

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f207zgt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.20.4	Independent watchdog
	3.20.5	Window watchdog
	3.20.6	SysTick timer
3.21	Inter-in	tegrated circuit interface (I ² C)
3.22	Univer: (UART	sal synchronous/asynchronous receiver transmitters s/USARTs)
3.23	Serial	peripheral interface (SPI)
3.24	Inter-in	Itegrated sound (I ² S)
3.25	SDIO	
3.26	Ethern	et MAC interface with dedicated DMA and IEEE 1588 support 36
3.27	Contro	Iler area network (CAN)
3.28	Univer	sal serial bus on-the-go full-speed (OTG_FS)
3.29	Univer	sal serial bus on-the-go high-speed (OTG_HS)
3.30	Audio	PLL (PLLI2S)
3.31	Digital	camera interface (DCMI)
3.32	True ra	andom number generator (RNG)
3.33	GPIOs	(general-purpose inputs/outputs) 38
3.34	ADCs	(analog-to-digital converters)
3.35	DAC (digital-to-analog converter)
3.36	Tempe	rature sensor
3.37	Serial	wire JTAG debug port (SWJ-DP) 40
3.38	Embec	lded Trace Macrocell™
Pino	uts and	pin description
Mem	ory ma	pping
Elect	trical ch	naracteristics
6.1	Param	eter conditions
	6.1.1	Minimum and maximum values68
	6.1.2	Typical values
	6.1.3	Typical curves
	6.1.4	Loading capacitor
	6.1.5	Pin input voltage68
	6.1.6	Power supply scheme

4

5

6

1 Introduction

This datasheet provides the description of the STM32F205xx and STM32F207xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32 family, please refer to *Section 2.1: Full compatibility throughout the family*.

The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices throughout the document.

For information on programming, erasing and protection of the internal Flash memory, please refer to the STM32F20x/STM32F21x Flash programming manual (PM0059).

The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the *www.arm.com* website.

2 Description

The STM32F20x family is based on the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.

The devices also feature an adaptive real-time memory accelerator (ART Accelerator[™]) which allows to achieve a performance equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz. This performance has been validated using the CoreMark benchmark.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true number random generator (RNG). They also feature standard and advanced communication interfaces. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), and a camera interface for CMOS sensors. The devices also feature standard peripherals.

- Up to three I²Cs
- Three SPIs, two I²Ss. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external PLL to allow synchronization.
- 4 USARTs and 2 UARTs
- A USB OTG high-speed with full-speed capability (with the ULPI)
- A second USB OTG (full-speed)
- Two CANs
- An SDIO interface
- Ethernet and camera interface available on STM32F207xx devices only.

Note: The STM32F205xx and STM32F207xx devices operate in the -40 to +105 °C temperature range from a 1.8 V to 3.6 V power supply. On devices in WLCSP64+2 package, if IRROFF is set to V_{DD} , the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

A comprehensive set of power-saving modes allow the design of low-power applications.

STM32F205xx and STM32F207xx devices are offered in various packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen. These features make the STM32F205xx and STM32F207xx microcontroller family suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

Figure 4 shows the general block diagram of the device family.

Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package

1. RFU = reserved for future use.

DocID15818 Rev 13

There are three power modes configured by software when the regulator is ON:

- MR is used in the nominal regulation mode
- LPR is used in Stop modes

The LP regulator mode is configured by software when entering Stop mode.

• Power-down is used in Standby mode.

The Power-down mode is activated only when entering Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost).

Two external ceramic capacitors should be connected on V_{CAP_1} and V_{CAP_2} pin. Refer to *Figure 19: Power supply scheme* and *Table 16: VCAP1/VCAP2 operating conditions*.

All packages have the regulator ON feature.

3.16.2 Regulator OFF

This feature is available only on packages featuring the REGOFF pin. The regulator is disabled by holding REGOFF high. The regulator OFF mode allows to supply externally a V12 voltage source through V_{CAP 1} and V_{CAP 2} pins.

The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 19: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used at power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection at reset or pre-reset is required.

Regulator OFF/internal reset ON

On WLCSP64+2 package, this mode is activated by connecting REGOFF pin to V_{DD} and IRROFF pin to V_{SS}. On UFBGA176 package, only REGOFF must be connected to V_{DD} (IRROFF not available). In this mode, V_{DD}/V_{DDA} minimum value is 1.8 V.

The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage source through V_{CAP 1} and V_{CAP 2} pins, in addition to V_{DD}.

