

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	82
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f745veh6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 42. Figure 43.	Typical connection diagram using the ADC Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})	149 150
Figure 44.	Power supply and reference decoupling (V_{REF+} connected to V_{DDA})	150 154
Figure 46	SPI timing diagram - slave mode and CPHA = 0	157
Figure 47	SPI timing diagram - slave mode and CPHA = 1	158
Figure 48	SPI timing diagram - master mode	158
Figure 49	I^2S slave timing diagram (Philips protocol) ⁽¹⁾	160
Figure 50	I^2 S master timing diagram (Philips protocol) ⁽¹⁾	160
Figure 51	SAI master timing waveforms	162
Figure 52	SAL slave timing waveforms	162
Figure 53	USB OTG full speed timings: definition of data signal rise and fall time	164
Figure 54	UI PI timing diagram	165
Figure 55	Ethernet SMI timing diagram	166
Figure 56	Ethernet RMII timing diagram	167
Figure 57	Ethernet MII timing diagram	168
Figure 58	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	170
Figure 50	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	172
Figure 60	Asynchronous multiplexed DSRAM/NOR read waveforms	172
Figure 61	Asynchronous multiplexed PSRAM/NOR write waveforms	175
Figure 62	Synchronous multiplexed NOR/PSRAM read timings	177
Figure 63	Synchronous multiplexed PSRAM write timings	170
Figure 64	Synchronous non multiplexed NOP/PSPAM read timings	101
Figure 65	Synchronous non-multiplexed PSRAM write timings	182
Figure 66	NAND controller waveforms for read access	18/
Figure 67	NAND controller waveforms for write access	18/
Figure 68	NAND controller waveforms for common memory read access	104
Figure 60.	NAND controller waveforms for common memory write access	104
Figure 09.	SDRAM road access waveforms (CL = 1)	100
Figure 70.	SDRAW write appage waveforme	100
Figure 71.	Ound SDI timing diagram SDD mode	100
Figure 72.	Quad-SFI timing diagram DDP mode	101
Figure 73.	Quau-SFI unning ulagram	100
Figure 74.	LCD TET horizontal timing diagram	192
Figure 75.		193
Figure 70.	LCD-TFT Venucal unning utagrani	193
Figure 77.		194
Figure 70.	SD delduit mode	194
Figure 79.	LQFP100, 14 x 14 mm 100-pin low-profile guad flat package outline	190
Figure 80.	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package	100
		198
Figure 81.	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package	400
		198
Figure 82.	IFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array	400
- : 00		199
Figure 83.	IFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array	~~~
E inen 04		200
Figure 84.	IFBGA100, 8 × 8 × 0.8mm thin fine-pitch ball grid array package	004
		201
⊢igure 85.	VVLCSP143, 4.539x 5.849 mm, 0.4 mm pitch water level chip scale	000
		202
rigure 86.	VVLOSP143, 4.539X 5.849 mm, 0.4 mm pitch water level chip scale	000
	package recommended tootprint	203

5

These features make the STM32F745xx and STM32F746xx microcontrollers suitable for a wide range of applications:

- Motor drive and application control,
- Medical equipment,
- Industrial applications: PLC, inverters, circuit breakers,
- Printers, and scanners,
- Alarm systems, video intercom, and HVAC,
- Home audio appliances,
- Mobile applications, Internet of Things,
- Wearable devices: smartwatches.

Figure 2 shows the general block diagram of the device family.

					• • • • •																
Periph	erals	STM32	F745Vx	STM32	F746Vx	STM32	F745Zx	STM32	F746Zx	STM32	F745lx	STM32	F746lx	STM32	F745Bx	STM32	F746Bx	STM32	F745Nx	STM32	F746Nx
Flash memory in	512	1024	512	1024	512	1024	512	1024	512	1024	512	1024	512	1024	512	1024	512	1024	512	1024	
	System		320(240+16+64)																		
SRAM in Kbytes	Instruction		16																		
	Backup		4																		
FMC memory co	ontroller		Yes ⁽¹⁾																		
Ethernet			Yes																		
	General- purpose		10																		
Timers	Advanced- control		2																		
	Basic											2									
	Low-power	1																			
Random numbe	r generator										Y	′es									

Table 2. STM32F745xx and STM32F746xx features and peripheral counts

DocID027590 Rev 4

2 Functional overview

2.1 ARM[®] Cortex[®]-M7 with FPU

The ARM[®] Cortex[®]-M7 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and a low-power consumption, while delivering an outstanding computational performance and low interrupt latency.

