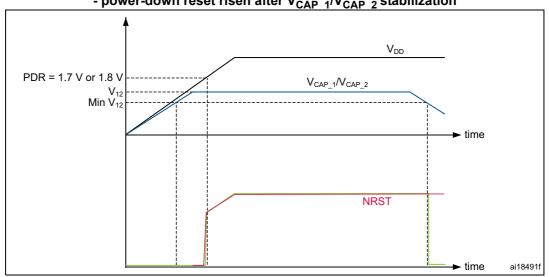


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f746igk6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 9. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP} $_1/V_{CAP}$ $_2$ stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

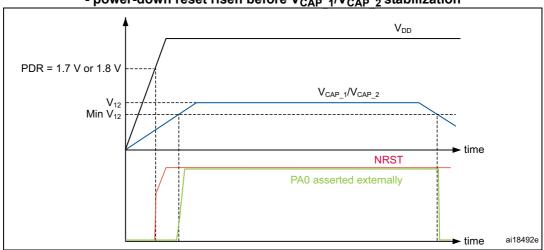


Figure 10. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before V_{CAP_1}/V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

2.18.3 Regulator ON/OFF and internal reset ON/OFF availability

Table	4. Regulator ON/	OFF and internal	reset ON/OFF ava	anability
Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF
LQFP100	Yes	No	Yes	No
LQFP144, LQFP208	The second secon	No		
TFBGA100, LQFP176, WLCSP143, UFBGA176, TFBGA216	Yes BYPASS_REG set to V _{SS}	Yes BYPASS_REG set to V _{DD}	Yes PDR_ON set to V _{DD}	Yes PDR_ON set to VSS

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

2.19 Real-time clock (RTC), backup SRAM and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V_{BAT} mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the V_{BAT} pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator(LSE)
- The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

				umber								ball definition (continue	
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
_	-	H11	20	L3	26	29	L3	PF8	I/O	FT	-	SPI5_MISO, SAI1_SCK_B, UART7_RTS, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	ADC3_IN6
-	-	G8	21	L2	27	30	L2	PF9	I/O	FT	-	SPI5_MOSI, SAI1_FS_B, UART7_CTS, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT	ADC3_IN7
-	-	G9	22	L1	28	31	L1	PF10	I/O	FT	-	DCMI_D11, LCD_DE, EVENTOUT	ADC3_IN8
12	C1	J11	23	G1	29	32	G1	PH0- OSC_IN(PH0)	I/O	FT	-	EVENTOUT	OSC_IN ⁽⁴⁾
13	D1	H10	24	H1	30	33	H1	PH1- OSC_OU T(PH1)	I/O	FT	-	EVENTOUT	OSC_OUT ⁽⁴⁾
14	E1	H9	25	J1	31	34	J1	NRST	I/O	RS T	-	-	-
15	F1	H8	26	M2	32	35	M2	PC0	I/O	FT	(4)	SAI2_FS_B, OTG_HS_ULPI_STP, FMC_SDNWE, LCD_R5, EVENTOUT	ADC123_IN1 0
16	F2	K11	27	М3	33	36	М3	PC1	I/O	FT	(4)	TRACED0, SPI2_MOSI/I2S2_SD, SAI1_SD_A, ETH_MDC, EVENTOUT	ADC123_IN1 1, RTC_TAMP3, WKUP3
17	E2	J10	28	M4	34	37	M4	PC2	I/O	FT	(4)	SPI2_MISO, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT	ADC123_IN1 2

