

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f207zgt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. STM32F205xx features and peripheral counts (continued)

Peripherals	ST	M32F205Rx			STM32F205Vx	STM32F205Zx	
Operating temperatures	Ambient temperatures: -40 to +85 °C /-40 to +105 °C						
	Junction temperature: -40 to + 125 °C						
Package	LQFP64	LQFP64 WLCSP64 +2		FP64 CSP6 +2	LQFP100	LQFP144	

 For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

	Peripherals		STM32F207Vx			STM32F207Zx				STM32F207lx			
Flash memory in I	256	512	768	1024	256	512	768	1024	256	512	768	1024	
SRAM in Kbytes	System (SRAM1+SRAM2)		128 (112+16)										
	Backup		4										
FSMC memory co	ontroller							Yes	s ⁽¹⁾				
Ethernet			Yes										
	General-purpose	10											
	Advanced-control	2 2											
Timers	Basic												
	IWDG							Ye	es				
	WWDG							Ye	es				
RTC	Yes												
Random number	generator		Yes										

Table 3. STM32F207xx features and peripheral counts

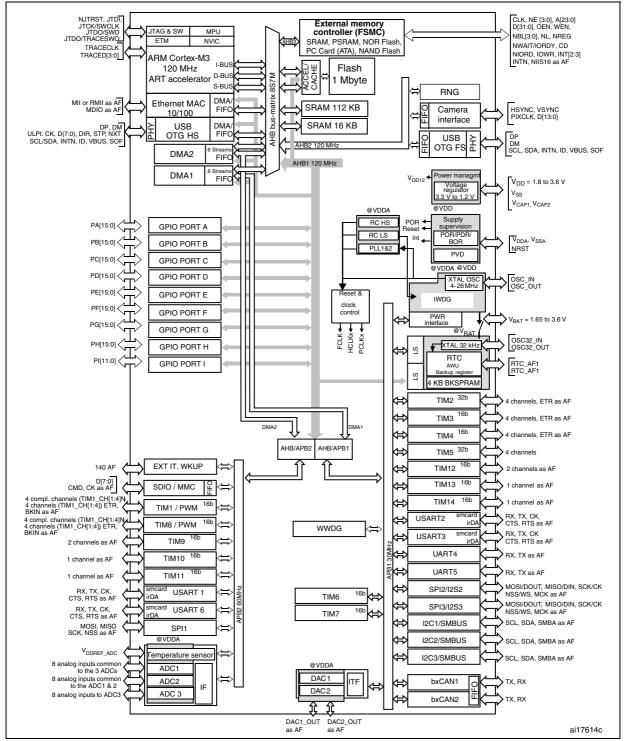


Figure 4. STM32F20x block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 60 MHz.

2. The camera interface and Ethernet are available only in STM32F207xx devices.

in the 0 to 70 °C temperature range using an external power supply supervisor (see *Section 3.16*).

- V_{SSA}, V_{DDA} = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock, 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Refer to Figure 19: Power supply scheme for more details.

3.15 Power supply supervisor

The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry.

At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three BOR thresholds are available through option bytes.

The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit. On devices in WLCSP64+2 package, the BOR, POR and PDR features can be disabled by setting IRROFF pin to V_{DD} . In this mode an external power supply supervisor is required (see Section 3.16).

The devices also feature an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.16 Voltage regulator

The regulator has five operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low-power regulator (LPR)
 - Power-down
- Regulator OFF
 - Regulator OFF/internal reset ON
 - Regulator OFF/internal reset OFF

3.16.1 Regulator ON

The regulator ON modes are activated by default on LQFP packages. On WLCSP64+2 package, they are activated by connecting both REGOFF and IRROFF pins to V_{SS}, while only REGOFF must be connected to V_{SS} on UFBGA176 package (IRROFF is not available).

 V_{DD} minimum value is 1.8 V.

