

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f207zet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Table	2. STM3	82F205	xx feat	ures a	nd perip	heral co	ounts	5					
	Peripherals		ST	/132F205R	Rx			STM32	F205V	x		S	TM32F2	05Zx	
Flash memory in	n Kbytes	128	256	512	768	1024	128	256	512	768	1024	256	512	768	1024
SRAM in Kbytes	System (SRAM1+SRAM2)	64 96 128 (48+16) (80+16) (112+16)		64 (48+16)	96 (80+16)	128 (112+16)		6)	96 (80+16)			3)			
	Backup			4					4				4		
FSMC memory of	controller	No Yes ⁽¹⁾													
Ethernet								No							
	General-purpose							10							
	Advanced-control							2							
Timers	Basic							2							
	IWDG							Yes							
	WWDG							Yes							
RTC								Yes							
Random numbei	r generator							Yes							
	SPI/(I ² S)	3/(2) ⁽²⁾													
	l ² C	3													
Comm. interfaces	USART UART				4 2										
interfaces	USB OTG FS							Yes							
	USB OTG HS							Yes							
	CAN							2							
Camera interface	e							No							
GPIOs				51				8	32				114		
SDIO								Yes							
12-bit ADC								3							
Number of chan	nels			16				1	16				24		
12-bit DAC Number of chanı	nels							Yes 2							
Maximum CPU f	frequency						1	I20 MHz							
Operating voltag	e						1.8	V to 3.6 V ⁽³⁾							

5

14/182

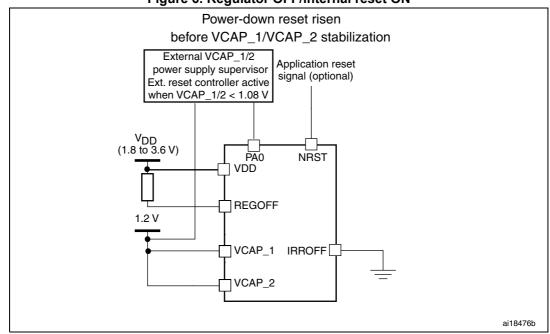


Figure 6. Regulator OFF/internal reset ON

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is faster than the time for V_{DD} to reach 1.8 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach 1.08 V and until V_{DD} reaches 1.8 V (see *Figure 8*).
- Otherwise, If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is slower than the time for V_{DD} to reach 1.8 V, then PA0 should be asserted low externally (see *Figure 9*).
- If V_{CAP_1} and V_{CAP_2} go below 1.08 V and V_{DD} is higher than 1.8 V, then a reset must be asserted on PA0 pin.

Regulator OFF/internal reset OFF

On WLCSP64+2 package, this mode activated by connecting REGOFF to V_{SS} and IRROFF to V_{DD}. IRROFF cannot be activated in conjunction with REGOFF. This mode is available only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source through V_{CAP_1} and V_{CAP_2} pins. In this mode, the integrated power-on reset (POR)/ power-down reset (PDR) circuitry is disabled.

An external power supply supervisor should monitor both the external 1.2 V and the external V_{DD} supply voltage, and should maintain the device in reset mode as long as they remain below a specified threshold. The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes allows to design low-power applications.

3.30 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S application. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I^2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output).

3.31 Digital camera interface (DCMI)

The camera interface is not available in STM32F205xx devices.

STM32F207xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw Bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

3.32 True random number generator (RNG)

All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers produced by an integrated analog circuit.

3.33 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O alternate function configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to 120 MHz that leads to a maximum I/O toggling speed of 60 MHz.