The Cortex[®]-M7 processor is a highly efficient high-performance featuring:

- Six-stage dual-issue pipeline
- Dynamic branch prediction
- Harvard caches (4 Kbytes of I-cache and 4 Kbytes of D-cache)
- 64-bit AXI4 interface
- 64-bit ITCM interface
- 2x32-bit DTCM interfaces

The processor supports the following memory interfaces:

- Tightly Coupled Memory (TCM) interface.
- Harvard instruction and data caches and AXI master (AXIM) interface.
- Dedicated low-latency AHB-Lite peripheral (AHBP) interface.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up the software development by using metalanguage development tools, while avoiding saturation.

Figure 2 shows the general block diagram of the STM32F745xx and STM32F746xx devices.

Note: Cortex[®]-M7 with FPU core is binary compatible with the Cortex[®]-M4 core.

2.2 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.18.3 Regulator ON/OFF and internal reset ON/OFF availability

Table	4. Regulator ONA			anabinty
Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF
LQFP100	Vos	No	Yes	No
LQFP144, LQFP208	105	NO		
TFBGA100, LQFP176, WLCSP143, UFBGA176, TFBGA216	Yes BYPASS_REG set to V _{SS}	Yes BYPASS_REG set to V _{DD}	Yes PDR_ON set to V _{DD}	Yes PDR_ON set to VSS

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

2.19 Real-time clock (RTC), backup SRAM and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V_{BAT} mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the V_{BAT} pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator(LSE)
- The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

2.22.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

2.22.4 Low-power timer (LPTIM1)

The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.

This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous / one-shot mode
- Selectable software / hardware input trigger
- Selectable clock source:
- Internal clock source: LSE, LSI, HSI or APB clock
- External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application)
- Programmable digital glitch filter
- Encoder mode

2.22.5 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

2.22.6 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.22.7 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

2.32 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

2.33 Universal serial bus on-the-go full-speed (OTG_FS)

The device embeds an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing
- Support of the session request protocol (SRP) and host negotiation protocol (HNP)
- 1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
- 12 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Internal FS OTG PHY support
- HNP/SNP/IP inside (no need for any external resistor)

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.34 Universal serial bus on-the-go high-speed (OTG_HS)

The device embeds a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

		F	Pin N	umbei	r								
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
18	F3	J9	29	M5	35	38	L4	PC3	I/O	FT	(4)	SPI2_MOSI/I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT	ADC123_IN1 3
-	-	G7	30	G3	36	39	J5	VDD	S	-	-	-	-
-	-	-	-	-	-	-	J6	VSS	S	-	-	-	-
19	G1	K10	31	M1	37	40	M1	VSSA	S	-	-	-	-
-	-	-	-	N1	-	-	N1	VREF-	S	-	-	-	-
20	-	L11	32	P1	38	41	P1	VREF+	S	-	-	-	-
21	H1	L10	33	R1	39	42	R1	VDDA	S	-	-	-	-
22	G2	К9	34	N3	40	43	N3	PA0- WKUP(P A0)	I/O	FT	(5)	TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, SAI2_SD_B, ETH_MII_CRS, EVENTOUT	ADC123_IN0, WKUP1 ⁽⁴⁾
23	H2	K8	35	N2	41	44	N2	PA1	I/O	FT	(4)	TIM2_CH2, TIM5_CH2, USART2_RTS, UART4_RX, QUADSPI_BK1_IO3, SAI2_MCK_B, ETH_MII_RX_CLK/ETH_ RMII_REF_CLK, LCD_R2, EVENTOUT	ADC123_IN1
24	J2	L9	36	P2	42	45	P2	PA2	I/O	FT	(4)	TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, SAI2_SCK_B, ETH_MDIO, LCD_R1, EVENTOUT	ADC123_IN2, WKUP2
-	-	-	-	F4	43	46	K4	PH2	I/O	FT		LPTIM1_IN2, QUADSPI_BK2_IO0, SAI2_SCK_B, ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT	-

