E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f746vet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 7. PDR_ON control with internal reset OFF

2.18 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low-power regulator (LPR)
 - Power-down
- Regulator OFF

2.18.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when the regulator is ON:

- MR mode used in Run/sleep modes or in Stop modes
 - In Run/Sleep mode

The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between the maximum frequency and dynamic power

The major features are:

- Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
- Support of the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.35 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception.

2.36 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

2.37 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

Name	Abbreviation	Definition					
Pin name	Unless otherwise reset is the same	specified in brackets below the pin name, the pin function during and after as the actual pin name					
	S	Supply pin					
Pin type	I	Input only pin					
	I/O Input / output pin						
	FT	5 V tolerant I/O					
I/O structure	ТТа	3.3 V tolerant I/O directly connected to ADC					
	В	Dedicated BOOT pin					
	RST	Bidirectional reset pin with weak pull-up resistor					
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset					
Alternate functions	nate ons Functions selected through GPIOx_AFR registers						
Additional functions	Functions directly selected/enabled through peripheral registers						

Table 9. Legend/abbreviations used in the pinout table

Table 10. STM32F745xx and STM32F746xx pin and ball definition

		F	Pin Nı	umber	•								
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin name (function after reset) ⁽¹⁾		Notes	Alternate functions	Additional functions
1	A3	D8	1	A2	1	1	A3	PE2	I/O	FT	-	TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, ETH_MII_TXD3, FMC_A23, EVENTOUT	-
2	В3	C10	2	A1	2	2	A2	PE3	I/O	FT	-	TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT	-
3	C3	B11	3	B1	3	3	A1	PE4	I/O	FT	-	TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT	-

		F	Pin Nu	umber	·					_			
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	H11	20	L3	26	29	L3	PF8	I/O	FT	-	SPI5_MISO, SAI1_SCK_B, UART7_RTS, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	ADC3_IN6
-	-	G8	21	L2	27	30	L2	PF9	I/O	FT	-	SPI5_MOSI, SAI1_FS_B, UART7_CTS, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT	ADC3_IN7
-	-	G9	22	L1	28	31	L1	PF10	I/O	FT	-	DCMI_D11, LCD_DE, EVENTOUT	ADC3_IN8
12	C1	J11	23	G1	29	32	G1	PH0- OSC_IN(PH0)	I/O	FT	-	EVENTOUT	OSC_IN ⁽⁴⁾
13	D1	H10	24	H1	30	33	H1	PH1- OSC_OU T(PH1)	I/O	FT	-	EVENTOUT	OSC_OUT ⁽⁴⁾
14	E1	H9	25	J1	31	34	J1	NRST	I/O	RS T	-	-	-
15	F1	H8	26	M2	32	35	M2	PC0	I/O	FT	(4)	SAI2_FS_B, OTG_HS_ULPI_STP, FMC_SDNWE, LCD_R5, EVENTOUT	ADC123_IN1 0
16	F2	K11	27	М3	33	36	М3	PC1	I/O	FT	(4)	TRACED0, SPI2_MOSI/I2S2_SD, SAI1_SD_A, ETH_MDC, EVENTOUT	ADC123_IN1 1, RTC_TAMP3, WKUP3
17	E2	J10	28	M4	34	37	M4	PC2	I/O	FT	(4)	SPI2_MISO, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT	ADC123_IN1 2

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

		F	Pin Ni	umber									,
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
_	-	_	-	N12	84	97	N13	PH7	I/O	FT	_	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	-	-	M12	85	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	-	-	M13	86	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	-	-	L13	87	100	P15	PH10	I/O	FT	-	TIM5_CH1, I2C4_SMBA, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	-	-	L12	88	101	N15	PH11	I/O	FT	-	TIM5_CH2, I2C4_SCL, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-
-	-	-	-	K12	89	102	M15	PH12	I/O	FT	-	TIM5_CH3, I2C4_SDA, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT	-
-	-	-	-	H12	90	-	K10	VSS	S	-	-	-	-
-	-	-	-	J12	91	103	K11	VDD	S	-	-	-	-
51	K8	M2	73	P12	92	104	L13	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_RM II_TXD0, OTG_HS_ID, EVENTOUT	-
52	J8	N1	74	P13	93	105	K14	PB13	I/O	FT	-	TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_RM II_TXD1, EVENTOUT	OTG_HS_VB US

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

		F	Pin Nu	umbei	r			-					
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	C3	175	207	D6	PI6	I/O	FT	-	TIM8_CH2, SAI2_SD_A, FMC_D28, DCMI_D6, LCD_B6, EVENTOUT	-
-	-	-	-	C2	176	208	D4	PI7	I/O	FT	-	TIM8_CH3, SAI2_FS_A, FMC_D29, DCMI_D7, LCD_B7, EVENTOUT	-

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

1. Function availability depends on the chosen device.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:

- The speed should not exceed 2 MHz with a maximum load of 30 pF.

