

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	168
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	216-TFBGA
Supplier Device Package	216-TFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f746ngh6g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

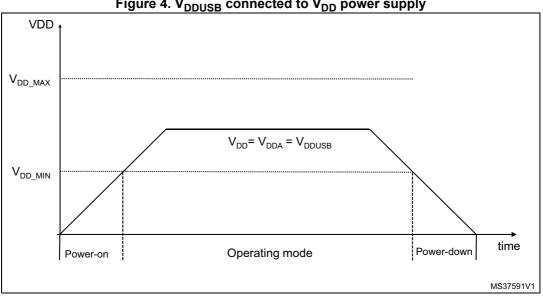
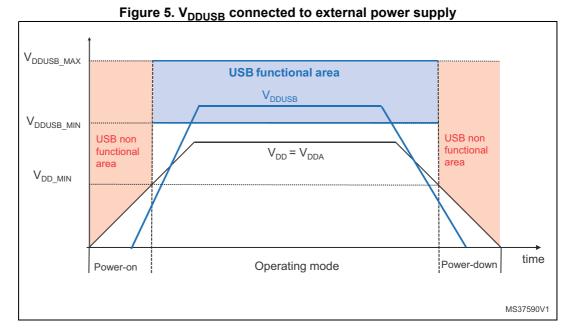



Figure 4. V_{DDUSB} connected to V_{DD} power supply

2.17 Power supply supervisor

2.17.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR ON high. On the other packages, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is

DocID027590 Rev 4

The RTC is functional in V_{BAT} mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in V_{BAT} mode, but is functional in all low-power modes.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

2.20 Low-power modes

The devices support three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in Stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup and LPTIM1 asynchronous interrupt).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in Stop mode

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11), or an RTC alarm / wakeup / tamper /time stamp event occurs.

The Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

2.21 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is connected to V_{SS} (Internal Reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to VDD.

2.22 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

2.22.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

2.22.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F74xxx devices (see *Table 6* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F74xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

2.24 Universal synchronous/asynchronous receiver transmitters (USART)

The device embeds USART. Refer to *Table 8: USART implementation* for the features implementation.

The universal synchronous asynchronous receiver transmitter (USART) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format.

The USART peripheral supports:

- Full-duplex asynchronous communications
- Configurable oversampling method by 16 or 8 to give flexibility between speed and clock tolerance
- Dual clock domain allowing convenient baud rate programming independent from the PCLK reprogramming
- A common programmable transmit and receive baud rate of up to 27 Mbit/s when USART clock source is system clock frequency (Max is 216 MHz) and oversampling by 8 is used.
- Auto baud rate detection
- Programmable data word length (7 or 8 or 9 bits) word length
- Programmable data order with MSB-first or LSB-first shifting
- Programmable parity (odd, even, no parity)
- Configurable stop bits (1 or 1.5 or 2 stop bits)
- Synchronous mode and clock output for synchronous communications
- Single-wire half-duplex communications
- Separate signal polarity control for transmission and reception
- Swappable Tx/Rx pin configuration
- Hardware flow control for modem and RS-485 transceiver
- Multiprocessor communications
- LIN master synchronous break send capability and LIN slave break detection capability
- IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode
- Smartcard mode (T=0 and T=1 asynchronous protocols for Smartcards as defined in the ISO/IEC 7816-3 standard)
- Support for Modbus communication

The table below summarizes the implementation of all U(S)ARTs instances

Table 8. USART implementation

features ⁽¹⁾	USART1/2/3/6	UART4/5/7/8
Data Length	7, 8 an	d 9 bits
Hardware flow control for modem	Х	X
Continuous communication using DMA	X	X
Multiprocessor communication	Х	Х
Synchronous mode	Х	-

2.29 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

2.30 SD/SDIO/MMC card host interface (SDMMC)

An SDMMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory card specification version 2.0.