Figure 6. Regulator OFF/internal reset ON

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is faster than the time for V_{DD} to reach 1.8 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach 1.08 V and until V_{DD} reaches 1.8 V (see *Figure 8*).
- Otherwise, If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is slower than the time for V_{DD} to reach 1.8 V, then PA0 should be asserted low externally (see *Figure 9*).
- If V_{CAP_1} and V_{CAP_2} go below 1.08 V and V_{DD} is higher than 1.8 V, then a reset must be asserted on PA0 pin.

Regulator OFF/internal reset OFF

On WLCSP64+2 package, this mode activated by connecting REGOFF to V_{SS} and IRROFF to V_{DD}. IRROFF cannot be activated in conjunction with REGOFF. This mode is available only on the WLCSP64+2 package. It allows to supply externally a 1.2 V voltage source through V_{CAP_1} and V_{CAP_2} pins. In this mode, the integrated power-on reset (POR)/ power-down reset (PDR) circuitry is disabled.

An external power supply supervisor should monitor both the external 1.2 V and the external V_{DD} supply voltage, and should maintain the device in reset mode as long as they remain below a specified threshold. The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes allows to design low-power applications.

3.30 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S application. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I^2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output).

3.31 Digital camera interface (DCMI)

The camera interface is not available in STM32F205xx devices.

STM32F207xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw Bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

3.32 True random number generator (RNG)

All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers produced by an integrated analog circuit.

3.33 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O alternate function configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to 120 MHz that leads to a maximum I/O toggling speed of 60 MHz.

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
	Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	12C1/12C2/12C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO/ OTG_HS	DCMI	AF014	AF15
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	-	-	-	-	OTG_HS_ULPI_D1	ETH_MII_RXD2	-	-	-	EVENTOUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N	-	-	-	-	-	-	OTG_HS_ULPI_D2	ETH_MII_RXD3	-	-	-	EVENTOUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB3	JTDO/ TRACESWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_SCK	-	-	-	-	-	-	-	-	EVENTOUT
	PB4	JTRST	-	TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	-	-	-	-	-	-	-	-	EVENTOUT
	PB5	-	-	TIM3_CH2	-	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI I2S3_SD	-	-	CAN2_RX	OTG_HS_ULPI_D7	ETH_PPS_OUT	-	DCMI_D10	-	EVENTOUT
	PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_TX	-	CAN2_TX	-	-	-	DCMI_D5	-	EVENTOUT
	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_RX	-	-	-	-	FSMC_NL	DCMI_VSYNC	-	EVENTOUT
Port B	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	CAN1_RX	-	ETH_MII_TXD3	SDIO_D4	DCMI_D6	-	EVENTOUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS I2S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_D7	-	EVENTOUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK I2S2_SCK	-	USART3_TX	-	-	OTG_HS_ULPI_D3	ETH_MII_RX_ER	-	-	-	EVENTOUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	OTG_HS_ULPI_D4	ETH _MII_TX_EN ETH _RMII_TX_EN	-	-	-	EVENTOUT
	PB12	-	TIM1_BKIN	-	-	I2C2_SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	-	CAN2_RX	OTG_HS_ULPI_D5	ETH_MII_TXD0 ETH_RMII_TXD0	OTG_HS_ID	-	-	EVENTOUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK I2S2_SCK	-	USART3_CTS	-	CAN2_TX	OTG_HS_ULPI_D6	ETH_MII_TXD1 ETH_RMII_TXD1	-	-	-	EVENTOUT
	PB14	-	TIM1_CH2N	-	TIM8_CH2N	-	SPI2_MISO	-	USART3_RTS	-	TIM12_CH1	-	-	OTG_HS_DM	-	-	EVENTOUT
	PB15	RTC_50Hz	TIM1_CH3N	-	TIM8_CH3N	-	SPI2_MOSI	-	-	-	TIM12_CH2	-	-	OTG_HS_DP	-	-	EVENTOUT

Table 10. Alternate function mapping (continued)

DocID15818 Rev 13

577

Figure 25. Typical current consumption vs. temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals ON