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

Pin Number									P C		ball definition (continue	,	
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	67	P7	PJ2	I/O	FT	-	LCD_R3, EVENTOUT	-
-	-	-	-	-	-	68	N8	PJ3	I/O	FT	-	LCD_R4, EVENTOUT	-
-	-	-	-	-	-	69	M9	PJ4	I/O	FT	-	LCD_R5, EVENTOUT	-
-	-	M7	49	R6	59	70	P8	PF11	I/O	FT	-	SPI5_MOSI, SAI2_SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT	-
-	-	N7	50	P6	60	71	M6	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	-	-	51	M8	61	72	K7	VSS	S	-	-	-	-
-	-	-	52	N8	62	73	L8	VDD	S	-	-	-	-
-	-	K6	53	N6	63	74	N6	PF13	I/O	FT	-	I2C4_SMBA, FMC_A7, EVENTOUT	-
-	-	L6	54	R7	64	75	P6	PF14	I/O	FT	-	I2C4_SCL, FMC_A8, EVENTOUT	-
-	-	M6	55	P7	65	76	M8	PF15	I/O	FT	-	I2C4_SDA, FMC_A9, EVENTOUT	-
-	-	N6	56	N7	66	77	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	-	K5	57	M7	67	78	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-
37	H5	L5	58	R8	68	79	R8	PE7	I/O	FT	-	TIM1_ETR, UART7_Rx, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	-
38	J5	M5	59	P8	69	80	N9	PE8	I/O	FT	-	TIM1_CH1N, UART7_Tx, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	-
39	K5	N5	60	P9	70	81	P9	PE9	I/O	FT	-	TIM1_CH1, UART7_RTS, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	-
-	-	H3	61	M9	71	82	K8	VSS	S	-	I	-	-
-	-	J5	62	N9	72	83	L9	VDD	S	-	-	-	-
40	G6	J4	63	R9	73	84	R9	PE10	I/O	FT	-	TIM1_CH2N, UART7_CTS, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT	-

Table 10. STM32F745xx and STM32F746xx pin and ball definition (c	continued)

										pin c		ball definition (continue	eu)
			Pin Nı	umbei	·								
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	_	E5	124	C10	152	178	D9	PG9 I/O FT - SPDIFRX_IN3, USART6_RX, QUADSPI_BK2_IO2, SAI2_FS_B, FMC_NE2/FMC_NCE, DCMI_VSYNC, EVENTOUT		-			
-	-	C6	125	B10	153	179	C8	PG10	I/O	FT	-	LCD_G3, SAI2_SD_B, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT	-
-		B6	126	В9	154	180	B8	PG11	I/O	FT	-	SPDIFRX_IN0, ETH_MII_TX_EN/ETH_R MII_TX_EN, DCMI_D3, LCD_B3, EVENTOUT	-
-	-	A6	127	B8	155	181	C7	PG12	I/O	FT	-	LPTIM1_IN1, SPI6_MISO, SPDIFRX_IN1, USART6_RTS, LCD_B4, FMC_NE4, LCD_B1, EVENTOUT	-
-	_	D6	128	A8	156	182	В3	PG13	I/O	FT	-	TRACED0, LPTIM1_OUT, SPI6_SCK, USART6_CTS, ETH_MII_TXD0/ETH_RM II_TXD0, FMC_A24, LCD_R0, EVENTOUT	-
-	-	F6	129	A7	157	183	A4	PG14	I/O	FT	-	TRACED1, LPTIM1_ETR, SPI6_MOSI, USART6_TX, QUADSPI_BK2_IO3, ETH_MII_TXD1/ETH_RM II_TXD1, FMC_A25, LCD_B0, EVENTOUT	-
-	-	-	130	D7	158	184	F7	VSS	S	-	-	-	-
-	-	E6	131	C7	159	185	E8	VDD	S	-	-	-	-