3.34 ADCs (analog-to-digital converters)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.35 DAC (digital-to-analog converter)

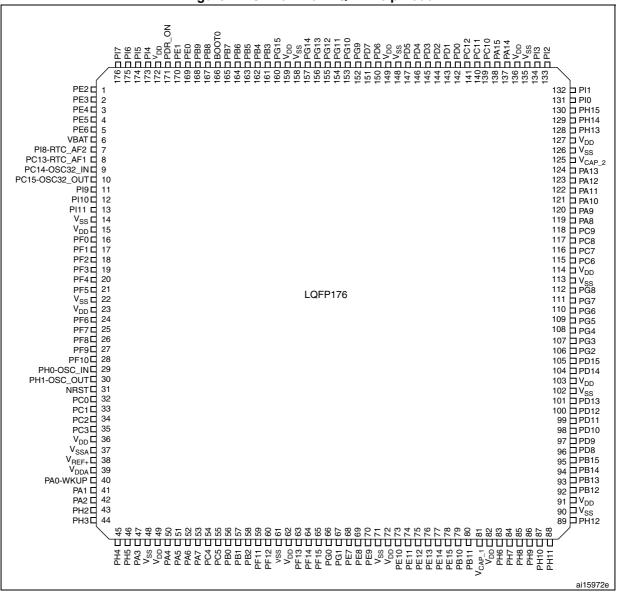
The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.36 Temperature sensor


The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 and 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

DocID15818 Rev 13

Pinouts and pin description

Figure 14.	STM32F20x L	.QFP176 pi	nout
------------	-------------	------------	------

1. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

2. The above figure shows the package top view.

		Pi	ns							ennitions (continued)	
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type I/O structure Note		Note	Alternate functions	Additional functions
-	-	-	14	20	J3	PF4	I/O	FT	(4)	FSMC_A4, EVENTOUT	ADC3_IN14
-	-	-	15	21	K3	PF5	I/O	FT	(4)	FSMC_A5, EVENTOUT	ADC3_IN15
-	H9	10	16	22	G2	V _{SS}	S	-	-	-	-
-	-	11	17	23	G3	V _{DD}	S	-	-	-	-
-	-	-	18	24	K2	PF6	I/O	FT	(4)	TIM10_CH1, FSMC_NIORD, EVENTOUT	ADC3_IN4
-	-	-	19	25	K1	PF7	I/O	FT	(4)	TIM11_CH1,FSMC_NREG, EVENTOUT	ADC3_IN5
-	-	-	20	26	L3	PF8	I/O	I/O FT ⁽⁴⁾ TIM13_CH1, FSMC_NIOWR, EVENTOUT		ADC3_IN6	
-	-	-	21	27	L2	PF9	I/O FT (4) TIM14_CH1, FSMC_CD, EVENTOUT		ADC3_IN7		
-	-	-	22	28	L1	PF10	I/O	FT	(4)	FSMC_INTR, EVENTOUT	ADC3_IN8
5	E9	12	23	29	G1	PH0/OSC_IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN ⁽⁴⁾
6	F9	13	24	30	H1	PH1/OSC_OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT ⁽⁴⁾
7	E8	14	25	31	J1	NRST	I/O		I	-	-
8	G9	15	26	32	M2	PC0	I/O	FT	(4)	OTG_HS_ULPI_STP, EVENTOUT	ADC123_ IN10
9	F8	16	27	33	М3	PC1	I/O	FT	(4)	ETH_MDC, EVENTOUT	ADC123_ IN11
10	D7	17	28	34	M4	PC2	I/O	FT	(4)	SPI2_MISO, OTG_HS_ULPI_DIR, ETH_MII_TXD2, EVENTOUT	ADC123_ IN12
11	G8	18	29	35	M5	PC3	I/O	I/O FT (4) SPI2_MOSI, I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, EVENTOUT		ADC123_ IN13	
-	-	19	30	36	-	V _{DD}	S		-		
12	-	20	31	37	M1	V _{SSA}	SA S		-		
-	-	-	-	-	N1	V _{REF-}	S	-	-	-	-
-	F7	21	32	38	P1	V _{REF+}	S	-	-	-	-

