

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-UFBGA
Supplier Device Package	176-UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f746iek6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Periph	orals	STM32E745Vx	STM32E746Vx	STM32F7457x	STM32F7467x	STM32E745Ix	STM32E746ly	STM32F745Bx	STM32F746By	STM32F745Nx	STM32F746N		
renpi				01111021 / 402X	51W3217402X	01WJ2174JIX			01111321 740DX	51111521 745NX	01100217400		
	SPI / I ² S	4/3 (sin	nplex) ⁽²⁾				6/3 (si	implex) ⁽²⁾					
	l ² C						4						
	USART/ UART					4	1/4						
Communication	USB OTG FS					Y	′es						
interfaces	USB OTG HS												
	CAN						2						
	SAI		2										
	SPDIFRX		4 inputs										
	SDMMC		Yes										
Camera interfac	e		Yes										
LCD-TFT		No	Yes	No	Yes	No	Yes	No	Yes	No	Yes		
Chrom-ART Acc (DMA2D)	celerator™					Ŷ	′es						
GPIOs		8	2	1	14	14	40		1	68			
12-bit ADC							3						
Number of chan	inels	1	6					24					
12-bit DAC Number of chan	nels			I			′es 2						
Maximum CPU	frequency					216	MHz ⁽³⁾						
Operating voltage	je					1.7 to	3.6 V ⁽⁴⁾						
					Ambient t	emperatures: -4	0 to +85 °C /–40	to +105 °C					
Operating temp	eratures				Ju	unction temperation	ure: -40 to + 125	5 °C					
Package		LQF TFB0	P100 GA100	WLC: LQF	SP143 P144	UFBC		LQF	P208	TFBG	A216		

1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.

2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

3. 216 MHz maximum frequency for -40°C to + 85°C ambient temperature range (200 MHz maximum frequency for -40°C to + 105°C ambient temperature range).

4. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.17.2: Internal reset OFF).

STM32F745xx STM32F746xx

effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

2.9 Quad-SPI memory interface (QUADSPI)

All devices embed a Quad-SPI memory interface, which is a specialized communication interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:

- Direct mode through registers.
- External flash status register polling mode.
- Memory mapped mode.

Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported.

The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.

2.10 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 displays layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 Input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events.

2.11 Chrom-ART Accelerator[™] (DMA2D)

The Chrom-Art Accelerator [™] (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion.

Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

STM32F745xx STM32F746xx

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complem entary output	Max interfac e clock (MHz)	Max timer clock (MHz) ⁽¹⁾
Advance d-control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	108	216
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	54	108/216
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	54	108/216
General	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	108	216
purpose	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	108	216
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	54	108/216
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	54	108/216
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	54	108/216

Table 6.	Timer	feature	comparison
		ioutai o	oompanoon

1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2.23 Inter-integrated circuit interface (I²C)

The device embeds 4 I2C. Refer to *Table 7: I2C implementation* for the features implementation.

The I²C bus interface handles communication between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and master modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
 - Hardware PEC (Packet Error Checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming.
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 7. I2C implementation

I2C features ⁽¹⁾	I2C1	12C2	12C3	I2C4
Standard-mode (up to 100 kbit/s)	Х	Х	Х	Х
Fast-mode (up to 400 kbit/s)	Х	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х	Х
Independent clock	Х	Х	Х	Х

1. X: supported

SAI1 and SAI2 can be served by the DMA controller

2.27 SPDIFRX Receiver Interface (SPDIFRX)

The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main features of the SPDIFRX are the following:

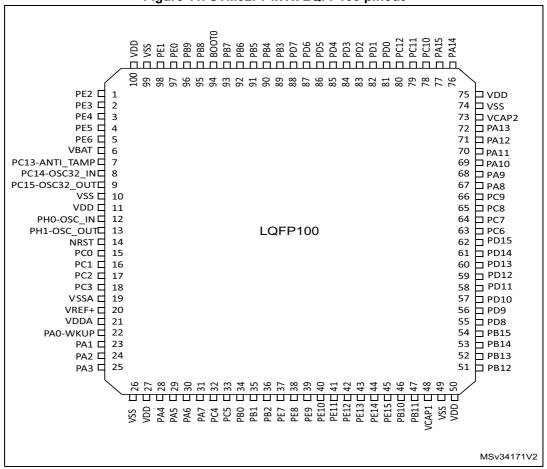
- Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.

The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

2.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.