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

8 <u>3</u>	
Ñ	
22	

DocID027590 Rev 4

577

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PF13	-	-	-	-	I2C4_SM BA	-	-	-	-	-	-	-	FMC_A7	-	-	EVEN TOUT
Port F	PF14	-	-	-	-	I2C4_SC L	-	-	-	-	-	-	-	FMC_A8	-	-	EVEN TOUT
	PF15	-	-	-	-	I2C4_SD A	-	-	-	-	-	-	-	FMC_A9	-	-	EVEN TOUT
	PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 0	-	-	EVEN TOUT
	PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 1	-	-	EVEN TOUT
	PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 2	-	-	EVEN TOUT
	PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 3	-	-	EVEN TOUT
	PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 4/FMC_ BA0	-	-	EVEN TOUT
Port G	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 5/FMC_ BA1	-	-	EVEN TOUT
	PG6	-	-	-	-	-	-	-	-	-	-	-	-	-	DCMI_D 12	LCD_R7	EVEN TOUT
	PG7	-	-	-	-	-	-	-	-	USART6 _CK	-	-	-	FMC_IN T	DCMI_D 13	LCD_CL K	EVEN TOUT
	PG8	-	-	-	-	-	SPI6_NS S	-	SPDIFRX _IN2	USART6 _RTS	-	-	ETH_PPS _OUT	FMC_SD CLK	-	-	EVEN TOUT
	PG9	-	-	-	-	-	-	-	SPDIFRX _IN3	USART6 _RX	QUADSP I_BK2_IO 2	SAI2_FS_ B	-	FMC_NE 2/FMC_ NCE	DCMI_V SYNC	-	EVEN TOUT
	PG10	-	-	-	-	-	-	-	-	-	LCD_G3	SAI2_SD_ B	-	FMC_NE 3	DCMI_D 2	LCD_B2	EVEN TOUT

Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
M	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
V _{PVD}	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92	V
		PLS[2:0]=110 (rising edge)	2.96	2.04 2.08 V 2.30 2.37 V 2.19 2.25 V 2.45 2.51 V 2.35 2.39 V 2.60 2.65 V 2.51 2.56 V 2.60 2.65 V 2.51 2.56 V 2.51 2.56 V 2.66 2.71 V 2.93 2.99 V		
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
V _{POR/PDR} F		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
V	_ Power-on/power-down	ower-on/power-down Falling edge 1.0				V
V POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
	Brownout level 1	Falling edge	2.13	2.19	2.24	V
V _{BOR1}	threshold	Rising edge	2.23	2.29	2.33	V
V	Brownout level 2	Falling edge	2.44	2.50	2.56	V
V _{BOR2}	threshold	Rising edge	2.53	2.59	2.63	V
V	Brownout level 3	Falling edge	2.75	2.83	2.88	V
V _{BOR3}	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV
T _{RSTTEMPO}	POR reset temporization	-	0.5	1.5	3.0	ms
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power- on (POR or wakeup from Standby)	-	-	160	250	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power- on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

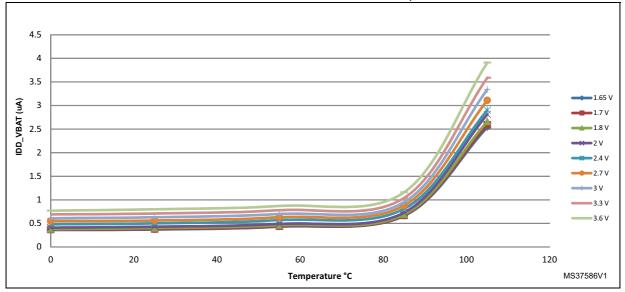

Table 22. reset and power control block characteristics

Figure 25. Typical V_{BAT} current consumption (RTC ON/BKP SRAM OFF and LSE in low drive mode)

Figure 26. Typical V_{BAT} current consumption (RTC ON/BKP SRAM OFF and LSE in medium low drive mode)

5.3.15 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001-2012 and ANSI/ESD S5.3.1-2009 standards.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS-001-2012	2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T_A = +25 °C conforming to ANSI/ESD S5.3.1-2009, LQFP100, LQFP144, LQFP176, LQFP208, WLCSP143, UFBGA176, TFBGA100 and TFBGA216 packages	C3	250	V

Table 53. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Table 54. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

5.3.16 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error		±4	±7	
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V,	±2	±3	
EG	Gain error	V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V	±3	±6	LSB
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3	
EL	Integral linearity error		±3	±6	

Table 65. ADC static accuracy at f_{ADC} = 36 MHz

1. Guaranteed by characterization results.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 67	- 72	-	

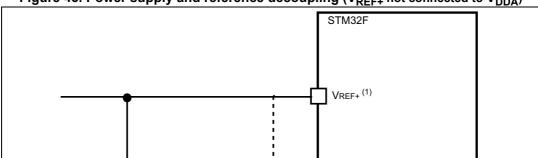
1. Guaranteed by characterization results.

