

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f746zgt6e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during Stop mode: MR operates in normal mode (default mode of MR in Stop mode) MR operates in under-drive mode (reduced leakage mode).

LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during Stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to *Table 3* for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V_{CAP_1} and V_{CAP_2} pin.

All packages have the regulator ON feature.

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode ⁽²⁾	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

1. '-' means that the corresponding configuration is not available.

2. The over-drive mode is not available when V_{DD} = 1.7 to 2.1 V.

2.18.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V₁₂ voltage source through V_{CAP 1} and V_{CAP 2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

Pinouts and pin description

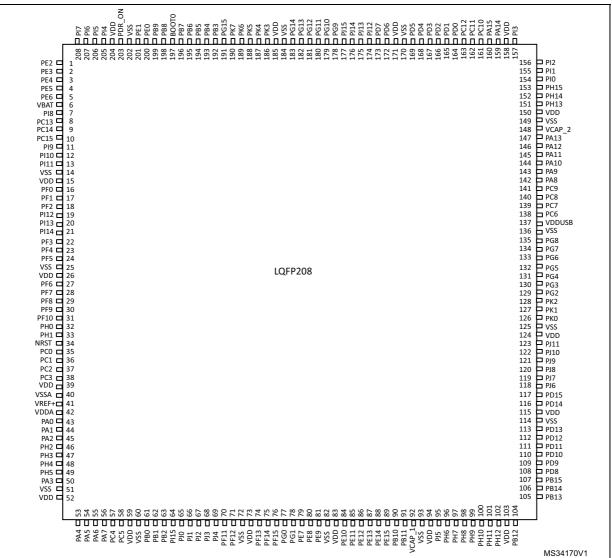


Figure 16. STM32F74xBx LQFP208 pinout

1. The above figure shows the package top view.

				umber								ball definition (continue	
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
31	КЗ	L8	43	R3	53	56	R3	PA7	I/O	FT	(4)	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, TIM14_CH1, ETH_MII_RX_DV/ETH_R MII_CRS_DV, FMC_SDNWE, EVENTOUT	ADC12_IN7
32	G4	M8	44	N5	54	57	N5	PC4	I/O	FT	(4)	I2S1_MCK, SPDIFRX_IN2, ETH_MII_RXD0/ETH_RM II_RXD0, FMC_SDNE0, EVENTOUT	ADC12_IN14
33	H4	N9	45	P5	55	58	P5	PC5	I/O	FT	(4)	SPDIFRX_IN3, ETH_MII_RXD1/ETH_RM II_RXD1, FMC_SDCKE0, EVENTOUT	ADC12_IN15
-	-	J7	-	-	-	59	L7	VDD	S	-	-	-	-
-	-	-	-	-	-	60	L6	VSS	S	-	-	-	-
34	J4	N8	46	R5	56	61	R5	PB0	I/O	FT	(4)	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, UART4_CTS, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, EVENTOUT	ADC12_IN8
35	K4	K7	47	R4	57	62	R4	PB1	I/O FT (4) TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, EVENTOUT		ADC12_IN9		
36	G5	L7	48	M6	58	63	M5	PB2	I/O	FT	-	SAI1_SD_A, SPI3_MOSI/I2S3_SD, QUADSPI_CLK, EVENTOUT	-
-	-	-	-	-	-	64	G4	PI15	I/O	FT	-	LCD_R0, EVENTOUT	-
-	-	-	-	-	-	65	R6	PJ0	I/O	FT	-	LCD_R1, EVENTOUT	-
-	-	-	-	-	-	66	R7	PJ1	I/O	FT	-	LCD_R2, EVENTOUT	-

Table 10. STM32F745xx and STM32F746xx pin and ball definition (continued)

				umbei								ball definition (continue	
LQFP100	TFBGA100	WLCSP143	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
69	D10	D5	102	D15	121	144	D15	PA10	I/O	FT	-	TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT	-
70	C10	D4	103	C15	122	145	C15	PA11	I/O	FT	-	TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT	-
71	B10	E1	104	B15	123	146	B15	PA12	I/O	FT	-	TIM1_ETR, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT	-
72	A10	D3	105	A15	124	147	A15	PA13(JT MS- SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
73	E7	D1	106	F13	125	148	E11	VCAP_2	S	-	-	-	-
74	E5	D2	107	F12	126	149	F10	VSS	S	1	-	-	-
75	F5	C1	108	G13	127	150	F11	VDD	S	-	-	-	-
-	-	-	-	E12	128	151	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	-	-	E13	129	152	E13	PH14	I/O	FT	-	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	-	-	D13	130	153	D13	PH15	I/O	FT	-	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	-	-	E14	131	154	E14	P10	I/O	/O FT - TIM5_CH4, SPI2_NSS/I2S2_WS, FMC_D24, DCMI_D13, LCD_G5, EVENTOUT		-	
-	-	-	-	D14	132	155	D14	PI1	I/O	FT	-	TIM8_BKIN2, SPI2_SCK/I2S2_CK, FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-