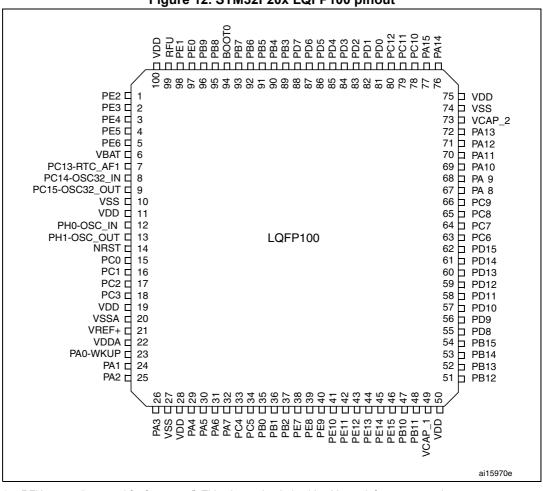
3.16.3 Regulator ON/OFF and internal reset ON/OFF availability

Table 4. Regulator ON/OFF and Internal reset ON/OFF availability									
Package	Regulator ON/internal reset ON	Regulator OFF/internal reset ON	Regulator OFF/internal reset OFF						
LQFP64 LQFP100 LQFP144 LQFP176	Yes	No	No						
WLCSP 64+2	Yes REGOFF and IRROFF set to V _{SS}	Yes REGOFF set to V_{DD} and IRROFF set to V_{SS}	Yes REGOFF set to V _{SS} and IRROFF set to V _{DD}						
UFBGA176	Yes REGOFF set to V _{SS}	Yes REGOFF set to V _{DD}	No						

 Table 4. Regulator ON/OFF and internal reset ON/OFF availability

3.17 Real-time clock (RTC), backup SRAM and backup registers

The backup domain of the STM32F20x devices includes:


- The real-time clock (RTC)
- 4 Kbytes of backup SRAM
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Its main features are the following:

- Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
- Programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes.
- It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal lowpower RC oscillator or the high-speed external clock divided by 128. The internal lowspeed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.
- Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
- A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.

The 4-Kbyte backup SRAM is an EEPROM-like area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled to minimize power consumption (see *Section 3.18: Low-power modes*). It can be enabled by software.

