E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	82
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f745vet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Description

The STM32F745xx and STM32F746xx devices are based on the high-performance ARM[®] Cortex[®]-M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex[®]-M7 core features a single floating point unit (SFPU) precision which supports all ARM[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances the application security.

The STM32F745xx and STM32F746xx devices incorporate high-speed embedded memories with a Flash memory up to 1 Mbyte, 320 Kbytes of SRAM (including 64 Kbytes of Data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM (for critical real-time routines), 4 Kbytes of backup SRAM available in the lowest power modes, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memories access.

All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, thirteen generalpurpose 16-bit timers including two PWM timers for motor control and one low-power timer available in Stop mode, two general-purpose 32-bit timers, a true random number generator (RNG). They also feature standard and advanced communication interfaces.

- Up to four I²Cs
- Six SPIs, three I²Ss in duplex mode. To achieve the audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI),
- Two CANs
- Two SAI serial audio interfaces
- An SDMMC host interface
- Ethernet and camera interfaces
- LCD-TFT display controller
- Chrom-ART Accelerator™
- SPDIFRX interface
- HDMI-CEC

Advanced peripherals include an SDMMC interface, a flexible memory control (FMC) interface, a Quad-SPI Flash memory interface, a camera interface for CMOS sensors. Refer to *Table 2: STM32F745xx and STM32F746xx features and peripheral counts* for the list of peripherals available on each part number.

The STM32F745xx and STM32F746xx devices operate in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) is available on all the packages except LQFP100 for a greater power supply choice.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to *Section 2.17.2: Internal reset OFF*). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F745xx and STM32F746xx devices offer devices in 8 packages ranging from 100 pins to 216 pins. The set of included peripherals changes with the device chosen.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 9*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 10*).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application.

SAI1 and SAI2 can be served by the DMA controller

2.27 SPDIFRX Receiver Interface (SPDIFRX)

The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main features of the SPDIFRX are the following:

- Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.

The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

2.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

2.38 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 108 MHz.

2.39 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

2.40 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT} , ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

2.41 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

Figure 15. STM32F74xIx LQFP176 pinout

1. The above figure shows the package top view.

Pinouts and pin description

Figure 18. STM32F74xNx TFBGA216 ballout

1. The above figure shows the package top view.

		F	Pin Nu	umber	·					-			,
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	Pin type I/O structure		Alternate functions	Additional functions
_	-	-	-	G4	44	47	J4	PH3	I/O	FT	-	QUADSPI_BK2_IO1, SAI2_MCK_B, ETH_MII_COL, FMC_SDNE0, LCD_R1, EVENTOUT	-
-	-	-	-	H4	45	48	H4	PH4	I/O	FT	-	I2C2_SCL, OTG_HS_ULPI_NXT, EVENTOUT	-
-	-	-	-	J4	46	49	J3	PH5	I/O	FT	-	I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT	-
25	K2	M11	37	R2	47	50	R2	PA3	I/O	FT	(4)	TIM2_CH4, TIM5_CH4, TIM9_CH2, USART2_RX, OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT	ADC123_IN3
26	J1	-	38	-	-	51	K6	VSS	S	-	-	-	-
-	E6	N11	-	L4	48	-	L5	BYPASS _REG	I	FT	-	-	-
27	K1	J8	39	K4	49	52	K5	VDD	S	-	-	-	-
28	G3	M10	40	N4	50	53	N4	PA4	I/O	TT a	(4)	SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, LCD_VSYNC, EVENTOUT	ADC12_IN4, DAC_OUT1
29	H3	M9	41	P4	51	54	P4	PA5	I/O	TT a	(4)	TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, OTG_HS_ULPI_CK, LCD_R4, EVENTOUT	ADC12_IN5, DAC_OUT2
30	J3	N10	42	P3	52	55	P3	PA6	I/O	FT	(4)	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, TIM13_CH1, DCMI_PIXCLK, LCD_G2, EVENTOUT	ADC12_IN6