Symbol		Conditions		Тур	Ма		
	Parameter		f _{HCLK}	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
Symbol			120 MHz	38	51	61	
			90 MHz	30	43	53	
			60 MHz	20	33	43	
			30 MHz	11	25	35	
		External clock ² , all peripherals enabled ⁽³⁾	25 MHz	8	21	31	
	Supply current in		16 MHz	6	19	29	- mA
			8 MHz	3.6	17.0	27.0	
			4 MHz	2.4	15.4	25.3	
			2 MHz	1.9	14.9	24.7	
DD	Sleep mode		120 MHz	8	21	31	
			90 MHz	7	20	30	
			60 MHz	5	18	28	
		– (2)	30 MHz	3.5	16.0	26.0	
		External clock ⁽²⁾ , all peripherals disabled	25 MHz	2.5	16.0	25.0	-
			16 MHz	2.1	15.1	25.0	
			8 MHz	1.7	15.0	25.0	
			4 MHz	1.5	14.6	24.6	
			2 MHz	1.4	14.2	24.3	

Table 22.	Typical	and	maximum	current	consum	ption in	Sleep	mode
-----------	---------	-----	---------	---------	--------	----------	-------	------

1. Guaranteed by characterization results, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when $\rm f_{HCLK}$ > 25 MHz.

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

The test results are given in *Table 41*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	4A

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Paran	neter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Param Weak pull-up equivalent resistor ⁽⁶⁾ Weak pull-down equivalent resistor ⁽⁷⁾	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	$V_{IN} = V_{SS}$	30	40	50	
		PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	-	7	10	14	kO
R _{PD}	Weak pull-down equivalent resister ⁽⁷⁾	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	$V_{IN} = V_{DD}$	30	40	50	K22
	TESISION	PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	-	7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacitan	ice	-	-	5	-	pF

Table 46. I/O static characteristics (continued)

1. Guaranteed by design, not tested in production.

2. Guaranteed by tests in production.

3. With a minimum of 200 mV.

- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 45: I/O current injection susceptibility
- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45: I/O current injection susceptibility
- 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 38*.

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CK} 1/t _{c(CK)}	I ² S clock frequency	Master, 16-bit data, audio frequency = 48 kHz, main clock disabled	1.23	1.24	MHz
		Slave	0	64F _S ⁽¹⁾	
t _{r(CK)} t _{f(CK)}	I ² S clock rise and fall time	Capacitive load C _L = 50 pF	-	(2)	
t _{v(WS)} ⁽³⁾	WS valid time	Master	0.3	-	
t _{h(WS)} (3)	WS hold time	Master	0	-	
t _{su(WS)} ⁽³⁾	WS setup time	Slave	3	-	
t _{h(WS)} ⁽³⁾	WS hold time	Slave	0	-	
t _{w(CKH)} (3) t _{w(CKL)} (3)	CK high and low time	Master f _{PCLK} = 30 MHz	396	-	•
t _{su(SD_MR)} (3) t _{su(SD_SR)} (3)	Data input setup time	Master receiver Slave receiver	45 0	-	ns
$t_{h(SD_MR)}^{(3)(4)}_{t_{h(SD_SR)}}^{(3)(4)}$	Data input hold time	Master receiver: f _{PCLK} = 30 MHz, Slave receiver: f _{PCLK} = 30 MHz	13 0	-	
t _{v(SD_ST)} (3)(4)	Data output valid time	Slave transmitter (after enable edge)	-	30	*
t _{h(SD_ST)} ⁽³⁾	Data output hold time	Slave transmitter (after enable edge)	10	-	*
t _{v(SD_MT)} (3)(4)	Data output valid time	Master transmitter (after enable edge)	-	6	•
t _{h(SD_MT)} ⁽³⁾	Data output hold time	Master transmitter (after enable edge)	0	-	

Table 55. I²S characteristics

F_S is the sampling frequency. Refer to the I2S section of the STM32F20xxx/21xxx reference manual for more details. f_{CK} values reflect only the digital peripheral behavior which leads to a minimum of (I2SDIV/(2*I2SDIV+ODD), a maximum of (I2SDIV+ODD)/(2*I2SDIV+ODD) and F_S maximum values for each mode/condition.

2. Refer to Table 48: I/O AC characteristics.

3. Guaranteed by design, not tested in production.

4. Depends on $f_{PCLK}.$ For example, if f_{PCLK} =8 MHz, then T_{PCLK} = 1/f_{PLCLK} =125 ns.

Figure 48. ULPI timing diagram

Table 61. ULPI timing

Symbol	Parameter	Valu	ıe ⁽¹⁾	Unit	
Symbol	Falameter	Min.	Max.	onit	
t _{SC}	Control in (ULPI_DIR) setup time	-	2.0		
	Control in (ULPI_NXT) setup time	-	1.5		
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	0	-		
t _{SD}	Data in setup time	-	2.0	ns	
t _{HD}	Data in hold time	0	-		
t _{DC}	Control out (ULPI_STP) setup time and hold time	-	9.2		
t _{DD}	Data out available from clock rising edge	-	10.7		

1. V_{DD} = 2.7 V to 3.6 V and T_A = -40 to 85 °C.

Ethernet characteristics

Table 62 shows the Ethernet operating voltage.