The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

3 Pinouts and pin description

Figure 11. STM32F74xVx LQFP100 pinout

2. The above figure shows the package top view.

				umber								ball definition (continue	
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
31	КЗ	L8	43	R3	53	56	R3	PA7	I/O	FT	(4)	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, TIM14_CH1, ETH_MII_RX_DV/ETH_R MII_CRS_DV, FMC_SDNWE, EVENTOUT	ADC12_IN7
32	G4	M8	44	N5	54	57	N5	PC4	I/O	FT	(4)	I2S1_MCK, SPDIFRX_IN2, ETH_MII_RXD0/ETH_RM II_RXD0, FMC_SDNE0, EVENTOUT	ADC12_IN14
33	H4	N9	45	P5	55	58	P5	PC5	I/O	FT	(4)	SPDIFRX_IN3, ETH_MII_RXD1/ETH_RM II_RXD1, FMC_SDCKE0, EVENTOUT	ADC12_IN15
-	-	J7	-	-	-	59	L7	VDD	S	-	-	-	-
-	-	-	-	-	-	60	L6	VSS	S	-	-	-	-
34	J4	N8	46	R5	56	61	R5	PB0	I/O	FT	(4)	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, UART4_CTS, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, EVENTOUT	ADC12_IN8
35	K4	K7	47	R4	57	62	R4	PB1	I/O	FT	(4)	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, EVENTOUT	ADC12_IN9
36	G5	L7	48	M6	58	63	M5	PB2	I/O	FT	-	SAI1_SD_A, SPI3_MOSI/I2S3_SD, QUADSPI_CLK, EVENTOUT	-
-	-	-	-	-	-	64	G4	PI15	I/O	FT	-	- LCD_R0, EVENTOUT -	
-	-	-	-	-	-	65	R6	PJ0	I/O	FT	-	LCD_R1, EVENTOUT	-
-	-	-	-	-	-	66	R7	PJ1	I/O	FT	-	LCD_R2, EVENTOUT	-

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

				umbei	r							,	
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	67	P7	PJ2	I/O	FT	-	LCD_R3, EVENTOUT	-
-	-	-	-	-	-	68	N8	PJ3	I/O	FT	-	LCD_R4, EVENTOUT	-
-	-	-	-	-	-	69	M9	PJ4	I/O	FT	-	LCD_R5, EVENTOUT	-
-	-	M7	49	R6	59	70	P8	PF11	I/O	FT	-	SPI5_MOSI, SAI2_SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT	-
-	-	N7	50	P6	60	71	M6	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	-	-	51	M8	61	72	K7	VSS	S	-	-	-	-
-	-	-	52	N8	62	73	L8	VDD	S	-	-	-	-
-	-	K6	53	N6	63	74	N6	PF13	I/O	FT	-	I2C4_SMBA, FMC_A7, EVENTOUT	-
-	-	L6	54	R7	64	75	P6	PF14	I/O	FT	-	I2C4_SCL, FMC_A8, EVENTOUT	-
-	-	M6	55	P7	65	76	M8	PF15	I/O	FT	-	I2C4_SDA, FMC_A9, EVENTOUT	-
-	-	N6	56	N7	66	77	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	-	K5	57	M7	67	78	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-
37	H5	L5	58	R8	68	79	R8	PE7	I/O	FT	-	TIM1_ETR, UART7_Rx, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	-
38	J5	M5	59	P8	69	80	N9	PE8	I/O	FT	-	TIM1_CH1N, UART7_Tx, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	-
39	K5	N5	60	P9	70	81	P9	PE9	I/O	FT	-	TIM1_CH1, UART7_RTS, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	-
-	-	H3	61	M9	71	82	K8	VSS	S	-	I	-	-
-	-	J5	62	N9	72	83	L9	VDD	S	-	-	-	-
40	G6	J4	63	R9	73	84	R9	PE10	I/O	FT	-	TIM1_CH2N, UART7_CTS, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT	-

Table 10. STM32F745xx and STM32F746xx pin and ball definition (c	continued)