Table 67. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz	64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 70	- 72	-	

1. Guaranteed by characterization results.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.


Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.17 does not affect the ADC accuracy.

General PCB design guidelines

1 µF // 10 nF

Power supply decoupling should be performed as shown in *Figure 43* or *Figure 44*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Vdda

VSSA/VREF+⁽¹⁾

Figure 43. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. V_{REF+} input is available on all the packages except TFBGA100 whereas the V_{REF-} is available only on UFBGA176 and TFBGA216. When V_{REF-} is not available, it is internally connected to V_{DDA} and V_{SSA} .

1 µF // 10 nF

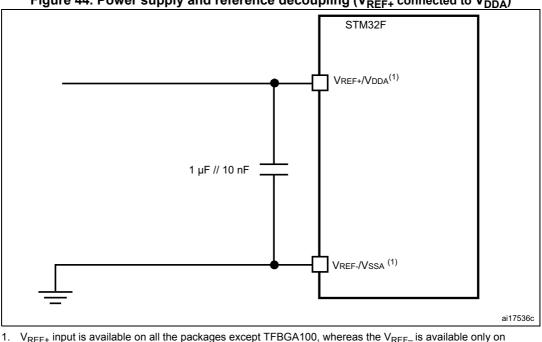


Figure 44. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

 V_{REF+} input is available on all the packages except TFBGA100, whereas the V_{REF} is available only on UFBGA176 and TFBGA216. When V_{REF-} is not available, it is internally connected to V_{DDA} and V_{SSA}.

ai17535b

Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	MHz
f	I2S clock frequency	Master data: 32 bits	-	64xFs	MHz
f _{СК}	123 Clock frequency	Slave data: 32 bits	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	-	5	ns
t _{h(WS)}	WS hold time	Master mode	0	-	115
		Slave mode	5	-	
t _{su(WS)}	WS setup time	Slave mode PCM short pulse mode ⁽³⁾	3	-	
		Slave mode	0	-	
t _{h(WS)}	WS hold time	Slave mode PCM short pulse mode ⁽³⁾	2	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	5	-	
t _{su(SD_SR)}		Slave receiver	1	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	5	-	
t _{h(SD_SR)}	Data input noid time	Slave receiver	1.5	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	16	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	3.5	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	5	-	
t _{h(SD_MT)}		Master transmitter (after enable edge)	0	-	

Table 77. 12	S dv	vnamic	characteristics ⁽¹⁾
	Ju	ynanne	characteristics.

1. Guaranteed by characterization results.

2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).

3. Measurement done with respect to I2S_CK rising edge.

Note: Refer to RM0385 reference manual I2S section for more details on the sampling frequency (F_S) .

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

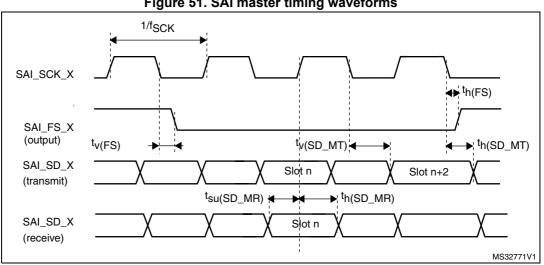
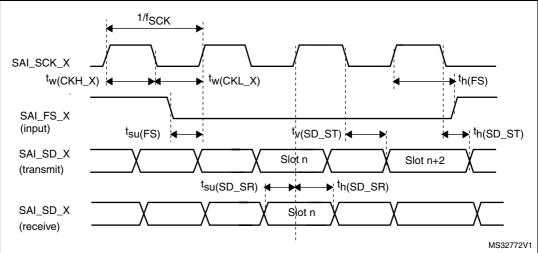