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

		F	Pin Nu	umber								, , , , , , , , , , , , , , , , , , ,	,
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
69	D10	D5	102	D15	121	144	D15	PA10	I/O	FT	-	TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT	-
70	C10	D4	103	C15	122	145	C15	PA11	I/O	FT	-	TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT	-
71	B10	E1	104	B15	123	146	B15	PA12	I/O	FT	-	TIM1_ETR, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT	-
72	A10	D3	105	A15	124	147	A15	PA13(JT MS- SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
73	E7	D1	106	F13	125	148	E11	VCAP_2	S	-	-	-	-
74	E5	D2	107	F12	126	149	F10	VSS	S	-	-	-	-
75	F5	C1	108	G13	127	150	F11	VDD	S	-	-	-	-
-	-	-	-	E12	128	151	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	-	-	E13	129	152	E13	PH14	I/O	FT	-	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	-	-	D13	130	153	D13	PH15	I/O	FT	-	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	-	-	E14	131	154	E14	P10	I/O	FT	-	TIM5_CH4, SPI2_NSS/I2S2_WS, FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-
-	-	-	-	D14	132	155	D14	PI1	I/O	FT	-	TIM8_BKIN2, SPI2_SCK/I2S2_CK, FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-

Pin Number													-
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	Pin type I/O structure		Alternate functions	Additional functions
81	D8	B3	114	B12	142	164	B12	PD0	I/O	FT	-	CAN1_RX, FMC_D2, EVENTOUT	-
82	E8	C4	115	C12	143	165	C12	PD1	I/O	FT	-	CAN1_TX, FMC_D3, EVENTOUT	-
83	B7	A3	116	D12	144	166	D12	PD2	I/O	FT	-	TRACED2, TIM3_ETR, UART5_RX, SDMMC1_CMD, DCMI_D11, EVENTOUT	-
84	C7	B4	117	D11	145	167	C11	PD3	I/O	FT	-	SPI2_SCK/I2S2_CK, USART2_CTS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT	-
85	D7	B5	118	D10	146	168	D11	PD4	I/O	FT	-	USART2_RTS, FMC_NOE, EVENTOUT	-
86	B6	A4	119	C11	147	169	C10	PD5	I/O	FT	-	USART2_TX, FMC_NWE, EVENTOUT	-
-	-	-	120	D8	148	170	F8	VSS	S	-	-	-	-
-	-	C5	121	C8	149	171	E9	VDD	S	-	-	-	-
87	C6	F4	122	B11	150	172	B11	PD6	I/O	FT	-	SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT	-
88	D6	A5	123	A11	151	173	A11	PD7	I/O	FT	-	USART2_CK, SPDIFRX_IN0, FMC_NE1, EVENTOUT	-
-	-	-	-	-	-	174	B10	PJ12	I/O	FT	-	LCD_B0, EVENTOUT	-
-	-	-	-	-	-	175	B9	PJ13	I/O	FT	-	LCD_B1, EVENTOUT	-
-	-	-	-	-	-	176	C9	PJ14	I/O	FT	-	LCD_B2, EVENTOUT	-
-	-	-	-	-	-	177	D10	PJ15	I/O	FT	-	LCD_B3, EVENTOUT	-