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

		F	Pin Nu	umber								, , , , , , , , , , , , , , , , , , ,	,
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
69	D10	D5	102	D15	121	144	D15	PA10	I/O	FT	-	TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT	-
70	C10	D4	103	C15	122	145	C15	PA11	I/O	FT	-	TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT	-
71	B10	E1	104	B15	123	146	B15	PA12	I/O	FT	-	TIM1_ETR, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT	-
72	A10	D3	105	A15	124	147	A15	PA13(JT MS- SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
73	E7	D1	106	F13	125	148	E11	VCAP_2	S	-	-	-	-
74	E5	D2	107	F12	126	149	F10	VSS	S	-	-	-	-
75	F5	C1	108	G13	127	150	F11	VDD	S	-	-	-	-
-	-	-	-	E12	128	151	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	-	-	E13	129	152	E13	PH14	I/O	FT	-	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	-	-	D13	130	153	D13	PH15	I/O	FT	-	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	-	-	E14	131	154	E14	P10	I/O	FT	-	TIM5_CH4, SPI2_NSS/I2S2_WS, FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-
-	-	-	-	D14	132	155	D14	PI1	I/O	FT	-	TIM8_BKIN2, SPI2_SCK/I2S2_CK, FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-

4 Memory mapping

The memory map is shown in *Figure 19*.

Figure 19. Memory map

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to f_{HCLK} frequency and V_{DD} range (see *Table 18: Limitations depending on the operating power supply range*).
- When the regulator is ON, the voltage scaling and over-drive mode are adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \le 144$ MHz
 - Scale 2 for 144 MHz < $f_{HCLK} \le 168$ MHz
 - Scale 1 for 168 MHz < f_{HCLK} ≤216 MHz. The over-drive is only ON at 216 MHz.
- When the regulator is OFF, the V12 is provided externally as described in *Table 17: General operating conditions*:
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/4$, and $f_{PCLK2} = f_{HCLK}/2$.
- External clock frequency is 25 MHz and PLL is ON when f_{HCLK} is higher than 25 MHz.
- The typical current consumption values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and for T_A= 25 °C unless otherwise specified.
- The maximum values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and a maximum ambient temperature (T_A) unless otherwise specified.
- For the voltage range 1.7 V \leq V_{DD} \leq 3.6 V, the maximum frequency is 180 MHz.

Table 24. Typical and maximum current consumption in Run mode, code with data processingrunning from ITCM RAM, regulator ON

Symbol	Doromotor	Conditions	f (ML)-)	Turn		Unit		
Symbol	Farameter	Conditions		тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			216	178	208 ⁽⁴⁾	230 ⁽⁴⁾	-	
			200	165	193	212	230	
			180	147	171 ⁽⁴⁾	185 ⁽⁴⁾	198 ⁽⁴⁾	
		All peripherals enabled ⁽²⁾⁽³⁾	168	130	152	164	177	
	Supply		144	100	116	127	137	٣٨
			60	44	52	63	73	
			25	21	25	36	46	
DD	RUN mode		216	102	120 ⁽⁴⁾	141 ⁽⁴⁾	-	mA
			200	95	111	131	149	
			180	84	98 ⁽⁴⁾	112 ⁽⁴⁾	125 ⁽⁴⁾	
		All peripherals disabled ⁽³⁾	168	75	87	100	112	
			144	58	67	77	88	
			60	25	30	41	51	
			25	12	15	25	36	

1. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Cycle to cycle at	RMS	-	90	-	
Jitter ⁽³⁾	Master I2S clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency o 12.288 MHz N = 432, R = 5 on 1000 samples	-	90	-	ps	
	WS I2S clock jitter	Cycle to cycle at 48 k on 1000 samples	КНz	-	400	-	ps
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	_	0.40 0.75	mA
I _{DDA(PLLI2S)} (4)	PLLI2S power consumption on V _{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	mA	