Figure 51. SAI master timing waveforms

USB OTG full speed (FS) characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB OTG full speed transceiver startup time	1	μs

Table 79. USB OTG full speed startup time

1. Guaranteed by design.

Syn	nbol	Parameter	Conditions	Min. (1)	Тур.	Max. (1)	Unit
	V _{DDUSB}	USB OTG full speed transceiver operating voltage	-	3.0 ⁽²⁾	-	3.6	V
Input levels	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-	
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V
	$V_{SE}^{(3)}$	Single ended receiver threshold	-	1.3	-	2.0	
Output	V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 ${\sf V}^{(4)}$	-	-	0.3	v
levels	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}^{(4)}$	2.8	-	3.6	v
R _{PD}		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	V _{IN} = V _{DD}	17	21	24	
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDD	0.65	1.1	2.0	kΩ
		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1	
R	PU	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	

Table 80. USB OTG full speed DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DDUSB} voltage range.

- 3. Guaranteed by design.
- 4. R_L is the load connected on the USB OTG full speed drivers.

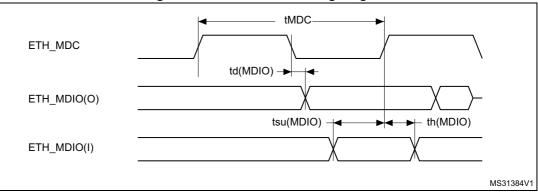
Note:

When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 μ A current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time	-	3	-	-	
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	-	1	-	-	
t _{SD}	Data in setup time	-	1.5	-	-	
t _{HD}	Data in hold time	-	0.5	-	-	
		2.7 V < V _{DD} < 3.6 V, C _L = 20 pF and OSPEEDRy[1:0] = 11	-	5.5	9	ns
t _{DC} /t _{DD}	Data/control output delay	-	-			
		$1.7 V < V_{DD} < 3.6 V,$ C _L = 15 pF and OSPEEDRy[1:0] = 11	-	5.5	5 9	

Table 84. Dynamic characteristics: USB ULPI⁽¹⁾

1. Guaranteed by characterization results.


Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 85*, *Table 86* and *Table 87* for SMI, RMII and MII are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 17* and V_{DD} supply voltage conditions summarized in *Table 85*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}.

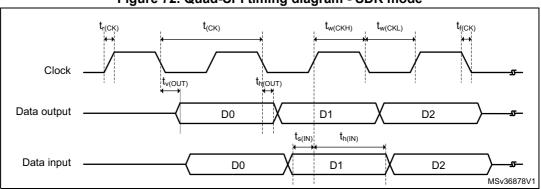

Refer to Section 5.3.17: I/O port characteristics for more details on the input/output characteristics.

Table 85 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 55* shows the corresponding timing diagram.

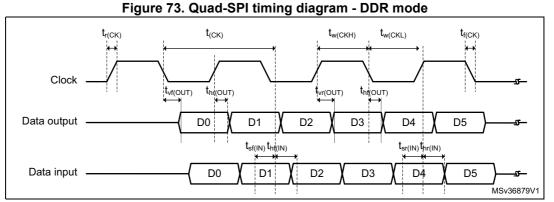


Figure 55. Ethernet SMI timing diagram

5.3.29 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 108* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits

Table 108. DCMI characteristics ⁽¹⁾
--

Symbol	Parameter	Min	Max	Unit
-	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	
DCMI_PIXCLK	Pixel clock input	-	54	MHz
D _{Pixel}	Pixel clock input duty cycle	30	70	%
t _{su(DATA)}	Data input setup time	3.5	-	
t _{h(DATA)}	Data input hold time	0	-	
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input setup time	2.5	-	ns
t _{h(HSYNC)} t _{h(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input hold time	0	-	