The SDMMC card specification version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

The SDMMC can be served by the DMA controller

2.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Support of 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

Name	Abbreviation	Definition				
Pin name		specified in brackets below the pin name, the pin function during and after as the actual pin name				
	S	Supply pin				
Pin type	I	Input only pin				
	I/O	Input / output pin				
	FT	5 V tolerant I/O				
I/O structure	TTa	3.3 V tolerant I/O directly connected to ADC				
NO structure	В	Dedicated BOOT pin				
	RST	Bidirectional reset pin with weak pull-up resistor				
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset				
Alternate functions	Functions selected	d through GPIOx_AFR registers				
Additional functions	Eulertions directly selected/enabled through peripheral registers					

Table 9. Legend/abbreviations used in the pinout table

Table 10. STM32F745xx and STM32F746xx pin and ball definition

		F	Pin Nu	umbei	r								
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1	A3	D8	1	A2	1	1	A3	PE2	I/O	FT	-	TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, ETH_MII_TXD3, FMC_A23, EVENTOUT	-
2	В3	C10	2	A1	2	2	A2	PE3	I/O	FT	-	TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT	-
3	C3	B11	3	B1	3	3	A1	PE4	I/O	FT	-	TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT	-

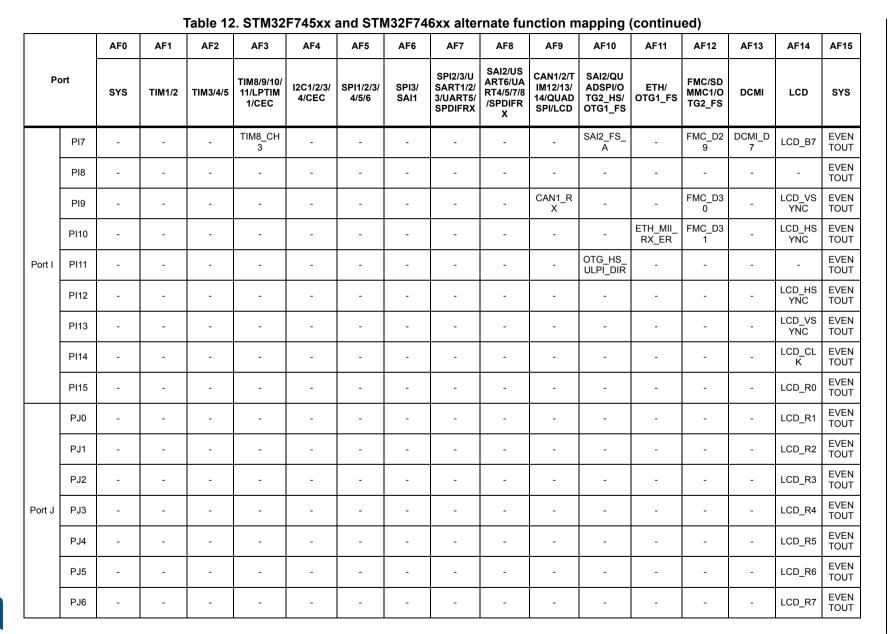
				umber									
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	G2	93	H14	112	135	H14	PG8	I/O	FT	-	SPI6_NSS, SPDIFRX_IN2, USART6_RTS, ETH_PPS_OUT, FMC_SDCLK, EVENTOUT	-
-	-	D2	94	G12	113	136	G10	VSS	S	-	-	-	-
-	F6	G1	95	H13	114	137	G11	VDDUSB	S	-	-	-	-
63	F10	F2	96	H15	115	138	H15	PC6	I/O	FT	-	TIM3_CH1, TIM8_CH1, I2S2_MCK, USART6_TX, SDMMC1_D6, DCMI_D0, LCD_HSYNC, EVENTOUT	-
64	E10	F3	97	G15	116	139	G15	PC7	I/O	FT	-	TIM3_CH2, TIM8_CH2, I2S3_MCK, USART6_RX, SDMMC1_D7, DCMI_D1, LCD_G6, EVENTOUT	-
65	F9	E4	98	G14	117	140	G14	PC8	I/O	FT	-	TRACED1, TIM3_CH3, TIM8_CH3, UART5_RTS, USART6_CK, SDMMC1_D0, DCMI_D2, EVENTOUT	-
66	E9	E3	99	F14	118	141	F14	PC9	I/O	FT	-	MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, SDMMC1_D1, DCMI_D3, EVENTOUT	-
67	D9	F1	100	F15	119	142	F15	PA8	I/O	FT	-	MCO1, TIM1_CH1, TIM8_BKIN2, I2C3_SCL, USART1_CK, OTG_FS_SOF, LCD_R6, EVENTOUT	-
68	C9	E2	101	E15	120	143	E15	PA9	I/O	FT	-	TIM1_CH2, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, DCMI_D0, EVENTOUT	OTG_FS_VB US