Table 44. PLLI2S characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Table 45. PLLISAI characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	
f _{PLLSAIP_OUT}	PLLSAI multiplier output clock for 48 MHz	-	-	48	75	
f _{PLLSAIQ_OUT}	PLLSAI multiplier output clock for SAI	-	-	-	216	MHz
f _{PLLSAIR_OUT}	PLLSAI multiplier output clock for LCD-TFT	-	-	-	216	
f _{VCO_OUT}	PLLSAI VCO output	-	100	-	432	
t	PLI SALlock time	VCO freq = 100 MHz	75	-	200	
LOCK		VCO freq = 432 MHz	100	-	300	μο

Symbol	Paramotor	Conditions	Value	Unit
Symbol	Falailletei	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

 Table 50. Flash memory endurance and data retention

2. Cycling performed over the whole temperature range.

5.3.14 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 51*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 216 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, TFBGA216, T _A =+25 °C, f _{HCLK} = 216 MHz, conforms to IEC 61000-4-2	4A

As a consequence, it is recommended to add a serial resistor (1 k Ω) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol Parameter		Conditions	Monitored	Max vs. [f _{HSE} /f _{CPU}]	Unit
				25/200 MHz	
		$V = 3.6 V = 25^{\circ}C$ TEPCA216 package	0.1 to 30 MHz	- 4	
		$v_{DD} = 3.0 v$, $r_A = 23 \cdot C$, TFBGA210 package, conforming to IEC61967-2 ART/L1-cache OFF,	30 to 130 MHz	9	dBµV
	Peak level	over-drive ON, all peripheral clocks enabled, clock	130 MHz to 1GHz	11	
			EMI Level	3	-
		V_{DD} = 3.6 V, T_A = 25 °C, TFBGA216 package, conforming to IEC61967-2 ART/L1-cache ON, over-drive ON, all peripheral clocks enabled, clock dithering disabled.	0.1 to 30 MHz	4	
e			30 to 130 MHz	5	dBµV
SEMI			130 MHz to 1GHz	14	
			EMI level	3	-
		$\gamma = 2.6 \text{ V} = 25^{\circ} \text{C}$ TEPCA216 package	0.1 to 30 MHz	- 9	
		$v_{DD} = 3.0 \text{ v}, r_A = 25 \text{ C}, r_BGA210 \text{ package,}$ conforming to IEC61967-2 ART/L1-cache ON,	30 to 130 MHz	-7	dBµV
		over-drive ON, all peripheral clocks enabled, clock	130 MHz to 1GHz	-5	
			EMI level	1.5	-

Table 52. EMI characteristics

Figure 45. 12-bit buffered /non-buffered DAC

The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Communications interfaces 5.3.26

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.
- Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0385 reference manual) and when the I2CCLK frequency is greater than the minimum shown in the table below:

Symbol	Parameter	Condition		Min	Unit	
f(I2CCLK)		Standard-mode		2		
	I2CCLK frequency	Fast-mode	Analog Filtre ON DNF=0	10	MHz	
			Analog Filtre OFF DNF=1	9		
			East mode Plus	Analog Filtre ON DNF=0	22.5	
		Fast-mode Plus	Analog Filtre OFF DNF=1	16		

Table 74. Minimum I2CCLK frequency in all I2C modes

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The 20mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load Cload supported in Fm+, which is given by these formulas:

- Tr(SDA/SCL)=0.8473xR_pxC_{load}
- $R_p(min) = (VDD-V_{OL}(max))/I_{OL}(max)$

Where Rp is the I2C lines pull-up. Refer to *Section 5.3.17: I/O port characteristics* for the I2C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	150 ⁽³⁾	ns

Table 75. I2C analog filter characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{\mathsf{AF}(\mathsf{max})}$ are not filtered

Figure 65. Synchronous non-multiplexed PSRAM write timings

Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} -0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	4	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	3.5	
t _{d(SDCLKL} -SDNWE)	SDNWE valid time	-	0.5	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	0	-	200
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	0.5	115
t _{h(SDCLKL} - SDNE)	Chip select hold time	0	-	
t _d (SDCLKL-SDNRAS)	SDNRAS valid time	-	0.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL-SDNCAS)} SDNCAS valid time		-	0.5	
t _d (SDCLKL-SDNCAS)	SDNCAS hold time	0	-	