1. Guaranteed by characterization results.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

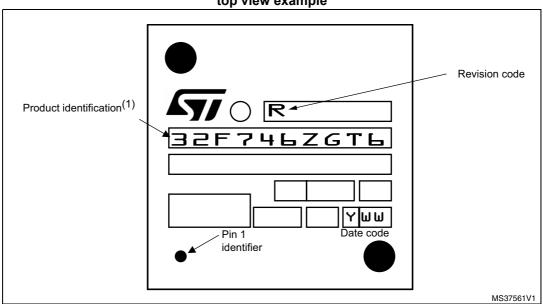


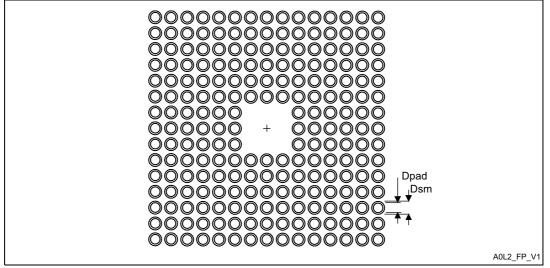
Figure 90. LQFP144, 20 x 20mm, 144-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Мах
E	23.900	-	24.100	0.9409	-	0.9488
е	-	0.500	-	-	0.0197	-
HD	25.900	-	26.100	1.0200	-	1.0276
HE	25.900	-	26.100	1.0200	-	1.0276
L	0.450	-	0.750	0.0177	-	0.0295
L1	-	1.000	-	-	0.0394	-
ZD	-	1.250	-	-	0.0492	-
ZE	-	1.250	-	-	0.0492	-
ссс	-	-	0.080	-	-	0.0031
k	0 °	-	7 °	0 °	-	7 °

Table 118. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.



puoliago moonanioar alla (continuoa)						
Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
G	-	0.900	-	-	0.0354	-
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

Table 122. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid arraypackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 101. TFBGA216, 13 x 13 x 0.8 mm thin fine-pitch ball grid array package recommended footprint

Table 123. TFBGA216 recommended PCB design rules (0.8 mm pitch BGA)

Dimension	Recommended values
Pitch	0.8
Dpad	0.400 mm
Dsm	0.470 mm typ. (depends on the soldermask reg- istration tolerance)
Stencil opening	0.400 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.120 mm

Revision history

Date	Revision	Changes		
26-May-2015	1	Initial release.		
20-Oct-2015	2	Updated <i>Table 53: ESD absolute maximum ratings</i> adding packages. Updated note of <i>Table 32: Typical and maximum current consumptions</i> <i>in Standby mode</i> . Updated <i>Figure 11: STM32F74xVx LQFP100 pinout</i> replacing PB13 and PB14 by PE13 and PE14. Updated <i>Table 51: EMS characteristics</i> replacing 168 MHz by 216 MHz. Updated <i>Section 2.9: Quad-SPI memory interface (QUADSPI)</i> removing 'STM32F75xx'. Updated <i>Section 2.22: General-purpose timers (TIMx)</i> and <i>Section 2.43: Embedded Trace Macrocell</i> TM modifying STM32F756xx by STM32F74xxx. Updated <i>Section 2.1: ARM</i> ® <i>Cortex</i> ®-M7 <i>with FPU</i> modifying STM32F756xx family by STM32F745xx and STM32F746xx devices. Removed Table 86. Ethernet DC electrical characteristics. Updated all the notes removing 'not tested in production'. Updated <i>Table 43: Main PLL characteristics</i> , <i>Table 44: PLLI2S</i> <i>characteristics</i> and <i>Table 45: PLLISAI characteristics</i> fVCO_OUT output at min value '100' and VCO freq at 100 MHz. Updated <i>Table 13: STM32F745xx and STM32F746xx register</i> <i>boundary addresses</i> replacing cortex-M4 by Cortex-M7. Updated <i>Table 87: Dynamics characteristics: Ethernet MAC signals for</i> <i>MII</i> td (TXEN) and td (TXD) min value at 6.5 ns.		

Table 127. Document	revision	history
---------------------	----------	---------