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

5

Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

Table 12. STW32F745XX and STW32F746XX alternate function mapping (continued)																	
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PC4	-	-	-	-	-	I2S1_M CK	-	-	SPDIFRX _IN2	-	-	ETH_MII_ RXD0/ET H_RMII_ RXD0	FMC_SD NE0	-	-	EVEN TOUT
	PC5	-	-	-	-	-	-	-	-	SPDIFRX _IN3	-	-	ETH_MII_ RXD1/ET H_RMII_ RXD1	FMC_SD CKE0	-	-	EVEN TOUT
	PC6	-	-	TIM3_C H1	TIM8_CH 1	-	I2S2_M CK	-	-	USART6 _TX	-	-	-	SDMMC 1_D6	DCMI_D 0	LCD_HS YNC	EVEN TOUT
	PC7	-	-	TIM3_C H2	TIM8_ CH2	-	-	I2S3_M CK	-	USART6 _RX	-	-	-	SDMMC 1_D7	DCMI_D 1	LCD_G6	EVEN TOUT
	PC8	TRACE D1	-	TIM3_C H3	TIM8_ CH3	-	-	-	UART5_ RTS	USART6 _CK	-	-	-	SDMMC 1_D0	DCMI_D 2	-	EVEN TOUT
Port C	PC9	MCO2	-	TIM3_C H4	TIM8_ CH4	I2C3_SD A	I2S_CKI N	-	UART5_ CTS	-	QUADSP I_BK1_IO 0	-	-	SDMMC 1_D1	DCMI_D 3	-	EVEN TOUT
	PC10	-	-	-	-	-	-	SPI3_SC K/I2S3_ CK	USART3 _TX	UART4_T X	QUADSP I_BK1_IO 1	-	-	SDMMC 1_D2	DCMI_D 8	LCD_R2	EVEN TOUT
	PC11	-	-	-	-	-	-	SPI3_MI SO	USART3 _RX	UART4_ RX	QUADSP I_BK2_N CS	-	-	SDMMC 1_D3	DCMI_D 4	-	EVEN TOUT
	PC12	TRACE D3	-	-	-	-	-	SPI3_M OSI/I2S3 _SD	USART3 _CK	UART5_T X	-	-	-	SDMMC 1_CK	DCMI_D 9	-	EVEN TOUT
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT


STM32F745xx STM32F746xx

79/227

Pinouts and pin description

86/227

DocID027590 Rev 4

Pinouts and pin description

STM32F745xx STM32F746xx

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

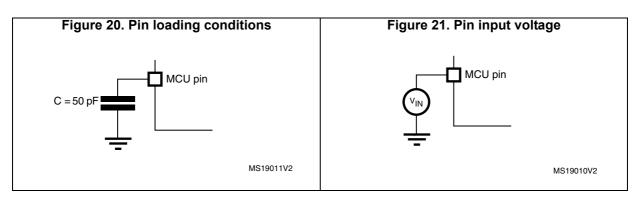
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 20*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 21*.

STM32F745xx STM32F746xx

- 2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
- 3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.
- 4. Guaranteed by test in production.

Table 25. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator ON

Sympol	Doromotor	Conditions	£ (MILI-)	Turn		Unit		
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			216	186	213	234	-	
			200	172	197	217	235	
			180	152	175	189	202	
		All peripherals enabled ⁽²⁾⁽³⁾	168	135	155	168	180	
			144	104	119	130	140	mA
			60	46	53	64	74	
	Supply		25	22	25	36	47	
I _{DD}	current in RUN mode	All peripherals disabled ⁽³⁾	216	108	124	146	-	ШA
			200	100	115	135	154	-
			180	89	102	116	129	
			168	79	90	103	115	
			144	61	69	80	90	
			60	27	31	42	52	
			25 12 15 2			26	36	

1. Guaranteed by characterization results.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Symbol	Parameter	Conditions	I/O toggling frequency (fsw) MHz	Typ V _{DD} = 3.3 V	Typ V _{DD} = 1.8 V	Unit
			2	0.3	0.1	
			8	1.0	0.5	
		C _{EXT} = 22 pF C = C _{INT} + C _S + C _{EXT}	25	3.5	1.6	
	I/O switching Current		50	5.9	4.2	- mA
			60	10.0	4.4	
			84	19.12	5.8	
I _{DDIO}			90	19.6	-	
			2	0.3	0.2	
			8	1.3	0.7	
		$C_{EXT} = 33 \text{ pF}$ $C = C_{INT} + C_S + C_{EXT}$	25	3.5	2.3	
			50	10.26	5.19	
			60	16.53	-	

Table 34. Switching output I/O current consumption⁽¹⁾ (continued)