1. RFU means "reserved for future use". This pin can be tied to $V_{\text{DD}}, V_{\text{SS}}$ or left unconnected.

2. The above figure shows the package top view.

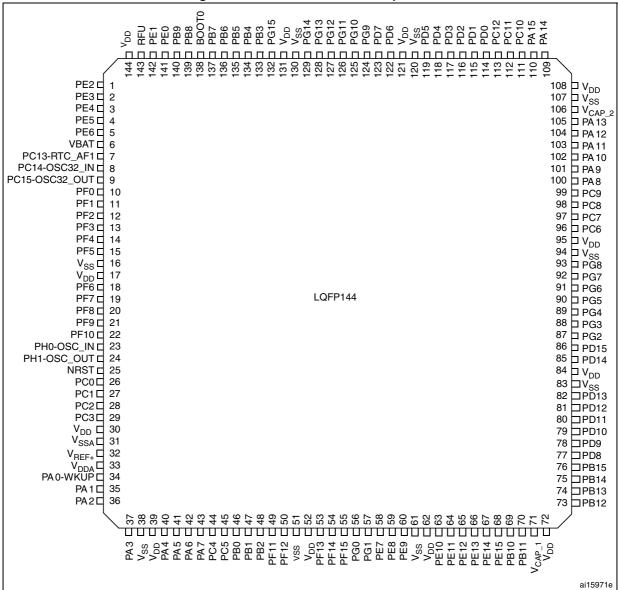


Figure 13. STM32F20x LQFP144 pinout

1. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

2. The above figure shows the package top view.

		Pi	ns										
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions		
22	H5	31	42	52	P3	PA6	I/O	FT	(4)	SPI1_MISO, TIM8_BKIN, TIM13_CH1, DCMI_PIXCLK, TIM3_CH1, TIM1_BKIN, EVENTOUT	ADC12_IN6		
23	J7	32	43	53	R3	PA7	I/O	FT	(4)	SPI1_MOSI, TIM8_CH1N, TIM14_CH1, TIM3_CH2, ETH_MII_RX_DV, TIM1_CH1N, ETH_RMII_CRS_DV, EVENTOUT	ADC12_IN7		
24	H4	33	44	54	N5	PC4	I/O	FT	(4)	ETH_RMII_RXD0, ETH_MII_RXD0, EVENTOUT	ADC12_IN14		
25	G3	34	45	55	P5	PC5	I/O	FT	(4)	ETH_RMII_RXD1, ETH_MII_RXD1, EVENTOUT	ADC12_IN15		
26	J6	35	46	56	R5	PB0	I/O	FT	(4)	TIM3_CH3, TIM8_CH2N, OTG_HS_ULPI_D1, ETH_MII_RXD2, TIM1_CH2N, EVENTOUT	ADC12_IN8		
27	J5	36	47	57	R4	PB1	I/O	FT	(4)	TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, ETH_MII_RXD3, TIM1_CH3N, EVENTOUT	ADC12_IN9		
28	J4	37	48	58	M6	PB2/BOOT1 (PB2)	I/O	FT	-	EVENTOUT	-		
-	-	-	49	59	R6	PF11	I/O	FT	-	DCMI_D12, EVENTOUT			
-	-	-	50	60	P6	PF12	I/O	FT	-	FSMC_A6, EVENTOUT	-		
-	-	-	51	61	M8	V _{SS}	S		-	-	-		
-	-	-	52	62	N8	V _{DD}	S		-	-	-		
-	-	-	53	63	N6	PF13	I/O	FT	-	FSMC_A7, EVENTOUT	-		
-	-	-	54	64	R7	PF14	I/O	FT	-	FSMC_A8, EVENTOUT	-		
-	-	-	55	65	P7	PF15	I/O	FT	-	FSMC_A9, EVENTOUT	-		
-	-	-	56	66	N7	PG0	I/O	FT	-	FSMC_A10, EVENTOUT	-		
-	-	-	57	67	M7	PG1	I/O	FT	-	FSMC_A11, EVENTOUT	-		

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	Standard operating voltage	-	1.8 ⁽¹⁾	3.6	
V _{DDA} ⁽²⁾	Analog operating voltage (ADC limited to 1 M samples)	Must be the same potential as $V_{DD}^{(3)}$	1.8 ⁽¹⁾	3.6	
V _{DDA} (-/	Analog operating voltage (ADC limited to 2 M samples)		2.4	3.6	
V _{BAT}	Backup operating voltage	-	1.65	3.6	
	Input voltage on RST and FT pins	$2 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-0.3	5.5	V
V	input voltage on KST and FT pins	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2 \text{ V}$	-0.3	5.2	
V _{IN}	Input voltage on TTa pins	-	-0.3	V _{DD} +0.3	
	Input voltage on BOOT0 pin	-	0	9	
V _{CAP1} V _{CAP2}	Internal core voltage to be supplied externally in REGOFF mode	-	1.1	1.3	
		LQFP64		444	
		WLCSP64+2	-	392	
Р	Power dissipation at T _A = 85 °C for	LQFP100	-	2.43.61.653.6 -0.3 5.5 -0.3 5.2 -0.3 5.2 -0.3 ∇_{DD} +0.3091.11.3-444-392-434-500-526-513-4085-40105-40125	mW
PD	suffix 6 or $T_A = 105 \degree C$ for suffix 7 ⁽⁴⁾	LQFP144	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mvv	
		LQFP176	-	526	
		UFBGA176	-	513	
	Ambient temperature for 6 suffix	Maximum power dissipation	-40	85	°C
Та	version	Low-power dissipation ⁽⁵⁾	-40	105	
IA	Ambient temperature for 7 suffix	Maximum power dissipation	-40	105	°C
	version	Low-power dissipation ⁽⁵⁾	-40	125	C
TJ	Junction temperature range	6 suffix version	-40	105	°C
IJ	Sunction temperature range	7 suffix version	-40	125	

Table 14. General operating conditions (continued)

 On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

2. When the ADC is used, refer to *Table 66: ADC characteristics*.

3. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.

4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .

5. In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} .

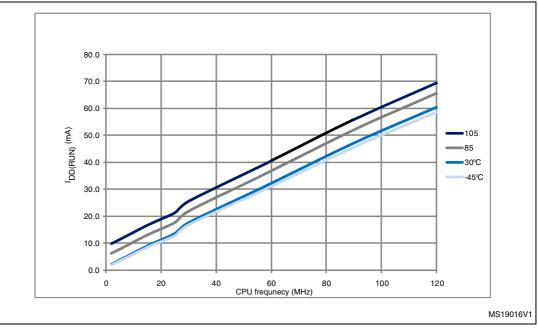
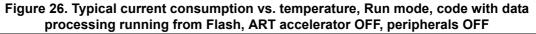
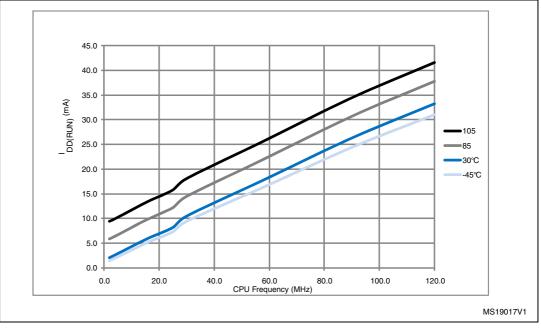
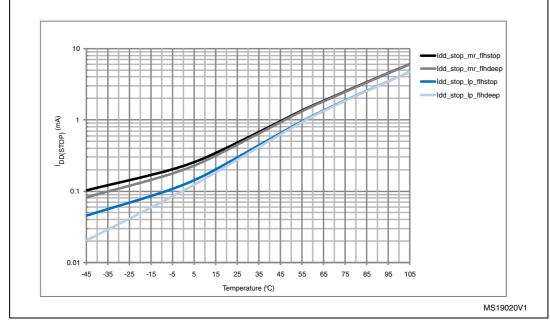