5

DocID027590 Rev 4

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PH8	-	-	-	-	I2C3_SD A	-	-	-	-	-	-	-	FMC_D1 6	DCMI_H SYNC	LCD_R2	EVEN TOUT
	PH9	-	-	-	-	I2C3_SM BA	-	-	-	-	TIM12_C H2	-	-	FMC_D1 7	DCMI_D 0	LCD_R3	EVEN TOUT
	PH10	-	-	TIM5_C H1	-	I2C4_SM BA	-	-	-	-	-	-	-	FMC_D1 8	DCMI_D 1	LCD_R4	EVEN TOUT
Port H	PH11	-	-	TIM5_C H2	-	I2C4_SC L	-	-	-	-	-	-	-	FMC_D1 9	DCMI_D 2	LCD_R5	EVEN TOUT
POILE	PH12	-	-	TIM5_C H3	-	I2C4_SD A	-	-	-	-	-	-	-	FMC_D2 0	DCMI_D 3	LCD_R6	EVEN TOUT
	PH13	-	-	-	TIM8_CH 1N	-	-	-	-	-	CAN1_T X	-	-	FMC_D2 1	-	LCD_G2	EVEN TOUT
	PH14	-	-	-	TIM8_CH 2N	-	-	-	-	-	-	-	-	FMC_D2 2	DCMI_D 4	LCD_G3	EVEN TOUT
	PH15	-	-	-	TIM8_CH 3N	-	-	-	-	-	-	-	-	FMC_D2 3	DCMI_D 11	LCD_G4	EVEN TOUT
	PI0	-	-	TIM5_C H4	-	-	SPI2_NS S/I2S2_ WS	-	-	-	-	-	-	FMC_D2 4	DCMI_D 13	LCD_G5	EVEN TOUT
	PI1	-	-	-	TIM8_BKI N2	-	SPI2_SC K/I2S2_ CK	-	-	-	-	-	-	FMC_D2 5	DCMI_D 8	LCD_G6	EVEN TOUT
	PI2	-	-	-	TIM8_CH 4	-	SPI2_MI SO	-	-	-	-	-	-	FMC_D2 6	DCMI_D 9	LCD_G7	EVEN TOUT
Port I	PI3	-	-	-	TIM8_ET R	-	SPI2_M OSI/I2S2 _SD	-	-	-	-	-	-	FMC_D2 7	DCMI_D 10	-	EVEN TOUT
	PI4	-	-	-	TIM8_BKI N	-	-	-	-	-	-	SAI2_MC K_A	-	FMC_NB L2	DCMI_D 5	LCD_B4	EVEN TOUT
	PI5	-	-	-	TIM8_CH 1	-	-	-	-	-	-	SAI2_SC K_A	-	FMC_NB L3	DCMI_V SYNC	LCD_B5	EVEN TOUT
	PI6	-	-	-	TIM8_CH 2	-	-	-	-	-	-	SAI2_SD_ A	-	FMC_D2 8	DCMI_D 6	LCD_B6	EVEN TOUT

 Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

 AF0
 AF1
 AF2
 AF3
 AF4
 AF6
 AF7
 AF8
 AF9
 AF10
 AF11
 AF12
 AF13
 AF14
 AF15

85/227

STM32F745xx STM32F746xx

Pinouts and pin description

4 Memory mapping

The memory map is shown in *Figure 19*.

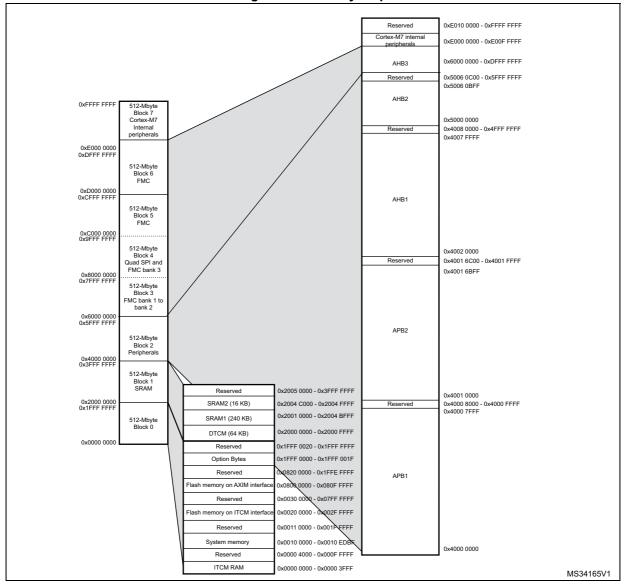


Figure 19. Memory map

Bus	Boundary address	Peripheral
	0x4001 6C00- 0x4001 FFFF	Reserved
	0x4001 6800 - 0x4001 6BFF	LCD-TFT
	0x4001 6000 - 0x4001 67FF	Reserved
	0x4001 5C00 - 0x4001 5FFF	SAI2
	0x4001 5800 - 0x4001 5BFF	SAI1
	0x4001 5400 - 0x4001 57FF	SPI6
	0x4001 5000 - 0x4001 53FF	SPI5
	0x4001 4C00 - 0x4001 4FFF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	ТІМ9
	0x4001 3C00 - 0x4001 3FFF	EXTI
APB2	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	SPI4
	0x4001 3000 - 0x4001 33FF	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	SDMMC
	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0800 - 0x4001 0FFF	Reserved
	0x4001 0400 - 0x4001 07FF	TIM8
	0x4001 0000 - 0x4001 03FF	TIM1