- These I/Os must not be used as a current source (e.g. to drive an LED).

3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F75xxx and STM32F74xxx reference manual.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

 If the device is delivered in an WLCSP143, UFBGA176, LQFP176, TFBGA100 or TFBGA216 package, and the BYPASS_REG pin is set to VDD (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).

5

DocID027590 Rev 4

87/227

Table 12. STM32F/45XX and STM32F/46XX alternate function mapping (continued	Table 12	. STM32F745xx	and STM32F746x	k alternate fui	nction map	ping ((continued)
---	----------	---------------	----------------	-----------------	------------	--------	-------------

													•				
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port		SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PJ7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G0	EVEN TOUT
	PJ8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G1	EVEN TOUT
	PJ9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G2	EVEN TOUT
	PJ10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G3	EVEN TOUT
Port J	PJ11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G4	EVEN TOUT
	PJ12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B0	EVEN TOUT
F F	PJ13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B1	EVEN TOUT
	PJ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B2	EVEN TOUT
	PJ15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B3	EVEN TOUT

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	320	
ΣI_{VSS}	Total current out of sum of all V_{SS_x} ground lines $(sink)^{(1)}$	- 320	
ΣI_{VDDUSB}	Total current into V _{DDUSB} power line (source)	25	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V_{SS_x} ground line (sink) ⁽¹⁾	- 100	
lio	Output current sunk by any I/O and control pin	25	
ιο	Output current sourced by any I/Os and control pin	- 25	mA
	Total output current sunk by sum of all I/O and control pins ⁽²⁾	120	
ΣI_{IO}	Total output current sunk by sum of all USB I/Os	25	
	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	- 120	
	Injected current on FT, FTf, RST and B pins (3)	- 5/+0	
I _{INJ(PIN)}	Injected current on TTa pins ⁽⁴⁾	±5	
$\Sigma I_{\rm INJ(PIN)}^{(4)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25	

Table '	15.	Current characteri	stics
IUNIC			5005

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to Table 14: Voltage characteristics for the values of the maximum allowed input voltage.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	– 65 to +150	°C
TJ	Maximum junction temperature	125	C

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit			
		Power Scale 3 ((VOS[1:0] bits in PWR_CR register = 0x01), 144 MHz HCLK max frequency	1.08	1.14	1.20				
	Regulator ON: 1.2 V internal voltage on V _{CAP_1} /V _{CAP_2} pins	Power Scale 2 ((VOS[1:0] bits in PWR_CR register = 0x10), 168 MHz HCLK max frequency with over-drive OFF or 180 MHz with over-drive ON	1.20	1.26	1.32				
V ₁₂		Power Scale 1 ((VOS[1:0] bits in PWR_CR register = 0x11), 180 MHz HCLK max frequency with over-drive OFF or 216 MHz with over-drive ON	1.26	1.32	1.40	V			
	Regulator OFF: 1.2 V external	Max frequency 144 MHz	1.10	1.14	1.20				
	voltage must be supplied from external regulator on	Max frequency 168MHz	1.20	1.26	1.32				
V _C Inp pir	V _{CAP_1} /V _{CAP_2} pins ⁽⁷⁾	Max frequency 180 MHz	1.26	1.32	1.38				
	Input voltage on RST and FT	$2 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	- 0.3	-	5.5				
	pins ⁽⁸⁾	$V_{DD} \leq 2 V$	- 0.3	-	5.2				
V _{IN} Ir Ir	Input voltage on TTa pins	-	- 0.3	-	V _{DDA} + 0.3				
	Input voltage on BOOT pin	-	0	-	9				
		LQFP100	-	-	465				
		TFBGA100	-	-					
		WLCSP143	-	-	641				
D	Power dissipation at $T_A = 85 \degree C$	LQFP144	-	-	500	m\\/			
۳D	suffix $7^{(9)}$	LQFP176	-	-	526	IIIVV			
		UFBGA176	-	-	513				
		LQFP208	-	-	1053				
		TFBGA216	-	-	690				
	Ambient temperature for 6 suffix	Maximum power dissipation	- 40	-	85	°C			
Тл	version	Low power dissipation ⁽¹⁰⁾	- 40	-	105	Ŭ			
TA A	Ambient temperature for 7 suffix	Maximum power dissipation	- 40	-	105	°C			
	version	Low power dissipation ⁽¹⁰⁾	- 40	-	125	Ŭ			
T.	lunction temperature range	6 suffix version	- 40	-	105	°C			
Tj Ji		7 suffix version	- 40	-	125	0			

Table 17. Genera	l operating of	conditions	(continued)
------------------	----------------	------------	-------------

1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.

