

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f746veh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

2.9 Quad-SPI memory interface (QUADSPI)

All devices embed a Quad-SPI memory interface, which is a specialized communication interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:

- Direct mode through registers.
- External flash status register polling mode.
- Memory mapped mode.

Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported.

The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.

2.10 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 displays layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 Input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events.

2.11 Chrom-ART Accelerator[™] (DMA2D)

The Chrom-Art Accelerator [™] (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion.

Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

2.29 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

2.30 SD/SDIO/MMC card host interface (SDMMC)

An SDMMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory card specification version 2.0.

The SDMMC card specification version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

The SDMMC can be served by the DMA controller

2.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Support of 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

Figure 15. STM32F74xIx LQFP176 pinout

1. The above figure shows the package top view.

Pinouts and pin description

Figure 16. STM32F74xBx LQFP208 pinout

1. The above figure shows the package top view.

		F	Pin Nu	umbei	•							, , , , , , , , , , , , , , , , , , ,	,
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	E5	124	C10	152	178	D9	PG9	I/O	FT	-	SPDIFRX_IN3, USART6_RX, QUADSPI_BK2_IO2, SAI2_FS_B, FMC_NE2/FMC_NCE, DCMI_VSYNC, EVENTOUT	-
-	-	C6	125	B10	153	179	C8	PG10	I/O	FT	I	LCD_G3, SAI2_SD_B, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT	-
-	-	B6	126	В9	154	180	B8	PG11	I/O	FT	-	SPDIFRX_IN0, ETH_MII_TX_EN/ETH_R MII_TX_EN, DCMI_D3, LCD_B3, EVENTOUT	-
-	-	A6	127	B8	155	181	C7	PG12	I/O	FT	-	LPTIM1_IN1, SPI6_MISO, SPDIFRX_IN1, USART6_RTS, LCD_B4, FMC_NE4, LCD_B1, EVENTOUT	-
-	-	D6	128	A8	156	182	В3	PG13	I/O	FT	-	TRACED0, LPTIM1_OUT, SPI6_SCK, USART6_CTS, ETH_MII_TXD0/ETH_RM II_TXD0, FMC_A24, LCD_R0, EVENTOUT	-
-	-	F6	129	A7	157	183	A4	PG14	I/O	FT	-	TRACED1, LPTIM1_ETR, SPI6_MOSI, USART6_TX, QUADSPI_BK2_IO3, ETH_MII_TXD1/ETH_RM II_TXD1, FMC_A25, LCD_B0, EVENTOUT	-
-	-	-	130	D7	158	184	F7	VSS	S	-	-	-	-
-	-	E6	131	C7	159	185	E8	VDD	S	-	-	-	-

Table 10.	STM32F745xx	and STM32F746xx	pin and ball	definition	(continued)
					· /

		F	Pin Nu	umbei	r								
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
95	B4	A9	139	A5	167	198	A7	PB8	I/O	FT	_	TIM4_CH3, TIM10_CH1, I2C1_SCL, CAN1_RX, ETH_MII_TXD3, SDMMC1_D4, DCMI_D6, LCD_B6, EVENTOUT	-
96	A4	В9	140	B4	168	199	B4	PB9	I/O	FT	-	TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, CAN1_TX, SDMMC1_D5, DCMI_D7, LCD_B7, EVENTOUT	-
97	D4	B10	141	A4	169	200	A6	PE0	I/O	FT	-	TIM4_ETR, LPTIM1_ETR, UART8_Rx, SAI2_MCK_A, FMC_NBL0, DCMI_D2, EVENTOUT	-
98	C4	A10	142	A3	170	201	A5	PE1	I/O	FT	_	LPTIM1_IN2, UART8_Tx, FMC_NBL1, DCMI_D3, EVENTOUT	-
99	E4	-	-	D5	-	202	F6	VSS	S	-	-	-	-
-	F7	A11	143	C6	171	203	E5	PDR_ON	S	-	-	-	-
100	F4	D7	144	C5	172	204	E7	VDD	S	-	-	-	-
-	-	-	-	D4	173	205	C3	Pl4	I/O	FT	-	TIM8_BKIN, SAI2_MCK_A, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT	-
-	-	-	-	C4	174	206	D3	PI5	I/O	FT	-	TIM8_CH1, SAI2_SCK_A, FMC_NBL3, DCMI_VSYNC, LCD_B5, EVENTOUT	-

Table 10.	STM32F745xx and	STM32F746xx p	in and ball	definition	(continued)
-----------	-----------------	---------------	-------------	------------	-------------