Table 13. STM32F745xx and STM32F746xx register boundary addresses (continued)

- 1. Guaranteed by design.
- 2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

5.3.6 Over-drive switching characteristics

When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The over-drive switching characteristics are given in *Table 23*. They are sbject to general operating conditions for T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		HSI	-	45	-	
Tod_swen	Over_drive switch enable time	HSE max for 4 MHz and min for 26 MHz	45	-	100	
		External HSE 50 MHz	-	40	-	110
		HSI	-	20	-	μs
Tod_swdis	Over_drive switch disable time	HSE max for 4 MHz and min for 26 MHz.	20	-	80	
		External HSE 50 MHz	-	15	-	

 Table 23. Over-drive switching characteristics⁽¹⁾

1. Guaranteed by design.

5.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 23: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Querra have	Demonstern	O an ditian a	£ (MIL_)	T		Max ⁽¹⁾		11				
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	TA= 25 °C	TA=85 °C	TA=105 °C	Unit				
			216	181	210	233	-					
			200	168	194	216	234					
			180	153	176	192	206					
		All peripherals enabled ⁽²⁾⁽³⁾	168	136	157	172	184					
			0.100.000	144	109	125	137	148				
			60	53	61	73	84					
	Supply		25	26	30	41	52	m۸				
I _{DD}	current in RUN mode		216	105	121	145	-	mA				
					200	98	112	134	153			
			180	90	103	119	132					
		All peripherals	All peripherals disabled ⁽³⁾	All peripherals disabled ⁽³⁾	All peripherals disabled ⁽³⁾	All peripherals disabled ⁽³⁾	168	81	93	107	120	
		0.000100	144	67	76	88	89					
		-	60	34	40	51	62					
			25	17	20	31	42					

Table 26. Typical and maximum current consumption in Run mode, code with data processingrunning from Flash memory or SRAM on AXI (L1-cache disabled), regulator ON

1. Guaranteed by characterization results.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

D	ا _{DD} (Typ) ⁽¹⁾				Unit	
renpilerai		Scale 1 Scale 2 Scale 3			Unit	
	TIM1	25.2	23.9	20.4		
Γ	TIM8	25.3	24	20.4		
Γ	USART1	10.3	9.8	8.2		
Γ	USART6	10.1	9.7	8.1		
Γ	ADC1 ⁽⁵⁾	4.5	4.4	3.5		
Ī	ADC2 ⁽⁵⁾	4.5	4.4	3.5		
Ī	ADC3 ⁽⁵⁾	4.5	4.4	3.3		
Ī	SDMMC1	8.5	7.9	6.7		
APB2	SPI1/I2S1 ⁽³⁾	3.1	3	2.5		
(up to	SPI4	3.1	3	2.5	µA/MHz	
108 MHz)	SYSCFG	1.5	1.4	1		
Γ	TIM9	8.8	8.4	6.9		
Γ	TIM10	5.6	5.2	4.3		
Ī	TIM11	5.4	5.2	4.3		
Ī	SPI5	3	2.8	2.2		
Ī	SPI6	3	2.8	2.2		
-	SAI1	3.4	3.3	2.6		
	SAI2	3.3	3.2	2.5		
	LTDC	56.7	53.8	45.7		

Table 35. Peripheral current consumption (continued)

1. When the I/O compensation cell $\,$ is ON, I_{DD} typical value increases by 0.22 mA.

2. The BusMatrix is automatically active when at least one master is ON.

3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.

4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of 0.75 mA per DAC channel for the analog part.