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port		SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PC4	-	-	-	-	-	I2S1_M CK	-	-	SPDIFRX _IN2	-	-	ETH_MII_ RXD0/ET H_RMII_ RXD0	FMC_SD NE0	-	-	EVEN TOUT
	PC5	-	-	-	-	-	-	-	-	SPDIFRX _IN3	-	-	ETH_MII_ RXD1/ET H_RMII_ RXD1	FMC_SD CKE0	-	-	EVEN TOUT
	PC6	-	-	TIM3_C H1	TIM8_CH 1	-	I2S2_M CK	-	-	USART6 _TX	-	-	-	SDMMC 1_D6	DCMI_D 0	LCD_HS YNC	EVEN TOUT
	PC7	-	-	TIM3_C H2	TIM8_ CH2	-	-	I2S3_M CK	-	USART6 _RX	-	-	-	SDMMC 1_D7	DCMI_D 1	LCD_G6	EVEN TOUT
	PC8	TRACE D1	-	TIM3_C H3	TIM8_ CH3	-	-	-	UART5_ RTS	USART6 _CK	-	-	-	SDMMC 1_D0	DCMI_D 2	-	EVEN TOUT
Port C	PC9	MCO2	-	TIM3_C H4	TIM8_ CH4	I2C3_SD A	I2S_CKI N	-	UART5_ CTS	-	QUADSP I_BK1_IO 0	-	-	SDMMC 1_D1	DCMI_D 3	-	EVEN TOUT
	PC10	-	-	-	-	-	-	SPI3_SC K/I2S3_ CK	USART3 _TX	UART4_T X	QUADSP I_BK1_IO 1	-	-	SDMMC 1_D2	DCMI_D 8	LCD_R2	EVEN TOUT
	PC11	-	-	-	-	-	-	SPI3_MI SO	USART3 _RX	UART4_ RX	QUADSP I_BK2_N CS	-	-	SDMMC 1_D3	DCMI_D 4	-	EVEN TOUT
	PC12	TRACE D3	-	-	-	-	-	SPI3_M OSI/I2S3 _SD	USART3 _CK	UART5_T X	-	-	-	SDMMC 1_CK	DCMI_D 9	-	EVEN TOUT
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN

STM32F745xx STM32F746xx

79/227

Pinouts and pin description

83	
Ñ	
N	
7	

DocID027590 Rev 4

577

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PF13	-	-	-	-	I2C4_SM BA	-	-	-	-	-	-	-	FMC_A7	-	-	EVEN TOUT
Port F	PF14	-	-	-	-	I2C4_SC L	-	-	-	-	-	-	-	FMC_A8	-	-	EVEN TOUT
	PF15	-	-	-	-	I2C4_SD A	-	-	-	-	-	-	-	FMC_A9	-	-	EVEN TOUT
	PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 0	-	-	EVEN TOUT
	PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 1	-	-	EVEN TOUT
	PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 2	-	-	EVEN TOUT
	PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 3	-	-	EVEN TOUT
	PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 4/FMC_ BA0	-	-	EVEN TOUT
Port G	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 5/FMC_ BA1	-	-	EVEN TOUT
	PG6	-	-	-	-	-	-	-	-	-	-	-	-	-	DCMI_D 12	LCD_R7	EVEN TOUT
	PG7	-	-	-	-	-	-	-	-	USART6 _CK	-	-	-	FMC_IN T	DCMI_D 13	LCD_CL K	EVEN TOUT
	PG8	-	-	-	-	-	SPI6_NS S	-	SPDIFRX _IN2	USART6 _RTS	-	-	ETH_PPS _OUT	FMC_SD CLK	-	-	EVEN TOUT
	PG9	-	-	-	-	-	-	-	SPDIFRX _IN3	USART6 _RX	QUADSP I_BK2_IO 2	SAI2_FS_ B	-	FMC_NE 2/FMC_ NCE	DCMI_V SYNC	-	EVEN TOUT
	PG10	-	-	-	-	-	-	-	-	-	LCD_G3	SAI2_SD_ B	-	FMC_NE	DCMI_D 2	LCD_B2	EVEN TOUT

Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

Bus	Boundary address	Peripheral		
	0x4001 6C00- 0x4001 FFFF	Reserved		
	0x4001 6800 - 0x4001 6BFF	LCD-TFT		
	0x4001 6000 - 0x4001 67FF	Reserved		
	0x4001 5C00 - 0x4001 5FFF	SAI2		
	0x4001 5800 - 0x4001 5BFF	SAI1		
	0x4001 5400 - 0x4001 57FF	SPI6		
	0x4001 5000 - 0x4001 53FF	SPI5		
	0x4001 4C00 - 0x4001 4FFF	Reserved		
	0x4001 4800 - 0x4001 4BFF	TIM11		
	0x4001 4400 - 0x4001 47FF	TIM10		
	0x4001 4000 - 0x4001 43FF	TIM9		
	0x4001 3C00 - 0x4001 3FFF	EXTI		
APB2	0x4001 3800 - 0x4001 3BFF	SYSCFG		
	0x4001 3400 - 0x4001 37FF	SPI4		
	0x4001 3000 - 0x4001 33FF	SPI1/I2S1		
	0x4001 2C00 - 0x4001 2FFF	SDMMC		
	0x4001 2400 - 0x4001 2BFF	Reserved		
	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3		
	0x4001 1800 - 0x4001 1FFF	Reserved		
	0x4001 1400 - 0x4001 17FF	USART6		
	0x4001 1000 - 0x4001 13FF	USART1		
	0x4001 0800 - 0x4001 0FFF	Reserved		
	0x4001 0400 - 0x4001 07FF	TIM8		
	0x4001 0000 - 0x4001 03FF	TIM1		

