (- + 0.7^{(1)})$	-	-		
	input high level voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.17 VDD+0.7 V				
	FT, TTa and NRST I/O input hysteresis	1.7 V≤V _{DD} ≤3.6 V	0.45V _{DD} +0.3 ⁽¹⁾	-	-		
V _{HYS}	BOOT0 I/O	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	10%V _{DDIO} ⁽¹⁾⁽³⁾	-	-	V	
	input hysteresis	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	100 ⁽¹⁾	-	-		
I.,	I/O input leakage current (4)	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1		
'lkg	I/O FT input leakage current (5)	$V_{IN} = 5 V$	-	-	3	μA	

Table 46. I/O static characterist

Symbol	Parameter		Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	$V_{IN} = V_{SS}$	30	40	50	
		PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	-	7	10	14	kO
R _{PD}	Weak pull-down equivalent resistor ⁽⁷⁾	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	$V_{IN} = V_{DD}$	30	40	50	K22
	TESISION	PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	-	7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacitan	ice	-	-	5	-	pF

Table 46. I/O static characteristics (continued)

1. Guaranteed by design, not tested in production.

2. Guaranteed by tests in production.

3. With a minimum of 200 mV.

- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 45: I/O current injection susceptibility
- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45: I/O current injection susceptibility
- 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 38*.

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output excursion
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V	of the DAC.
(4)	DAC DC V _{REF} current	-	170	240		With no load, worst code (0x800) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
VREF+`´	mode (Standby mode)	-	50	75	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
	DAC DC V _{DDA} current	-	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	consumption in quiescent mode ⁽³⁾	-	475	625	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	and the value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error	-	-	±10	mV	-
Offset ⁽⁴⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	(0x800) and the ideal value = V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} ⁽⁴⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	3	6	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$

Table 68. DAC characteristics (continued)

Table 88. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
F	-	0.220	-	-	0.0087	-
G	-	0.386	-	-	0.0152	-
ааа	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ССС	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 80. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

Table 89. WLCSP64 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.8740
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.6890	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ССС	-	-	0.080	-	-	0.0031

Table 91. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device marking

Figure 86. LQFP144 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Table 93. UFBGA176+25, - 201-ball, 10 x 10 mm, 0.65 mm pitch,ultra fine pitch ball grid array package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 90. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 94. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Date	Revision	Changes
29-Oct-2012	10 (continued)	Replaced t _{d(CLKL-NOEL)} by t _{d(CLKH-NOEL)} in Table 76: Synchronous multiplexed NOR/PSRAM read timings, Table 78: Synchronous non- multiplexed NOR/PSRAM read timings, Figure 61: Synchronous multiplexed NOR/PSRAM read timings and Figure 63: Synchronous non-multiplexed NOR/PSRAM read timings. Added Figure 87: LQFP176 recommended footprint. Added Note 2 below Figure 86: Regulator OFF/internal reset ON. Updated device subfamily in Table 96: Ordering information scheme. Remove reference to note 2 for USB IOTG FS in Table 101: Main applications versus package for STM32F2xxx microcontrollers.

Table 97.	Document revisio	on history	(continued)
	Document revisit		(continued)

Date	Revision	Changes
04-Nov-2013	11 (continued)	Removed Appendix A Application block diagrams. Updated Figure 77: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and Table 87: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. Updated Figure 80: LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline, Figure 83: LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline, Figure 86: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline. Updated Figure 88: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline and Figure 88: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline.
27-Oct-2014	12	Updated V _{BAT} voltage range in <i>Figure 19: Power supply scheme</i> . Added caution note in <i>Section 6.1.6: Power supply scheme</i> . Updated V _{IN} in <i>Table 14: General operating conditions</i> . Removed note 1 in <i>Table 23: Typical and maximum current consumptions in Stop mode</i> . Updated <i>Table 45: I/O current injection susceptibility</i> , Section 6.3.16: <i>I/O port characteristics</i> and <i>Section 6.3.17: NRST pin characteristics</i> . Removed note 3 in <i>Table 69: Temperature sensor characteristics</i> . Updated <i>Figure 79: WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline</i> and <i>Table 88: WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data</i> . Added <i>Figure 83: LQFP100 marking (package top view)</i> and <i>Figure 86: LQFP144 marking (package top view)</i> .
2-Feb-2016	13	Updated Section 1: Introduction. Updated Table 32: HSI oscillator characteristics and its footnotes. Updated Figure 36: PLL output clock waveforms in center spread mode, Figure 37: PLL output clock waveforms in down spread mode, Figure 54: Power supply and reference decoupling (VREF+ not connected to VDDA) and Figure 55: Power supply and reference decoupling (VREF+ connected to VDDA). Updated Section 7: Package information and its subsections.

Table 97. Document revision history (continued)