1. CINT + C_{S.} PCB board capacitance including the pad pin is estimated to15 pF.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- I/O compensation cell enabled.
- The ART/L1-cache is ON.
- Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
- HCLK is the system clock. f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
 The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
 - f_{HCLK} = 216 MHz (Scale 1 + over-drive ON), f_{HCLK} = 168 MHz (Scale 2), f_{HCLK} = 144 MHz (Scale 3)
- Ambient operating temperature is 25 °C and V_{DD}=3.3 V.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error		±4	±7	
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V,	±2	±3	
EG	Gain error	V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V	±3	±6	LSB
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3	
EL	Integral linearity error		±3	±6	

Table 65. ADC static accuracy at f_{ADC} = 36 MHz

1. Guaranteed by characterization results.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 67	- 72	-	

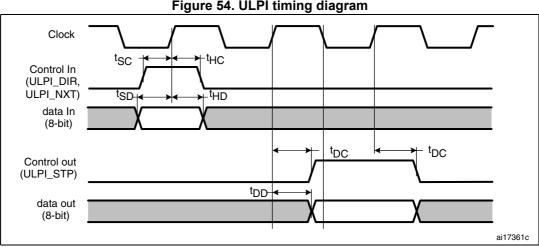
1. Guaranteed by characterization results.

Table 67. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz	64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 70	- 72	-	

1. Guaranteed by characterization results.

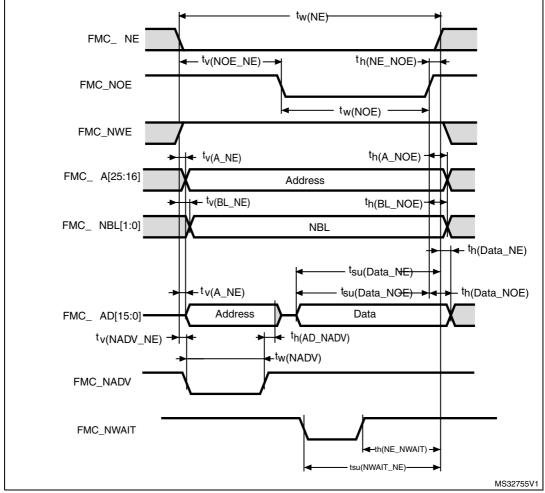
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.


Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.17 does not affect the ADC accuracy.

Symbol	Parameter		Min	Тур	Мах	Unit			
-	f _{HCLK} value to guarantee proper operation of USB HS interface		30	-	-	MHz			
F _{START_8BIT}	Frequency (first transition) 8-bit ±10%		54	60	66	MHz			
F _{STEADY}	Frequency (steady state) ±500 ppm		59.97	60	60.03	MHz			
D _{START_8BIT}	Duty cycle (first transition) 8-bit ±10%		40	50	60	%			
D _{STEADY}	Duty cycle (steady state) ±500 ppm		49.975	50	50.025	%			
t _{STEADY}	Time to reach the steady state frequency and duty cycle after the first transition		-	-	1.4	ms			
t _{START_DEV}	Clock startup time after the	Peripheral	-	-	5.6	me			
t _{START_HOST}	de-assertion of SuspendM	Host	-	-	-	ms			
t _{PREP}	PHY preparation time after the first transition of the input clock		-	-	-	μs			

Table 83. USB HS	clock timina	parameters ⁽¹⁾
------------------	--------------	---------------------------

1. Guaranteed by design.


Figure 54. ULPI timing diagram

Symbol	Symbol Parameter		Max	Unit					
t _{w(NE)}	FMC_NE low time	8T _{HCLK} -0.5	8T _{HCLK} +1.5						
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} -0.5	6T _{HCLK} +1	ns					
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} −1	-	115					
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +2	-						

Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings⁽¹⁾

1. Guaranteed by characterization results.

Figure 60. Asynchronous multiplexed PSRAM/NOR read waveforms

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tw(CKH)	Quad-SPI clock high and		t(CK)/2 -1	-	t(CK)/2	
tw(CKL)	low time	-	t(CK)/2	-	t(CK)/2+1	
ts(IN)	Data input setup time		1	-	-	
th(IN)	Data input hold time	-	3	-	-	ns
	Data output valid time	2.7 V <v<sub>DD<3.6 V</v<sub>	-	1.5	3	
tv(OUT)		1.71 V <v<sub>DD<3.6 V</v<sub>	-	1.5	4	
th(OUT)	Data output hold time	-	0	-	-	