82/227

DocID027590 Rev 4

				Table 12	2. STM32	F745xx	and STI	M32F74	6xx alte	rnate fu	nction m	napping	(continu	ed)			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
D. I.F.	PE14	-	TIM1_C H4	-	-	-	SPI4_M OSI	-	-	-	-	SAI2_MC K_B	-	FMC_D1 1	-	LCD_CL K	EVEN TOUT
Port E	PE15	-	TIM1_B KIN	-	-	-	-	-	-	-	-	-	-	FMC_D1 2	-	LCD_R7	EVEN TOUT
	PF0	-	-	-	-	I2C2_SD A	-	-	-	-	-	-	-	FMC_A0	-	-	EVEN TOUT
	PF1	-	-	-	-	I2C2_SC L	-	-	-	-	-	-	-	FMC_A1	-	-	EVEN TOUT
	PF2	-	-	-	-	I2C2_SM BA	-	-	-	-	-	-	-	FMC_A2	-	-	EVEN TOUT
	PF3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A3	-	-	EVEN TOUT
	PF4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A4	-	-	EVEN TOUT
	PF5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A5	-	-	EVEN TOUT
Port F	PF6	-	-	-	TIM10_C H1	-	SPI5_NS S	SAI1_SD _B	-	UART7_ Rx	QUADSP I_BK1_IO 3	-	-	-	-	-	EVEN TOUT
	PF7	-	-	-	TIM11_CH 1	-	SPI5_SC K	SAI1_M CLK_B	-	UART7_T x	QUADSP I_BK1_IO 2	-	-	-	-	-	EVEN TOUT
	PF8	-	-	-	-	-	SPI5_MI SO	SAI1_SC K_B	-	UART7_ RTS	TIM13_C H1	QUADSPI _BK1_IO0	-	-	-	-	EVEN TOUT
	PF9	-	-	-	-	-	SPI5_M OSI	SAI1_FS _B	-	UART7_ CTS	TIM14_C H1	QUADSPI _BK1_IO1	-	-	-	-	EVEN TOUT
	PF10	-	-	-	-	-	-	-	-	-	-	-	-	-	DCMI_D 11	LCD_DE	EVEN TOUT
	PF11	-	-	-	-	-	SPI5_M OSI	-	-	-	-	SAI2_SD_ B	-	FMC_SD NRAS	DCMI_D 12	-	EVEN TOUT
	PF12	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A6	-	-	EVEN TOUT

Pinouts and pin description

STM32F745xx STM32F746xx

5

DocID027590 Rev 4

87/227

Table 12. STM32F/45XX and STM32F/46XX alternate function mapping (continued	Table 12	. STM32F745xx	and STM32F746x	k alternate fui	nction map	ping ((continued)
---	----------	---------------	----------------	-----------------	------------	--------	-------------

													•				
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port		SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PJ7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G0	EVEN TOUT
	PJ8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G1	EVEN TOUT
	PJ9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G2	EVEN TOUT
	PJ10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G3	EVEN TOUT
Port J	PJ11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G4	EVEN TOUT
	PJ12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B0	EVEN TOUT
	PJ13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B1	EVEN TOUT
	PJ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B2	EVEN TOUT
	PJ15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B3	EVEN TOUT

Bus	Boundary address	Peripheral
	0x4000 8000- 0x4000 FFFF	Reserved
	0x4000 7C00 - 0x4000 7FFF	UART8
	0x4000 7800 - 0x4000 7BFF	UART7
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	HDMI-CEC
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	I2C4
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	SPDIFRX
AFDI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	Reserved
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	LPTIM1
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 13. STM32F745xx and STM32F746xx register boundary addresses (continued)

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	2.2 μF
ESR	ESR of external capacitor	< 2 Ω

Table 19. VCAP1/VCAP2 operating conditions⁽¹⁾

 When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

5.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A.

Table 20. Operating conditions at power-up / power-down (regulator ON)

Symbol	Parameter	Min	Мах	Unit
+	V _{DD} rise time rate	20	∞	ue//
٩VDD	V _{DD} fall time rate	20	8	μ5/ ν

5.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A .

Table 21. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t	V _{DD} rise time rate	Power-up	20	8	
۷DD	V _{DD} fall time rate	Power-down	20	8	uc/\/
+	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	μ5/ ν
^V CAP	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8	

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V.