Figure 25. Typical current consumption vs. temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals ON



			Тур		Max		
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in Stop mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.55	1.2	11.00	20.00	
I _{DD_STOP}	with main regulator in Run mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.50	1.2	11.00	20.00	mA
	Supply current in Stop mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.35	1.1	8.00	15.00	IIIA
	with main regulator in Low-power mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.30	1.1	8.00	15.00	

Table 23. Typical and maximum current consumptions in Stop mode

Figure 29. Typical current consumption vs. temperature in Stop mode

All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes

Per	ripheral ⁽¹⁾	Typical consumption at 25 °C	Unit
	SDIO	0.69	
	TIM1	1.06	
	TIM8	1.03	
	TIM9	0.58	
	TIM10	0.37	
APB2	TIM11	0.39	mA
AFBZ	ADC1 ⁽⁴⁾	2.13	ША
	ADC2 ⁽⁴⁾	2.04	
	ADC3 ⁽⁴⁾	2.12	
	SPI1	1.20	
	USART1	0.38	
	USART6	0.37	

	Table 26. Peri	pheral current	consumption	(continued)
--	----------------	----------------	-------------	-------------

1. External clock is 25 MHz (HSE oscillator with 25 MHz crystal) and PLL is on.

2. EN1 bit is set in DAC_CR register.

3. EN2 bit is set in DAC_CR register.

4. $f_{ADC} = f_{PCLK2}/2$, ADON bit set in ADC_CR2 register.

6.3.7 Wakeup time from low-power mode

The wakeup times given in *Table 27* is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep mode	-	1	-	μs
	Wakeup from Stop mode (regulator in Run mode)	-	13	-	
t _{WUSTOP} ⁽²⁾	Wakeup from Stop mode (regulator in low-power mode)	-	17	40	us
WUSTOP	Wakeup from Stop mode (regulator in low-power mode and Flash memory in Deep power down mode)	-	110	-	F -
t _{WUSTDBY} ⁽²⁾⁽³⁾	Wakeup from Standby mode	260	375	480	μs

1. Guaranteed by characterization results, not tested in production.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

3. $t_{WUSTDBY}$ minimum and maximum values are given at 105 °C and -45 °C, respectively.

Symbol	Parameter	Conditions	Conditions		Тур	Max	Unit
			RMS	-	25	-	
	Cycle-to-cycle jitter	System clock	peak to peak	-	±150	-	
		120 MHz	RMS	-	15	-	
Jitter ⁽³⁾	Period Jitter ter ⁽³⁾	itter	peak to peak	-	<u>+200</u>	-	ps
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle at 50 MHz on 1000 samples		-	32	-	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 25 MHz on 1000 samples		-	40	-	
	Bit Time CAN jitter	Cycle to cycle at 1 MHz on 1000 samples		-	330	-	
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	VCO freq = 192 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

Table 34.	Main PLL	characteristics	(continued)
-----------	----------	-----------------	-------------

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design, not tested in production.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results, not tested in production.