Table 13. STM32F745xx and STM32F746xx register boundary addresses (continued)

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	320	
ΣI_{VSS}	Total current out of sum of all V_{SS_x} ground lines $(sink)^{(1)}$	- 320	
ΣI_{VDDUSB}	Total current into V _{DDUSB} power line (source)	25	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V_{SS_x} ground line (sink) ⁽¹⁾	- 100	
	Output current sunk by any I/O and control pin	25	
ιο	Output current sourced by any I/Os and control pin	- 25	mA
	Total output current sunk by sum of all I/O and control pins ⁽²⁾	120	
ΣI_{IO}	Total output current sunk by sum of all USB I/Os	25	
	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	- 120	
	Injected current on FT, FTf, RST and B pins (3)	- 5/+0	
^I INJ(PIN)	Injected current on TTa pins ⁽⁴⁾	±5	
$\Sigma I_{\rm INJ(PIN)}^{(4)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25	

Table '	15.	Current characteri	stics
IUNIC			5005

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to Table 14: Voltage characteristics for the values of the maximum allowed input voltage.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	– 65 to +150	°C
TJ	Maximum junction temperature	125	C

Ormakal Damastan				_	_	Max ⁽¹⁾		Unit	
Symbol Paramet	Parameter	Conditions	t _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			216	116	137 ⁽³⁾	159 ⁽³⁾	-		
			200	108	127	147	166		
		All	180	95	112 ⁽³⁾	126 ⁽³⁾	140 ⁽³⁾		
		peripherals	168	85	99	112	125		
		enabled ⁽²⁾	144	65	76	87	98		
	Supply		60	30	35	46	57		
			25	15	18	29	39		
DD	Sleep mode		216	35	46 ⁽³⁾	71 ⁽³⁾	-	ША	
		All peripherals disabled	200	32	43	66	86		
			180	28	38 ⁽³⁾	53 ⁽³⁾	70 ⁽³⁾		
			168	25	33	47	61		
			144	20	26	37	50		
			60	10	14	26	36		
					25	5	8	20	31

Table 29.	Typical	and maximum	current consum	ption in Slee	o mode. I	regulator O	N
			•••••••••••••••		••	ogalatoi o	

1. Guaranteed by characterization results.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. Guaranteed by test in production.

				T.				Ма	x ⁽¹⁾								
Symbol Paramet	Parameter	Conditions	f _{HCLK} (MHz)	ı y	ρ	TA= 2	25 °C	TA= 8	35 °C	TA= 1	05 °C	Unit					
				IDD12	IDD	IDD12	IDD	IDD12	IDD	IDD12	IDD						
			180	94	1	110	2	125	2	138	2						
Supply	All	168	83	1	96	2	111	2	123	2	1						
		Peripherals Enabled ⁽²⁾	144	64	1	74	2	85	2	96	2]					
	Supply		Enabled	60	29	1	34	2	44	2	55	2					
IDD12/	RUN mode		25	14	1	16	2	27	2	37	2	m۵					
IDD	from V12		180	27	1	36	2	51	2	68	2						
	supply	All	168	24	1	31	2	45	2	59	2	_					
		Peripherals	144	18	1	24	2	35	2	48	2						
		Disabled	60	9	1	12	2	24	2	34	2						
									25	4	1	6	2	18	2	29	2

Table 30. Typical and maximum current consumption in Sleep mode, regulator OFF

1. Guaranteed by characterization results.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Jitter ⁽³⁾	Master SAI clock jitter	Cycle to cycle at	RMS	-	90	-	
		12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency o 12.288 MHz N = 432, R = 5 on 1000 samples	-	90	-	ps	
	FS clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps
I _{DD(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V _{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	_	0.40 0.85	mA

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

5.3.12 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 52: EMI characteristics*). It is available only on the main PLL.