		Pins									
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	84	N12	PH7	I/O	FT	-	I2C3_SCL, ETH_MII_RXD3, EVENTOUT	-
-	-	-	-	85	M12	PH8	2H8 I/O FT - I2C3_SDA, DCMI_HS EVENTOUT		I2C3_SDA, DCMI_HSYNC, EVENTOUT	-	
-	-	-	-	86	M13	PH9	PH9 I/O FT - I2C3_SMBA, TIM12_CH2, DCMI_D0, EVENTOUT		-		
-	-	-	-	87	L13	PH10	I/O	FT	-	TIM5_CH1, DCMI_D1, EVENTOUT	-
-	-	-	-	88	L12	PH11	I/O	FT	-	TIM5_CH2, DCMI_D2, EVENTOUT	-
-	-	-	-	89	K12	PH12	I/O	FT	-	TIM5_CH3, DCMI_D3, EVENTOUT	-
-	-	-	-	90	H12	V _{SS}	S	-	-	-	-
-	-	-	-	91	J12	V _{DD}	S	-	-	-	-
33	J1	51	73	92	P12	PB12	I/O	FT	-	SPI2_NSS, I2S2_WS, I2C2_SMBA, USART3_CK, TIM1_BKIN, CAN2_RX, OTG_HS_ULPI_D5, ETH_RMII_TXD0, ETH_MII_TXD0, OTG_HS_ID, EVENTOUT	-
34	H2	52	74	93	P13	PB13	I/O	FT	-	SPI2_SCK, I2S2_SCK, USART3_CTS, TIM1_CH1N, CAN2_TX, OTG_HS_ULPI_D6, ETH_RMII_TXD1, ETH_MII_TXD1, EVENTOUT	OTG_HS_ VBUS
35	H1	53	75	94	R14	PB14	PB14 I/O FT - TIM12_CH1, USART3_RTS		SPI2_MISO, TIM1_CH2N, TIM12_CH1, OTG_HS_DM USART3_RTS, TIM8_CH2N, EVENTOUT	-	
36	G1	54	76	95	R15	PB15	I/O	FT	-	SPI2_MOSI, I2S2_SD, TIM1_CH3N, TIM8_CH3N, TIM12_CH2, OTG_HS_DP, RTC_50Hz, EVENTOUT	-
-	-	55	77	96	P15	PD8	I/O	FT	-	FSMC_D13, USART3_TX, EVENTOUT	-

Table 8. STM32F20x pin and ball definitions (continued)

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	98	142	170	A3	PE1	I/O FT - FSMC_NBL1, DCMI_D3, EVENTOUT		-		
-	-	-	-	-	D5	V _{SS}	V _{SS} S		-	-	
63	D8	I	-	-	I	V _{SS}	S	-	I	-	-
-	-	99	143	171	C6	RFU	-	-	(7)	-	-
64	D9	100	144	172	C5	V _{DD}	S	-	-	-	-
-	-	-	-	173	D4	Pl4	I/O	FT	-	TIM8_BKIN, DCMI_D5, EVENTOUT	-
-	-	-	I	174	C4	PI5	I/O	FT	I	TIM8_CH1, DCMI_VSYNC, EVENTOUT	-
-	-	-	-	175	C3	Pl6	I/O FT - TIM8_CH2, DCMI_D6, EVENTOUT		-		
-	-	-	-	176	C2	PI7	I/O FT - TIM8_CH3, DCMI_D7, EVENTOUT		-		
-	C8	-	-	-	-	IRROFF	I/O	-	-	-	-

Table 8. STM32F20x pin and ball definitions (continued)

1. Function availability depends on the chosen device.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

 Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to V_{DD} (Regulator OFF), then PA0 is used as an internal Reset (active low).