Table 35. PLLI2S (audio PLL) characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10 ⁽²⁾	MHz
f _{PLLI2S_OUT}	PLLI2S multiplier output clock	-	-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output	-	192	-	432	MHz
+	PLLI2S lock time	VCO freq = 192 MHz	75	-	200	
^t LOCK		VCO freq = 432 MHz	100	-	300	μs

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Write / Erase 8-bit mode V _{DD} = 1.8 V	-	5	-	
I _{DD} Supply current		Write / Erase 16-bit mode V _{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode V _{DD} = 3.3 V	-	12	-	

Table 37. Flash memory characteristics

Table 38. Flash memory programming

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs	
		Program/erase parallelism (PSIZE) = x 8	-	400	800		
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms	
		Program/erase parallelism (PSIZE) = x 32	-	250	500		
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400		
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms	
		Program/erase parallelism (PSIZE) = x 32	-	550	1100		
	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	2	4		
t _{ERASE128KB}		Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s	
		Program/erase parallelism (PSIZE) = x 32	-	1	2		
		Program/erase parallelism (PSIZE) = x 8	-	16	32		
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	s	
		Program/erase parallelism (PSIZE) = x 32		8	16		
		32-bit program operation	2.7	-	3.6	V	
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V	
		8-bit program operation	1.8	-	3.6	V	

1. Guaranteed by characterization results, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

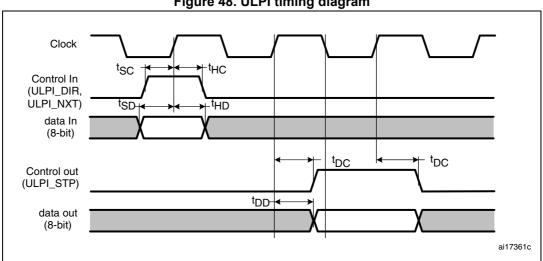


Figure 48. ULPI timing diagram

Table 61. ULPI timing

Symbol	Parameter	Valu	Unit	
Symbol	Farameter	Min.	Max.	Unit
+	Control in (ULPI_DIR) setup time	-	2.0	
t _{SC}	Control in (ULPI_NXT) setup time	-	1.5	
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	0	-	
t _{SD}	Data in setup time	-	2.0	ns
t _{HD}	Data in hold time	0	-	
t _{DC}	Control out (ULPI_STP) setup time and hold time	-	9.2	
t _{DD}	Data out available from clock rising edge	-	10.7	

1. V_{DD} = 2.7 V to 3.6 V and T_A = -40 to 85 °C.

Ethernet characteristics

Table 62 shows the Ethernet operating voltage.

Table 62. Ethernet DC electrical characteristics

Symbol Parameter		Min. ⁽¹⁾	Max. ⁽¹⁾	Unit	
Input level	V_{DD}	Ethernet operating voltage	2.7	3.6	V

1. All the voltages are measured from the local ground potential.

Table 63 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 49 shows the corresponding timing diagram.

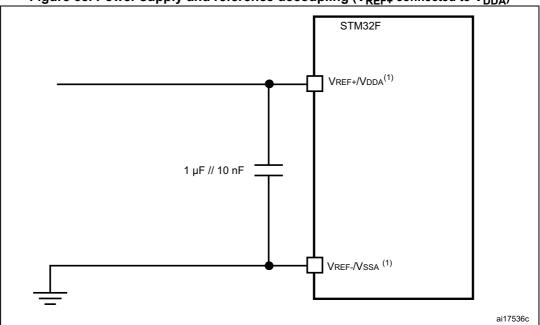
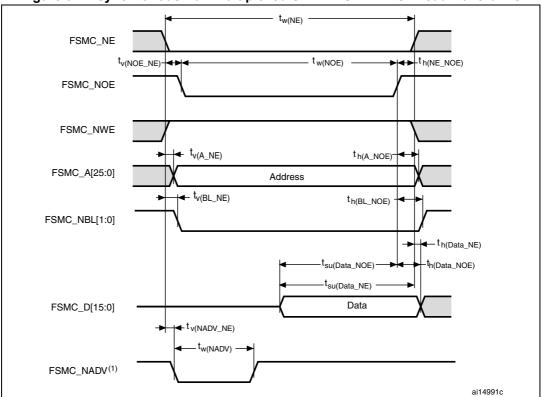


Figure 55. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})


Table 66. DAC Characteristics						
Symbol	Parameter	Min	Тур	Мах	Unit	Comments
V _{DDA}	Analog supply voltage	1.8 ⁽¹⁾	-	3.6	V	-
V _{REF+}	Reference supply voltage	1.8 ⁽¹⁾	-	3.6	V	V _{REF+} ≤V _{DDA}
V _{SSA}	Ground	0	-	0	V	-
R _{LOAD} ⁽²⁾	Resistive load with buffer ON	5	-	-	kΩ	-
R ₀ ⁽²⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽²⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	v	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at V _{REF+} = 3.6 V
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	and (0x1C7) to (0xE38) at $V_{REF+} = 3.0 \text{ V}$ 1.8 V

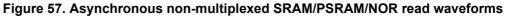

6.3.21 DAC electrical characteristics

 Table 68. DAC characteristics

V_{REF+} and V_{REF-} inputs are both available on UFBGA176 package. V_{REF+} is also available on all packages except for LQFP64. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA}.