2. 216 MHz maximum frequency for 6 suffix version (200 MHz maximum frequency for 7 suffix version).

3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.17.2: Internal reset OFF).

4. When the ADC is used, refer to *Table 62: ADC characteristics*.

5. If V_{REF+} pin is present, it must respect the following condition: V_{DDA}-V_{REF+} < 1.2 V.

Table 28. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF

				т.	-			Мах	(¹⁾			
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	IJ	. , P		5 °C	TA= 8	5 °C	TA= 1	■ ■ ■ 105 °C 0 105 °C 0 2 100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Unit
				IDD12	IDD	IDD12	IDD	IDD12	IDD	IDD12	105 °C 1DD 2 2 2 2 2 2 2 2 2 2 2 2 2	
			180	151	1	174	2	190	2	204	2	
		All	168	135	1	156	2	170	2	182	IDD Unit 2 2	
		Peripherals Enabled ⁽²⁾⁽³⁾	144	108	1	124	2	136	2	146	2]
	Supply		60	52	1	60	2	71	2	82	2	
IDD12/	RUN mode		25	25	1	29	2	40	2	50	2	m ^
IDD	from V12		180	89	1	102	2	117	2	130	2	mA
	supply	All	168	80	1	91	2	105	2	118	2	
		Peripherals	144	66	1	75	2	86	2	97	2	
		Disabled	60	33	1	38	2	49	2	60	2	
			25	16	1	18	2	29	2	40	2]

1. Guaranteed by characterization results.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LSEDRV[1:0]=00 Low drive capability	-	-	0.48	
C crit max	Maximum critical crystal a	LSEDRV[1:0]=10 Medium low drive capability	-	-	0.75	
G _{m_} cnt_max	Maximum childar crystar g _m	LSEDRV[1:0]=01 Medium high drive capability	-	-	1.7	μΑνν
		LSEDRV[1:0]=11 High drive capability	-	-	2.7	
t _{SU} ⁽²⁾	start-up time	V _{DD} is stabilized	-	2	-	s

Table 40. LSE oscillator characteristics (f_{ISE} = 32.768 kHz) ⁽¹⁾ (continued)	ble 40. LSE oscillator characteristics (f _{l SE} = 32.76	68 kHz) ⁽¹⁾ (continued)
---	---	------------------------------------

1. Guaranteed by design.

 Guaranteed by characterization results. t_{SU} is the start-up time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

5.3.10 Internal clock source characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user trimming step ⁽²⁾	-	-	-	1	%
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
		$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

Table 41. HSI oscillator characteristi	cs ⁽¹⁾
--	-------------------

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Factory calibrated, parts not soldered.

Figure 34. HSI deviation versus temperature

- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 38*.

Figure 38. FT I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14, PC15 and PI8 which can sink or source up to ± 3 mA. When using the PC13 to PC15 and PI8 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 15*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 15*).

Figure 51. SAI master timing waveforms

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH_NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	2	ns
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} -0.5	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	1.5	-	
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	1	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	

Table 96. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾

		0		r
Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	1.5	20
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	115
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	1	-	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} +0.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	r.
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	

Table 97. Synchronous multiplexed PSRAM write timings⁽¹⁾

Figure 69. NAND controller waveforms for common memory write access

Table 100. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} -0.5	4T _{HCLK}	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	13	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	3	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} -0.5	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} -2	-	

1. Guaranteed by characterization results.

Table 101. Switching characteristics for NAND Flash write cycl	es ⁽¹⁾
--	-------------------

Symbol	Parameter	Min	Max	Unit
t _{w(NWE)}	FMC_NWE low width	4T _{HCLK} -0.5	4T _{HCLK}	
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	3T _{HCLK} −1	-	ne
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{HCLK} -3	-	115
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	3T _{HCLK} -0.5	
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} -2	-	

Figure 71. SDRAM write access waveforms

Table 104. SDRAM write timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} -0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	2	
^t h(SDCLKL _Data)	Data output hold time	0.5	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	4	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	0.5	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0	-	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	0.5	115
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	
td(SDCLKL_SDNRAS)	SDNRAS valid time	-	0.5	
^t h(SDCLKL_SDNRAS)	SDNRAS hold time	0	-	
td(SDCLKL_SDNCAS)	SDNCAS valid time	-	0.5	
t _{d(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

5.3.31 SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in *Table 110* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.17: I/O port characteristics for more details on the input/output characteristics.

Figure 77. SDIO high-speed mode

Dimension	Recommended values		
Pitch	0.4		
Dpad	0.225 mm		
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.250 mm		
Stencil thickness	0.100 mm		

Table 116. WLCSP143 recommended PCB design rules

Marking of engineering samples

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Figure 87. WLCSP143, 0.4 mm pitch wafer level chip scale package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