6. FSMC_NL pin is also named FSMC_NADV on memory devices.

7. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

Table 9. FSMC pin definition

Pins	FSMC								
FIIIS	CF	NOR/PSRAM/SRAM	DR/PSRAM/SRAM NOR/PSRAM Mux		LQFP100				
PE2	-	A23	A23	-	Yes				
PE3	-	A19	A19	-	Yes				
PE4	-	A20	A20	-	Yes				

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
	Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	I2C1/I2C2/I2C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_HS	DCMI	AF014	AF15
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	-	-	-	-	OTG_HS_ULPI_D1	ETH_MII_RXD2	-	-	-	EVENTOUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N	-	-	-	-	-	-	OTG_HS_ULPI_D2	ETH_MII_RXD3	-	-	-	EVENTOUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB3	JTDO/ TRACESWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_SCK	-	-	-	-	-	-	-	-	EVENTOUT
	PB4	JTRST	-	TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	-	-	-	-	-	-	-	-	EVENTOUT
	PB5	-	-	TIM3_CH2	-	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI I2S3_SD	-	-	CAN2_RX	OTG_HS_ULPI_D7	ETH _PPS_OUT	-	DCMI_D10	-	EVENTOUT
	PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_TX	-	CAN2_TX	-	-	-	DCMI_D5	-	EVENTOUT
	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_RX	-	-	-	-	FSMC_NL	DCMI_VSYNC	-	EVENTOUT
Port B	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	CAN1_RX	-	ETH _MII_TXD3	SDIO_D4	DCMI_D6	-	EVENTOUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS I2S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_D7	-	EVENTOUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK I2S2_SCK	-	USART3_TX	-	-	OTG_HS_ULPI_D3	ETH_MII_RX_ER	-	-	-	EVENTOUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	OTG_HS_ULPI_D4	ETH _MII_TX_EN ETH _RMII_TX_EN	-	-	-	EVENTOUT
	PB12	-	TIM1_BKIN	÷	-	I2C2_SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	-	CAN2_RX	OTG_HS_ULPI_D5	ETH_MII_TXD0 ETH_RMII_TXD0	OTG_HS_ID	-	-	EVENTOUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK I2S2_SCK	-	USART3_CTS	-	CAN2_TX	OTG_HS_ULPI_D6	ETH_MII_TXD1 ETH_RMII_TXD1	-	-	-	EVENTOUT
	PB14	-	TIM1_CH2N	-	TIM8_CH2N	-	SPI2_MISO	-	USART3_RTS	-	TIM12_CH1	-	-	OTG_HS_DM	-	-	EVENTOUT
	PB15	RTC_50Hz	TIM1_CH3N	-	TIM8_CH3N	-	SPI2_MOSI I2S2_SD	-	-	-	TIM12_CH2	-	-	OTG_HS_DP	-	-	EVENTOUT

Table 10. Alternate function mapping (continued)

DocID15818 Rev 13

577

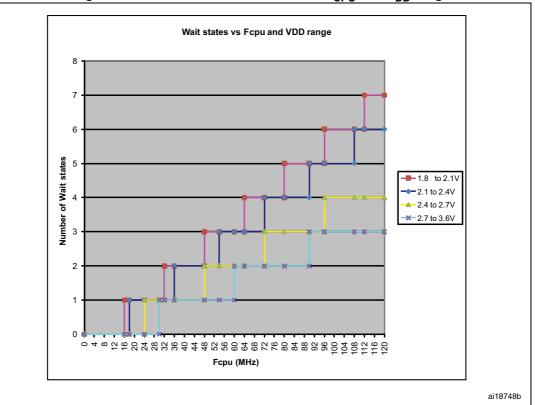


Figure 21. Number of wait states versus $f_{\mbox{CPU}}$ and $V_{\mbox{DD}}$ range

1. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 $^\circ\text{C}$ temperature range and IRROFF is set to V_DD.

6.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 16*.

1. Legend: ESR is the equivalent series resistance.

Table 16. VCAP1/VCAP2 operating conditions⁽¹⁾

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	2.2 µF
ESR	ESR of external capacitor	< 2 Ω

1. When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 26*. The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled unless otherwise mentioned
 - The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with one peripheral clocked on (with only the clock applied)
- The code is running from Flash memory and the Flash memory access time is equal to 3 wait states at 120 MHz
- Prefetch and Cache ON
- When the peripherals are enabled, HCLK = 120MHz, f_{PCLK1} = $f_{HCLK}/4,$ and f_{PCLK2} = $f_{HCLK}/2$
- The typical values are obtained for V_{DD} = 3.3 V and T_A= 25 °C, unless otherwise specified.