5.3.5 Reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Figure 29. Typical V_{BAT} current consumption (RTC ON/BKP SRAM OFF and LSE in high medium drive mode)

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μA

Table 38. Low-speed external user clock characteristics

1. Guaranteed by design.

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} -0.5	3T _{HCLK} +1.5	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{HCLK} -1	2T _{HCLK} +0.5	
t _{tw(NOE)}	FMC_NOE low time	T _{HCLK} -0.5	T _{HCLK} +0.5	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	0.5	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} -0.5	T _{HCLK} +1.5	
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV) FMC_NADV high)		-	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} -0.5	-	
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} -2	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{HCLK} –2	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

Table 92. Asynchronous multiplexed PSRAM/NOR read timings ¹¹	Table 92.	Asynchronous	multiplexed	PSRAM/NOR	read timings ⁽¹)
---	-----------	--------------	-------------	-----------	----------------------------	---

1. Guaranteed by characterization results.

			-	
Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} −1	8T _{HCLK} +2	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} -1	5T _{HCLK} +1	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. Guaranteed by characterization results.

Figure 62. Synchronous multiplexed NOR/PSRAM read timings

5.3.31 SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in *Table 110* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.17: I/O port characteristics for more details on the input/output characteristics.

Figure 77. SDIO high-speed mode

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz		
-	SDMMC_CK/fPCLK2 frequency ratio	-	-	-	8/3	-		
t _{W(CKL)}	Clock low time	fpp =50 MHz	9.5	10.5	-	20		
t _{W(CKH)}	Clock high time	fpp =50 MHz	8.5	9.5	-	115		
CMD, D inp	outs (referenced to CK) in MMC and SI	O HS mode						
t _{ISU}	Input setup time HS	fpp =50 MHz	2.5	-	-			
t _{IH}	Input hold time HS	fpp =50 MHz	3	-	-	ns		
CMD, D outputs (referenced to CK) in MMC and SD HS mode								
t _{OV}	Output valid time HS	fpp =50 MHz	-	11.5	12			
t _{OH}	Output hold time HS	fpp =50 MHz	10.5	-	-	115		
CMD, D inp	outs (referenced to CK) in SD default n	node						
tISUD	Input setup time SD	fpp =25 MHz	2	-	-			
tIHD	Input hold time SD	fpp =25 MHz	4	-	-	ns		
CMD, D out	CMD, D outputs (referenced to CK) in SD default mode							
tOVD	Output valid default time SD	fpp =25 MHz	-	1.5	2			
tOHD	Output hold default time SD	fpp =25 MHz	0.5	-	-	ns		
CMD, D out tOVD tOHD	tputs (referenced to CK) in SD default Output valid default time SD Output hold default time SD	mode fpp =25 MHz fpp =25 MHz	- 0.5	1.5	2	ns		

Table 110 Dv	namic characteristics	characteristics	$V_{pp}=2.7V$ to $3.6V^{(1)}$
	manne characteristics	, רוומו מכובו ופנוכפ.	

1. Guaranteed by characterization results,.

T-1.1. 444	Demonstrate the second state of the second state		$\lambda = A = A \times A = A = A \times A = A = A \times A \times$
Table 111.	Dynamic characteristics: eminu	cnaracteristics.	$V_{DD} = 1.71 V \text{ to } 1.9 V^{-7}$

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz		
-	SDMMC_CK/fPCLK2 frequency ratio	-	-	-	8/3	-		
t _{W(CKL)}	Clock low time	fpp =50 MHz	9.5	10.5	-	20		
t _{W(CKH)}	Clock high time	fpp =50 MHz	8.5	9.5	-	115		
CMD, D inp	CMD, D inputs (referenced to CK) in eMMC mode							
t _{ISU}	Input setup time HS	fpp =50 MHz	0.5	-	-			
t _{IH}	Input hold time HS	fpp =50 MHz	3.5	-	-	115		
CMD, D outputs (referenced to CK) in eMMC mode								
t _{OV}	Output valid time HS	fpp =50 MHz	-	12	12.5	ne		
t _{OH}	Output hold time HS	fpp =50 MHz	11	-	-	115		

1. Guaranteed by characterization results.

2. Cload = 20 pF.

6.2 TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array package information

Figure 82. TFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.100	-	-	0.0433
A1	0.150	-	-	0.0059	-	-
A2	-	0.760	-	-	0.0299	-
b	0.350	0.400	0.450	0.0138	0.0157	0.0177

6.3 WLCSP143, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package information

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-

6.5 LQFP176, 24 x 24 mm low-profile quad flat package information

C Seating plane 0.25 mm gauge plane A1 HD 11 PIN 1 D **IDENTIFICATION** b ZE Е HE е ZD b 1T_ME_V2

Figure 91. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 118. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat packagemechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	-	1.450	0.0531	-	0.0060
b	0.170	-	0.270	0.0067	-	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	23.900	-	24.100	0.9409	-	0.9488

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