5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

5.3.22 Temperature sensor characteristics

Table 68. Temperature sensor character	teristics
--	-----------

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5	-	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} ⁽²⁾	Startup time	-	6	10	μs
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

1. Guaranteed by characterization results.

2. Guaranteed by design.

Table 69. Temperature sensor calibration values					
Symbol	Parameter	Memory address			
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3.3 V	0x1FF0 F44C - 0x1FF0 F44D			
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V_{DDA} = 3.3 V	0x1FF0 F44E - 0x1FF0 F44F			

5.3.23 V_{BAT} monitoring characteristics

Table 70. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	4	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽²⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1 mV accuracy	5	-	-	μs

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

5.3.24 Reference voltage

The parameters given in *Table 71* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.18	1.21	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	10	-	-	μs
V _{RERINT_s} ⁽²⁾	Internal reference voltage spread over the temperature range	V_{DD} = 3V \pm 10mV	-	3	5	mV

DocID027590 Rev 4

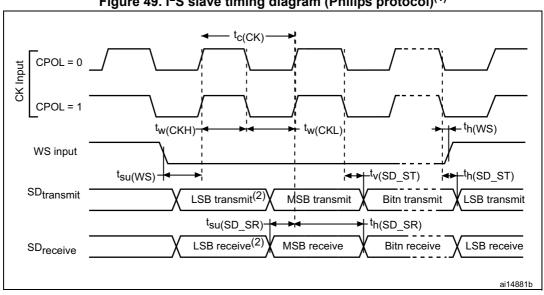
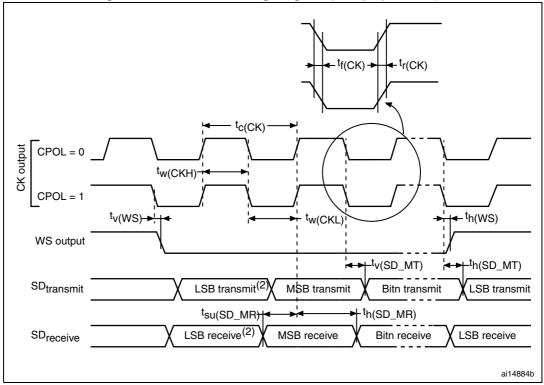



Figure 49. I²S slave timing diagram (Philips protocol)⁽¹⁾

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 50. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	1.5	
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	1	-	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} +0.5	-]
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	

Table 97. Synchronous multiplexed PSRAM write timings⁽¹⁾

1. Guaranteed by characterization results.

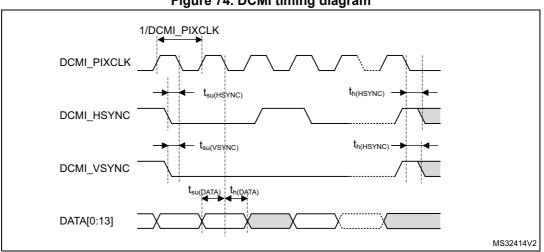


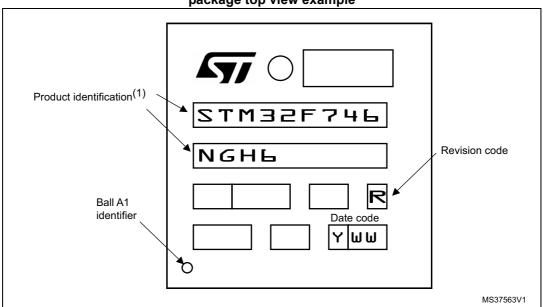
Figure 74. DCMI timing diagram

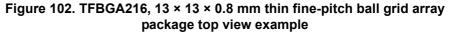
5.3.30 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in *Table 109* for LCD-TFT are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in *Table 17*, with the following configuration:

- LCD_CLK polarity: high •
- LCD DE polarity : low •
- LCD_VSYNC and LCD_HSYNC polarity: high
- Pixel formats: 24 bits

Table 109. LTDC characteristics ⁽¹⁾


Symbol	Parameter	Min	Мах	Unit		
f _{CLK}	LTDC clock output frequency	-	45	MHz		
D _{CLK}	LTDC clock output duty cycle	45	55	%		
t _{w(CLKH)} t _{w(CLKL)}	Clock High time, low time	tw(CLK)/2 - 0.5	tw(CLK)/2+0.5			
t _{v(DATA)}	Data output valid time	-	6			
t _{h(DATA)}	Data output hold time	2	-			
t _{v(HSYNC)}						
t _{v(VSYNC)}	HSYNC/VSYNC/DE output valid time	-	3	ns		
t _{v(DE)}						
t _{h(HSYNC)}						
t _{h(VSYNC)}	HSYNC/VSYNC/DE output hold time	0.5	-			
th(DE)						


1. Guaranteed by characterization results.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID027590 Rev 4