	Peripheral ⁽¹⁾	Typical consumption at 25 °C	Unit
	GPIO A	0.45	
	GPIO B	0.43	
	GPIO C	0.46	
	GPIO D	0.44	
	GPIO E	0.44	
	GPIO F	0.42	
	GPIO G	0.44	
	GPIO H	0.42	
AHB1	GPIO I	0.43	
	OTG_HS + ULPI	3.64	
	CRC	1.17	mA
	BKPSRAM	0.21	
	DMA1	2.76	
	DMA2	2.85	
	ETH_MAC + ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	2.99	
AHB2	OTG_FS	3.16	
	DCMI	0.60	
AHB3	FSMC	1.74	

Table 26. Peripheral current consumption

Figure 36 and *Figure 37* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

T_{mode} is the modulation period.

md is the modulation depth.

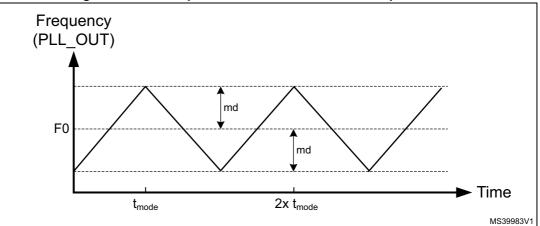
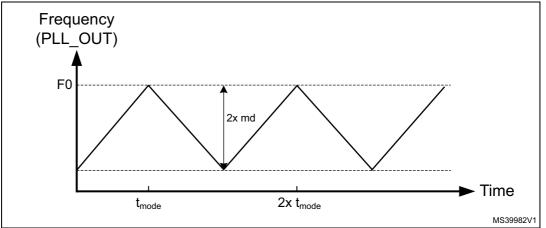



Figure 37. PLL output clock waveforms in down spread mode

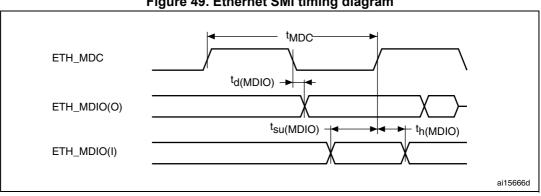
6.3.12 Memory characteristics

Flash memory

The characteristics are given at T_{A} = –40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

6.3.18 TIM timer characteristics

The parameters given in *Table 50* and *Table 51* are guaranteed by design.


Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
		AHB/APB1	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	prescaler distinct from 1, f _{TIMxCLK} = 60 MHz	16.7	-	ns
		AHB/APB1	1	-	t _{TIMxCLK}
		prescaler = 1, f _{TIMxCLK} = 30 MHz	33.3	-	ns
f _{EXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4		0	30	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
	16-bit counter clock period		1	65536	t _{TIMxCLK}
t	when internal clock is selected	f _{TIMxCLK} = 60 MHz APB1= 30 MHz	0.0167	1092	μs
^t COUNTER	32-bit counter clock period		1	-	t _{TIMxCLK}
	when internal clock is selected		0.0167	71582788	μs
tury count	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
t _{MAX_COUNT}			-	71.6	s

Table 50. Characteristics of TIMx connected to the APE	31 domain ⁽¹⁾
--	--------------------------