Table 46. SSCG parameters constra	int

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	-	-	-	2 ¹⁵ – 1	-

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

 $MODEPER = round[f_{PLL IN} / (4 \times f_{Mod})]$

 $f_{\mbox{PLL_IN}}$ and $f_{\mbox{Mod}}$ must be expressed in Hz.

As an example:

If f_{PLL_IN} = 1 MHz, and f_{MOD} = 1 kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round[10^{6} / (4 × 10³)] = 250

DocID027590 Rev 4

Figure 61. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 94. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK} -0.5	4T _{HCLK} +1.5	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} -1	T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time	2T _{HCLK} -0.5	2T _{HCLK} +0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0 0.5		
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} -0.5	T _{HCLK} + 1.5	ns
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high)		-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK}	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} -2	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0	
t _{v(Data_NAD} v)	FMC_NADV high to Data valid	-	T _{HCLK} +2	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	

Symbol		millimeters		inches ⁽¹⁾					
Symbol	Min	Тур	Мах	Min	Тур	Мах			
b	0.170	0.220	0.270	0.0067	0.0087	0.0106			
с	0.090	-	0.200	0.0035	-	0.0079			
D	29.800	30.000	30.200	1.1732	1.1811	1.1890			
D1	27.800	28.000	28.200	1.0945	1.1024	1.1102			
D3	-	25.500	-	-	1.0039	-			
E	29.800	30.000	30.200	1.1732	1.1811	1.1890			
E1	27.800	28.000	28.200	1.0945	1.1024	1.1102			
E3	-	25.500	-	-	1.0039	-			
e	-	0.500	-	-	0.0197	-			
L	0.450	0.600	0.750	0.0177	0.0236	0.0295			
L1	-	1.000	-	-	0.0394	-			
k	0°	3.5°	7.0°	0°	3.5°	7.0°			
ССС	-	-	0.080	-	-	0.0031			

Table 119. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 95. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

6.7 UFBGA 176+25, 10 x 10 x 0.65 mm ultra thin-pitch ball grid array package information

1. Drawing is not to scale.

Table 120. UFBGA 176+25,	10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
	package mechanical data

Symbol		millimeters		inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.002	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
b	0.230	0.280	0.330	0.0091	0.0110	0.0130	
D	9.950	10.000	10.050	0.3917	0.3937	0.3957	
E	9.950	10.000	10.050	0.3917	0.3937	0.3957	
е	-	0.650	-	-	0.0256	-	
F	0.400	0.450	0.500	0.0157	0.0177	0.0197	
ddd	-	-	0.080	-	-	0.0031	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.080	-	-	0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7 Part numbering

Table 125. Ordering information scheme						
Example:	STM32	F	746 V	G	Т	6 xxx
Device family						
STM32 = ARM-based 32-bit microcontroller						
Product type						
F = general-purpose						
Device subfamily						
745= STM32F745xx, USB OTG FS/HS, camera interface Ethernet 746= STM32F746xx, USB OTG FS/HS, camera interface, Ethernet, L	_CD-TFT					
Pin count						
V = 100 pins						
Z = 143 and 144 pins						
I = 176 pins						
B = 208 pins						
N = 216 pins						
Flash memory size						
E = 512 Kbytes of Flash memory						
G = 1024 Kbytes of Flash memory						
Package						
T = LQFP						
K = UFBGA						
H = TFBGA						
Y = WLCSP						
Temperature range						
$6 =$ Industrial temperature range, -40 to $85 \degree$ C.						
7 = Industrial temperature range, -40 to 105 °C.						
Options						

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