Table 62. Ethernet DC electrical characteristics

Symbol		Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	V_{DD}	Ethernet operating voltage	2.7	3.6	V

1. All the voltages are measured from the local ground potential.

Table 63 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 49 shows the corresponding timing diagram.

Table 65 gives the list of Ethernet MAC signals for MII and *Figure 50* shows the corresponding timing diagram.

Table 65.	Dvnamics	characteristics:	Ethernet	MAC s	ianals	for MI	
	Dynamics	onuluotonistios.		MAC 5	ignuis		

Symbol	Rating	Min Typ Max			
t _{su(RXD)}	Receive data setup time 7.5 -				ns
t _{ih(RXD)}	Receive data hold time 1				ns
t _{su(DV)}	Data valid setup time	-	-	ns	
t _{ih(DV)}	Data valid hold time	0	-	-	ns
t _{su(ER)}	Error setup time	3.5	-	-	ns
t _{ih(ER)}	Error hold time	0	-	-	ns
t _{d(TXEN)}	Transmit enable valid delay time	-	11	14	ns
t _{d(TXD)}	Transmit data valid delay time	11	14	ns	

CAN (controller area network) interface

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

Figure 61. Synchronous multiplexed NOR/PSRAM read timings

Table 70	0	aloved NOD/DCD	A M
Table 76.	Synchronous multi	piexea NUR/PSR	KAW read timings ''''''

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK}	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	0	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	1	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	1.5	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	2.5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	0	-	ns
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1	-	ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	3	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0	-	ns

Figure 70. PC Card/CompactFlash controller waveforms for I/O space write access

Table 80. Switching characteristics for PC Card/CF read and write cycles in attribute/common space⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{v(NCEx-A)}	FSMC_Ncex low to FSMC_Ay valid	-	0	ns
t _{h(NCEx_AI)}	FSMC_NCEx high to FSMC_Ax invalid	4	-	ns
t _{d(NREG-NCEx)}	FSMC_NCEx low to FSMC_NREG valid	-	3.5	ns
t _{h(NCEx-NREG)}	FSMC_NCEx high to FSMC_NREG invalid	T _{HCLK} + 4	-	ns
t _{d(NCEx-NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5T _{HCLK} + 1	ns
t _{d(NCEx-NOE)}	FSMC_NCEx low to FSMC_NOE low	-	5T _{HCLK}	ns
t _{w(NOE)}	FSMC_NOE low width	8T _{HCLK} - 0.5	8T _{HCLK} + 1	ns
t _{d(NOE_NCEx)}	FSMC_NOE high to FSMC_NCEx high	5T _{HCLK} + 2.5	-	ns
t _{su (D-NOE)}	FSMC_D[15:0] valid data before FSMC_NOE high	4	-	ns
t _{h (N0E-D)}	FSMC_N0E high to FSMC_D[15:0] invalid	2	-	ns
t _{w(NWE)}	FSMC_NWE low width	8T _{HCLK} - 1	8T _{HCLK} + 4	ns
t _{d(NWE_NCEx})	FSMC_NWE high to FSMC_NCEx high	5T _{HCLK} + 1.5	-	ns
t _{d(NCEx-NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5HCLK+ 1	ns
t _{v (NWE} -D)	FSMC_NWE low to FSMC_D[15:0] valid	-	0	ns
t _{h (NWE} -D)	FSMC_NWE high to FSMC_D[15:0] invalid	8T _{HCLK}	-	ns
t _{d (D-NWE)}	FSMC_D[15:0] valid before FSMC_NWE high	13T _{HCLK}	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Device marking