1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

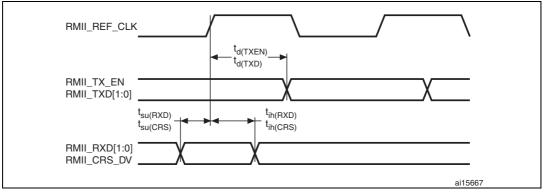

Figure 49. Ethernet SMI timing diagram

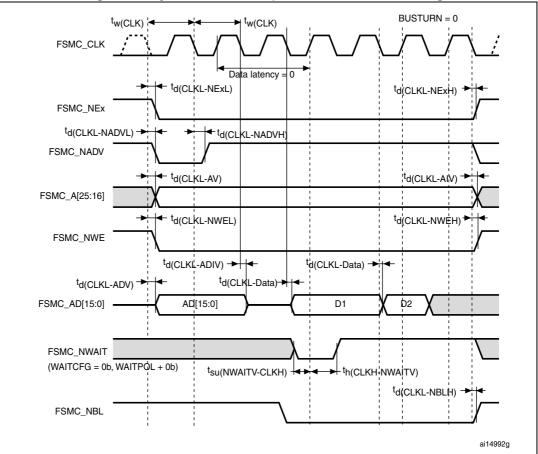
Table 63. Dynamics characteristics	Ethernet MAC signals for SMI
------------------------------------	------------------------------

Symbol	Rating	Min	Тур	Мах	Unit
t _{MDC}	MDC cycle time (2.38 MHz)	411	420	425	ns
t _{d(MDIO)}	MDIO write data valid time	6	10	13	ns
t _{su(MDIO)}	Read data setup time	12	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	ns

Table 64 gives the list of Ethernet MAC signals for the RMII and Figure 50 shows the corresponding timing diagram.

	•		•		
Symbol	Rating	Min	Тур	Мах	Unit
t _{su(RXD)}	Receive data setup time	1	-	-	
t _{ih(RXD)}	Receive data hold time	1.5	-	-	
t _{su(CRS)}	Carrier sense set-up time	0	-	-	20
t _{ih(CRS)}	Carrier sense hold time	2	-	-	ns
t _{d(TXEN)}	Transmit enable valid delay time	9	11	13	
t _{d(TXD)}	Transmit data valid delay time	9	11.5	14	

DocID15818 Rev 13



		ge	(00110110	
Symbol	Parameter	Min	Мах	Unit
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	5	-	ns
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	0	-	ns

Table 76. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

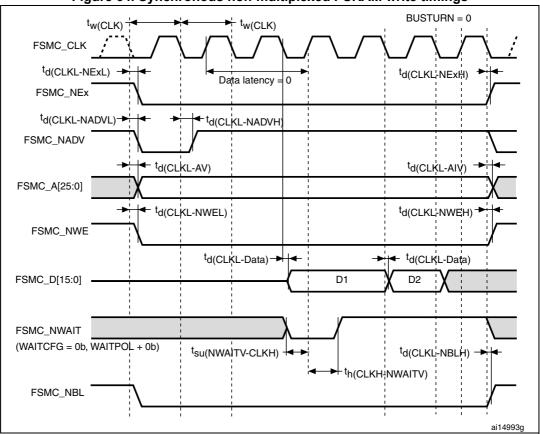
2. Guaranteed by characterization results, not tested in production.

Figure 62. Synchronous multiplexed PSRAM write timings

Table 77. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK} - 1	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	0	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	2	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	3	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	7	_	ns

DocID15818 Rev 13



Symbol	Parameter	Min	Max	Unit
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	4	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	3	-	ns
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	8	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	0	-	ns

Table 78. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Figure 64. Synchronous non-multiplexed PSRAM write timings

Table 79. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK} - 1	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	1	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	1	-	ns