Table 106. Quad-SPI characteristics (continued)in SDR mode⁽¹⁾ (continued)

1. Guaranteed by characterization results.

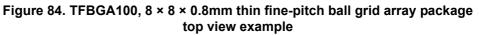
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		2.7 V <v<sub>DD<3.6 V CL=20 pF</v<sub>	-	-	80		
Fck1/t(CK)	Quad-SPI clock frequency	1.8 V <v<sub>DD<3.6 V CL=15 pF</v<sub>		-	80	MHz	
		1.71 V <v<sub>DD<3.6 V CL=10 pF</v<sub>	-	-	80		
tw(CKH)	Quad-SPI clock high and		t(CK)/2 -1	-	t(CK)/2		
tw(CKL)	low time		t(CK)/2	-	t(CK)/2+ 1		
ts(IN),	Data input setup time	2.7 V <v<sub>DD<3.6 V</v<sub>	1.5				
tsf(IN)	Data input setup time	1.71 V <v<sub>DD<2 V</v<sub>	0.75	-	-		
thr(IN),	Data input hold time	2.7 V <v<sub>DD<3.6 V</v<sub>	3.5	-	-		
thf(IN)	Data input noid time	1.71 V <v<sub>DD<2 V</v<sub>	4.5			ns	
		2.7 V <v<sub>DD<3.6 V</v<sub>	-	8	10.5	115	
tvr(OUT), tvf(OUT)	Data output valid time	1.71 V <v<sub>DD<3.6 V DHHC=0</v<sub>	-	8	14.5		
		DHHC=1 Pres=1, 2	-	Thclk/2 +1.75	Thclk/2 +2.25		
		DHHC=0	7.5	-	-		
thr(OUT), thf(OUT)	Data output hold time	DHHC=1 Pres=1, 2	Thclk/2 +1.5	-	-		

1. Guaranteed by characterization results.

data								
Symbol		millimeters		inches ⁽¹⁾				
Symbol	Min	Тур	Мах	Min	Тур	Мах		
А	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	-	0.200	0.0035	-	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
D3	-	12.000	-	-	0.4724	-		
E	15.800	16.000	16.200	0.6220	0.6299	0.6378		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	-	12.000	-	-	0.4724	-		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0°	3.5°	7°	0°	3.5°	7°		
CCC	-	-	0.080	-	-	0.0031		

Table 112. LQPF100,	14 x 14 mm	100-pin low-profile	quad flat package mechanical
		data	

1. Values in inches are converted from mm and rounded to 4 decimal digits.



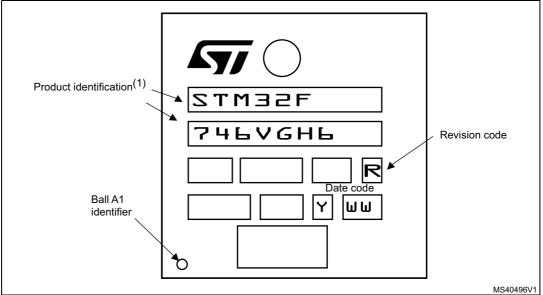

Table 114. If BOATOUTECOMmended FOB design fulles (0.0 mm pitch BOA)					
Dimension	Recommended values				
Pitch	0.8				
Dpad	0.400 mm				
Dsm	0.470 mm typ (depends on the soldermask registration tolerance)				
Stencil opening	0.400 mm				
Stencil thickness	Between 0.100 mm and 0.125 mm				
Pad trace width	0.120 mm				

 Table 114. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA)

Marking of engineering samples

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7 Part numbering

Table 125. Ordering information	on schem	e				
Example:	STM32	F	746 V	G	Т	6 xxx
Device family						
STM32 = ARM-based 32-bit microcontroller						
Product type						
F = general-purpose						
Device subfamily						
745= STM32F745xx, USB OTG FS/HS, camera interface Ethernet 746= STM32F746xx, USB OTG FS/HS, camera interface, Ethernet, L	_CD-TFT					
Pin count						
V = 100 pins						
Z = 143 and 144 pins						
I = 176 pins						
B = 208 pins						
N = 216 pins						
Flash memory size						
E = 512 Kbytes of Flash memory						
G = 1024 Kbytes of Flash memory						
Package						
T = LQFP						
K = UFBGA						
H = TFBGA						
Y = WLCSP						
Temperature range						
$6 =$ Industrial temperature range, -40 to $85 \degree$ C.						
7 = Industrial temperature range, -40 to 105 °C.						
Options						

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