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Date	Revision	Changes
		Changed datasheet status to "Full Datasheet".
		Introduced concept of SRAM1 and SRAM2.
		LQFP176 package now in production and offered only for 256 Kbyte and 1 Mbyte devices. Availability of WLCSP64+2 package limited to 512 Kbyte and 1 Mbyte devices.
		Updated Figure 3: Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package and Figure 2: Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package.
		Added camera interface for STM32F207Vx devices in <i>Table 2:</i> STM32F205xx features and peripheral counts.
		Removed 16 MHz internal RC oscillator accuracy in Section 3.12: Clocks and startup.
		Updated Section 3.16: Voltage regulator.
		Modified I ² S sampling frequency range in <i>Section 3.12: Clocks and startup</i> , <i>Section 3.24: Inter-integrated sound (I2S)</i> , and <i>Section 3.30: Audio PLL (PLLI2S)</i> .
22-Apr-2011	6	Updated Section 3.17: Real-time clock (RTC), backup SRAM and backup registers and description of TIM2 and TIM5 in Section 3.20.2: General-purpose timers (TIMx).
		Modified maximum baud rate (oversampling by 16) for USART1 in <i>Table 6: USART feature comparison</i> .
		Updated note related to RFU pin below <i>Figure</i> 12: STM32F20x LQFP100 pinout, Figure 13: STM32F20x LQFP144 pinout, Figure 14: STM32F20x LQFP176 pinout, Figure 15: STM32F20x UFBGA176 ballout, and Table 8: STM32F20x pin and ball definitions.
		In <i>Table 8: STM32F20x pin and ball definitions</i> ,:changed I2S2_CK and I2S3_CK to I2S2_SCK and I2S3_SCK, respectively; added PA15 and TT (3.6 V tolerant I/O).
		Added RTC_50Hz as PB15 alternate function in <i>Table 8: STM32F20x</i> pin and ball definitions and <i>Table 10: Alternate function mapping</i> .
		Removed ETH _RMII_TX_CLK for PC3/AF11 in <i>Table 10: Alternate function mapping</i> .
		Updated Table 11: Voltage characteristics and Table 12: Current characteristics.
		T _{STG} updated to –65 to +150 in <i>Table 13: Thermal characteristics</i> .
		Added CEXT, ESL, and ESR in <i>Table 14: General operating conditions</i> as well as <i>Section 6.3.2: VCAP1/VCAP2 external capacitor</i> .
		Modified Note 4 in Table 15: Limitations depending on the operating power supply range.
		Updated Table 17: Operating conditions at power-up / power-down (regulator ON), and Table 18: Operating conditions at power-up / power-down (regulator OFF).
		Added OSC_OUT pin in <i>Figure 17: Pin loading conditions</i> . and <i>Figure 18: Pin input voltage</i> .
		Updated <i>Figure 19: Power supply scheme</i> to add IRROFF and REGOFF pins and modified notes.
		Updated V _{PVD} , V _{BOR1} , V _{BOR2} , V _{BOR3} , T _{RSTTEMPO} typical value, and I _{RUSH} , added E _{RUSH} and <i>Note 2</i> in <i>Table 19: Embedded reset and power control block characteristics</i> .

Table 97.	Document	revision	history	(continued)
-----------	----------	----------	---------	-------------

Date	Revision	Changes
Date	Pevision 9 (continued)	Changes Removed support of I2C for OTG PHY in Section 3.29: Universal serial bus on-the-go high-speed (OTG_HS). Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 8: STM32F20x pin and ball definitions and Table 10: Alternate function mapping. Renamed PH10 alternate function into TIM5_CH1 in Table 10: Alternate function mapping. Added Table 9: FSMC pin definition. Updated Note 1 in Table 14: General operating conditions, Note 2 in Table 15: Limitations depending on the operating power supply range, and Note 1 below Figure 21: Number of wait states versus fCPU and VDD range. Updated VpOR/PDR in Table 19: Embedded reset and power control block characteristics. Updated typical values in Table 24: Typical and maximum current consumptions in VBAT mode. Updated Table 30: HSE 4-26 MHz oscillator characteristics and Table 31: LSE oscillator characteristics (LSE = 32.768 kHz). Updated Table 37: Flash memory characteristics, Table 38: Flash memory programming, and Table 39: Flash memory programming with VPP. Updated Note 3 and removed note related to minimum hold time value in Table 52: 12C characteristics. Updated Note 1, CADC, IvREF+, and IvDDA in Table 66: ADC characteristics. Updated Note 1 in Table 67: ADC accuracy. Updated Note 1 in Table 67: ADC accuracy. Updated Note 1 in Table 66: DAC characteristics. Updated Table 64: Dynamics characteristics: Ethernet MAC signals for RMII. U

Table 97. Document revision history (continued)