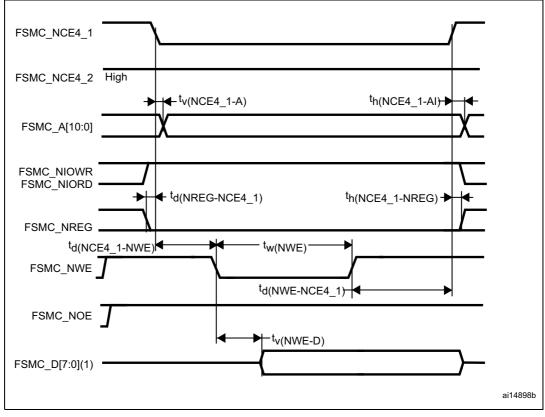
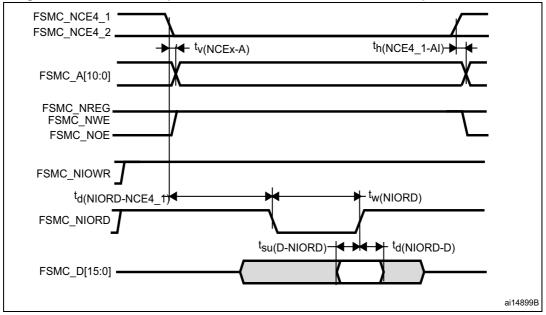



Figure 68. PC Card/CompactFlash controller waveforms for attribute memory write access

1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).

Figure 69. PC Card/CompactFlash controller waveforms for I/O space read access

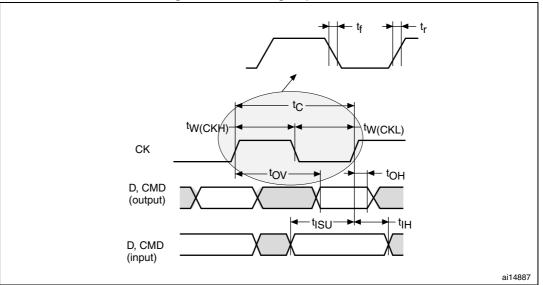
Symbol	Parameter	Min	Мах	Unit
t _{w(NWE)}	FSMC_NWE low width	4T _{HCLK} - 1	4T _{HCLK} + 3	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15-0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15-0] invalid	3T _{HCLK}	-	ns
t _{d(D-NWE)}	FSMC_D[15-0] valid before FSMC_NWE high	5T _{HCLK}	-	ns
t _{d(ALE-NWE)}	FSMC_ALE valid before FSMC_NWE low	-	3T _{HCLK} + 2	ns
t _{h(NWE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} - 2	-	ns

 Table 83. Switching characteristics for NAND Flash write cycles⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

6.3.26 Camera interface (DCMI) timing specifications

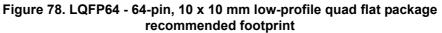

Symbol	Parameter	Conditions	Min	Мах
-	Frequency ratio DCMI_PIXCLK/f _{HCLK}	DCMI_PIXCLK= 48 MHz	-	0.4

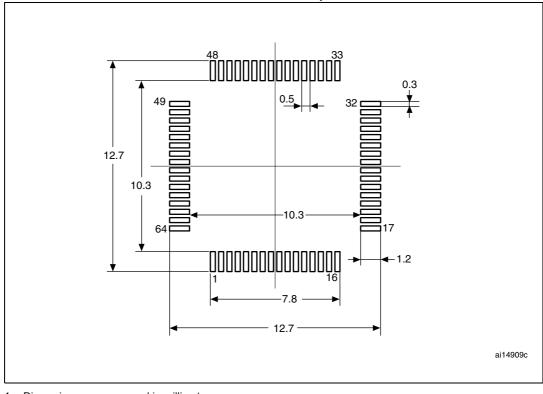
6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 85* are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*.

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK).

Figure 75. SDIO high-speed mode



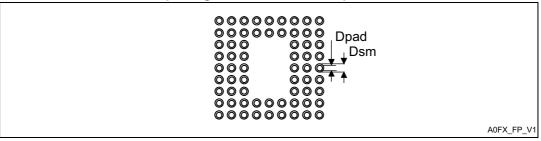


Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
Е	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 87. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.


Table 88. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
F	-	0.220	-	-	0.0087	-
G	-	0.386	-	-	0.0152	-
ааа	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
CCC	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 80. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

Table 89. WLCSP64 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values		
Pitch	0.4		
Dpad	0.225 mm		
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.250 mm		
Stencil thickness	0.100 mm		