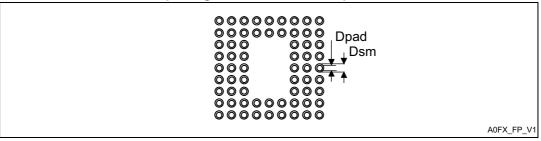
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 72. Asynchronous non-multi	plexed SRAM/PSRAM/NOR read timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0.5	2.5	ns
t _{w(NOE)}	FSMC_NOE low time	2T _{HCLK} - 1	2T _{HCLK} + 0.5	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	4	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0.5	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} + 0.5	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	T _{HCLK} + 2.5	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2.5	ns
t _{w(NADV})	FSMC_NADV low time	-	T _{HCLK} – 0.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.


Table 88. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued)

Symbol	Symbol			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
F	-	0.220	-	-	0.0087	-	
G	-	0.386	-	-	0.0152	-	
ааа	-	-	0.100	-	-	0.0039	
bbb	-	-	0.100	-	-	0.0039	
CCC	-	-	0.100	-	-	0.0039	
ddd	-	-	0.050	-	-	0.0020	
eee	-	-	0.050	-	-	0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

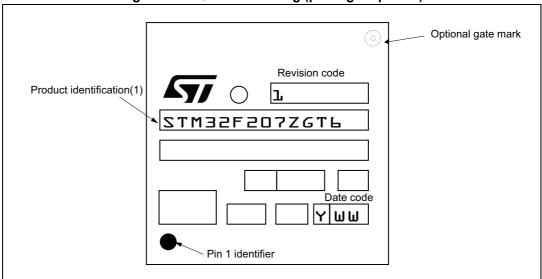
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

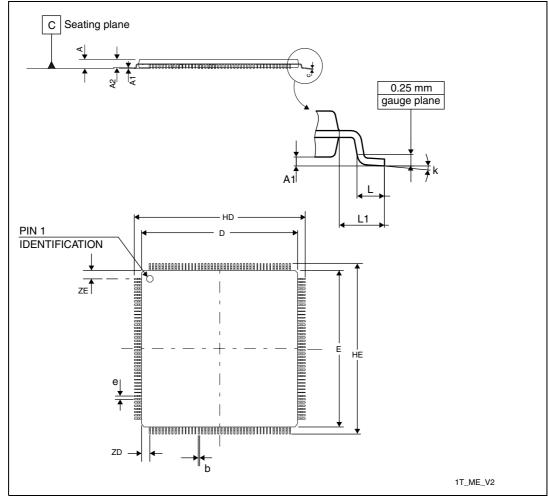
Figure 80. WLCSP64+2 - 66-ball, 4.539 x 4.911 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

Table 89. WLCSP64 recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

Device marking




Figure 86. LQFP144 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.5 LQFP176 package information

Figure 87. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline

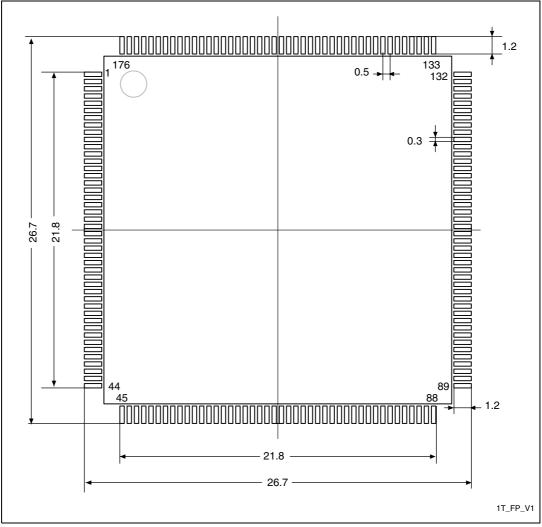

1. Drawing is not to scale.

Table 92. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data

	Dimensions					
Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	-	1.450	0.0531	-	0.0571
b	0.170	-	0.270	0.0067	-	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	23.900	-	24.100	0.9409	-	0.9488

DocID15818 Rev 13

Figure 88. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