Table 105. LPSDR SDRAM write timings⁽¹⁾

5.3.28 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 106* and *Table 107* for Quad-SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 17: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Fck1/t(CK)	Quad-SPI clock frequency	2.7 V⊴V _{DD} <3.6 V CL=20 pF	-	-	108	MHz
		1.71 V <v<sub>DD<3.6 V CL=15 pF</v<sub>	-	-	100	

Table 106. Quad-SPI characteristics in SDR mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tw(CKH)	Quad-SPI clock high and		t(CK)/2 -1	-	t(CK)/2	
tw(CKL)	low time	low time		-	t(CK)/2+1	
ts(IN)	Data input setup time		1	-	-	
th(IN)	Data input hold time	-	3	-	-	ns
	Data output valid time	2.7 V <v<sub>DD<3.6 V</v<sub>	-	1.5	3	
10(001)		1.71 V <v<sub>DD<3.6 V</v<sub>	-	1.5	4	
th(OUT)	Data output hold time	-	0	-	-	

Table 106. Quad-SPI characteristics (continued)in SDR mode⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		2.7 V <v<sub>DD<3.6 V CL=20 pF</v<sub>	-	-	80		
Fck1/t(CK)	Quad-SPI clock frequency	1.8 V <v<sub>DD<3.6 V CL=15 pF</v<sub>	-	-	80	MHz	
		1.71 V <v<sub>DD<3.6 V CL=10 pF</v<sub>	-	-	80		
tw(CKH)	Quad-SPI clock high and		t(CK)/2 -1	-	t(CK)/2		
tw(CKL)	low time	-	t(CK)/2	-	t(CK)/2+ 1		
ts(IN),	Data input setup time	2.7 V <v<sub>DD<3.6 V</v<sub>	1.5	-	-		
tsf(IN)		1.71 V <v<sub>DD<2 V</v<sub>	0.75	-	-		
thr(IN),	Data input hold time	2.7 V <v<sub>DD<3.6 V</v<sub>	3.5	-	-		
thf(IN)	Data input noid time	1.71 V <v<sub>DD<2 V</v<sub>	4.5			ne	
		2.7 V <v<sub>DD<3.6 V</v<sub>	-	8	10.5	115	
tvr(OUT), tvf(OUT)	Data output valid time	1.71 V <v<sub>DD<3.6 V DHHC=0</v<sub>	-	8	14.5		
		DHHC=1 Pres=1, 2	-	Thclk/2 +1.75	Thclk/2 +2.25		
		DHHC=0	7.5	-	-		
thr(OUT), thf(OUT)	Data output hold time	DHHC=1 Pres=1, 2	Thclk/2 +1.5	-	-		

Table 107. Quad-SPI characteristics in DDR mode	(1)
---	-----

1. Guaranteed by characterization results.

Figure 74. DCMI timing diagram

5.3.30 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in *Table 109* for LCD-TFT are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in *Table 17*, with the following configuration:

- LCD_CLK polarity: high •
- LCD DE polarity : low •
- LCD_VSYNC and LCD_HSYNC polarity: high
- Pixel formats: 24 bits

Table 109. LTDC characteristics ⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
f _{CLK}	LTDC clock output frequency	-	45	MHz
D _{CLK}	LTDC clock output duty cycle	45	55	%
t _{w(CLKH)} t _{w(CLKL)}	Clock High time, low time	tw(CLK)/2 - 0.5	tw(CLK)/2+0.5	
t _{v(DATA)}	Data output valid time	-	6	
t _{h(DATA)}	Data output hold time	2	-	
t _{v(HSYNC)}				
t _{v(VSYNC)}	HSYNC/VSYNC/DE output valid time	-	3	ns
t _{v(DE)}				
t _{h(HSYNC)}				
t _{h(VSYNC)}	HSYNC/VSYNC/DE output hold time	0.5	-	
th(DE)				

1. Guaranteed by characterization results.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.689	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 117. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

DocID027590 Rev 4