5

AF1

AF0

AF2

AF3

DocID027590 Rev 4

81/227

Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD
Port D	PD14	-	-	TIM4_C H3	-	-	-	-	-	UART8_ CTS	-	-	-	FMC_D0	-	-
FUILD	PD15	-	-	TIM4_C H4	-	-	-	-	-	UART8_ RTS	-	-	-	FMC_D1	-	-
	PE0	-	-	TIM4_ET R	LPTIM1_E TR	-	-	-	-	UART8_ Rx	-	SAI2_MC K_A	-	FMC_NB L0	DCMI_D 2	-
	PE1	-	-	-	LPTIM1_I N2	-	-	-	-	UART8_T x	-	-	-	FMC_NB L1	DCMI_D 3	-
	PE2	TRACE CLK	-	-	-	-	SPI4_SC K	SAI1_M CLK_A	-	-	QUADSP I_BK1_IO 2	-	ETH_MII_ TXD3	FMC_A2 3	-	-
	PE3	TRACE D0	-	-	-	-	-	SAI1_SD _B	-	-	-	-	-	FMC_A1 9	-	-
	PE4	TRACE D1	-	-	-	-	SPI4_NS S	SAI1_FS _A	-	-	-	-	-	FMC_A2 0	DCMI_D 4	LCD_B0
	PE5	TRACE D2	-	-	TIM9_CH 1	-	SPI4_MI SO	SAI1_SC K_A	-	-	-	-	-	FMC_A2 1	DCMI_D 6	LCD_G0
Port E	PE6	TRACE D3	TIM1_B KIN2	-	TIM9_CH 2	-	SPI4_M OSI	SAI1_SD _A	-	-	-	SAI2_MC K_B	-	FMC_A2 2	DCMI_D 7	LCD_G1
	PE7	-	TIM1_ET R	-	-	-	-	-	-	UART7_ Rx	-	QUADSPI _BK2_IO0	-	FMC_D4	-	-
	PE8	-	TIM1_C H1N	-	-	-	-	-	-	UART7_T x	-	QUADSPI _BK2_IO1	-	FMC_D5	-	-
	PE9	-	TIM1_C H1	-	-	-	-	-	-	UART7_ RTS	-	QUADSPI _BK2_IO2	-	FMC_D6	-	-
	PE10	-	TIM1_C H2N	-	-	-	-	-	-	UART7_ CTS	-	QUADSPI _BK2_IO3	-	FMC_D7	-	-
	PE11	-	TIM1_C H2	-	-	-	SPI4_NS S	-	-	-	-	SAI2_SD_ B	-	FMC_D8	-	LCD_G3
	PE12	-	TIM1_C H3N	-	-	-	SPI4_SC K	-	-	-	-	SAI2_SC K_B	-	FMC_D9	-	LCD_B4
	PE13	-	TIM1_C H3	-	-	-	SPI4_MI SO	-	-	-	-	SAI2_FS_ B	-	FMC_D1 0	-	LCD_DE

Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

AF7

SPI2/3/U

AF8

SAI2/US

AF9

CAN1/2/T

AF11

AF10

AF12

AF13

AF6

AF5

AF4

AF14

AF15

SYS

EVEN TOUT

EVEN TOUT EVEN TOUT EVEN TOUT EVEN TOUT

EVEN TOUT EVEN TOUT EVEN TOUT EVEN TOUT

EVEN TOUT EVEN

TOUT EVEN TOUT EVEN TOUT EVEN TOUT EVEN TOUT

EVEN TOUT

8 <u>3</u>	
Ñ	
22	

DocID027590 Rev 4

577

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PF13	-	-	-	-	I2C4_SM BA	-	-	-	-	-	-	-	FMC_A7	-	-	EVEN TOUT
Port F	PF14	-	-	-	-	I2C4_SC L	-	-	-	-	-	-	-	FMC_A8	-	-	EVEN TOUT
	PF15	-	-	-	-	I2C4_SD A	-	-	-	-	-	-	-	FMC_A9	-	-	EVEN TOUT
	PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 0	-	-	EVEN TOUT
	PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 1	-	-	EVEN TOUT
	PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 2	-	-	EVEN TOUT
	PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 3	-	-	EVEN TOUT
	PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 4/FMC_ BA0	-	-	EVEN TOUT
Port G	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A1 5/FMC_ BA1	-	-	EVEN TOUT
	PG6	-	-	-	-	-	-	-	-	-	-	-	-	-	DCMI_D 12	LCD_R7	EVEN TOUT
	PG7	-	-	-	-	-	-	-	-	USART6 _CK	-	-	-	FMC_IN T	DCMI_D 13	LCD_CL K	EVEN TOUT
	PG8	-	-	-	-	-	SPI6_NS S	-	SPDIFRX _IN2	USART6 _RTS	-	-	ETH_PPS _OUT	FMC_SD CLK	-	-	EVEN TOUT
	PG9	-	-	-	-	-	-	-	SPDIFRX _IN3	USART6 _RX	QUADSP I_BK2_IO 2	SAI2_FS_ B	-	FMC_NE 2/FMC_ NCE	DCMI_V SYNC	-	EVEN TOUT
	PG10	-	-	-	-	-	-	-	-	-	LCD_G3	SAI2_SD_ B	-	FMC_NE 3	DCMI_D 2	LCD_B2	EVEN TOUT

Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

5.3 Operating conditions

5.3.1 General operating conditions

Symbol	Parameter	Conditions ⁽¹⁾		Min	Тур	Max	Unit	
		Power Scale 3 (VOS[1:0] bits in PWR_CR register = 0x01), Regu ON, over-drive OFF	ulator	0	-	144		
		Power Scale 2 (VOS[1:0] bits in	Over- drive OFF		-	168		
f _{HCLK}	Internal AHB clock frequency	PWR_CR register = 0x10), Regulator ON	Over- drive ON	0	-	180		
		Power Scale 1 (VOS[1:0] bits in PWR CR register= 0x11),	Over- drive OFF	0	-	180	MHz	
		Regulator ON	Over- drive ON		-	216 ⁽²⁾		
f	Internal APB1 clock frequency	Over-drive OFF		0	-	45		
f _{PCLK1}	Internal AFBT Clock frequency	Over-drive ON		0	-	54		
f _{PCLK2}	Internal APB2 clock frequency	Over-drive OFF		0	-	90		
'PCLK2		Over-drive ON		0	-	108		
V_{DD}	Standard operating voltage	-		1.7 ⁽³⁾	-	3.6		
V _{DDA} ⁽⁴⁾	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as V	(6)	1.7 ⁽³⁾	-	2.4		
(5)	Analog operating voltage (ADC limited to 2.4 M samples)	Must be the same potential as $V_{DD}{}^{(6)}$		2.4	-	3.6	v	
	USB supply voltage (supply	USB not used	1.7	3.3	3.6	1		
V _{DDUSB}	voltage for PA11,PA12, PB14 and PB15 pins)	USB used		3.0	-	3.6		
V_{BAT}	Backup operating voltage	-		1.65	-	3.6		

Table 17. General operating conditions

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to f_{HCLK} frequency and V_{DD} range (see *Table 18: Limitations depending on the operating power supply range*).
- When the regulator is ON, the voltage scaling and over-drive mode are adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \le 144$ MHz
 - Scale 2 for 144 MHz < $f_{HCLK} \le 168$ MHz
 - Scale 1 for 168 MHz < $f_{HCLK} \le 216$ MHz. The over-drive is only ON at 216 MHz.
- When the regulator is OFF, the V12 is provided externally as described in *Table 17: General operating conditions*:
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/4$, and $f_{PCLK2} = f_{HCLK}/2$.
- External clock frequency is 25 MHz and PLL is ON when f_{HCLK} is higher than 25 MHz.
- The typical current consumption values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and for T_A= 25 °C unless otherwise specified.
- The maximum values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and a maximum ambient temperature (T_A) unless otherwise specified.
- For the voltage range 1.7 V \leq V_{DD} \leq 3.6 V, the maximum frequency is 180 MHz.

Table 24. Typical and maximum current consumption in Run mode, code with data processingrunning from ITCM RAM, regulator ON

Symbol	Doromotor	Conditions	£ (MILI-)	Turn		Max ⁽¹⁾		Unit		
I _{DD}	Parameter	Conditions	f _{HCLK} (MHz)	(MHz) Typ T _A =		T _A = 85 °C	T _A = 105 °C	Unit		
		All peripherals enabled ⁽²⁾⁽³⁾	216	178	208 ⁽⁴⁾	230 ⁽⁴⁾	-			
					200	165	193	212	230	
					180	147	171 ⁽⁴⁾	185 ⁽⁴⁾	198 ⁽⁴⁾	
			168	130	152	164	177			
	Supply		144	100	116	127	137			
			60	44	52	63	73			
			25	21	25	36 46				
'DD	current in RUN mode		216	102	120 ⁽⁴⁾	141 ⁽⁴⁾	-	mA		
			200	95	111	131	149			
			180	84	98 ⁽⁴⁾	112 ⁽⁴⁾	125 ⁽⁴⁾			
		All peripherals disabled ⁽³⁾	168	75	87	100	112			
			144	58	67	77	88			
			60 25		30	41	51			
			25	12	15	25	36			

1. Guaranteed by characterization results.

STM32F745xx STM32F746xx

- 2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
- 3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.
- 4. Guaranteed by test in production.

Table 25. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator ON

Sympol	Doromotor	Conditions	£ (MILI-)	Turn		Max ⁽¹⁾		Unit	
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			216	186	213	234	-		
				200	172	197	217	235	
			180	152	175	189	202		
		All peripherals enabled ⁽²⁾⁽³⁾	168	135	155	168	180		
		enabled	144	104	119	130	140		
			60	46	53	64	74		
	Supply current in		25	22	25	36	47	mA	
I _{DD}	RUN mode		216	108	124	146	-	ШA	
			200	100	115	135	154		
			180	89	102	116	129		
		All peripherals disabled ⁽³⁾	168	79	90	103	115		
			144	61	69	80	90		
			60	27	31	42	52		
			25	12	15	15 26 36		1	

1. Guaranteed by characterization results.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

				Typ ⁽¹⁾			Max ⁽²⁾								
Symbol	Parameter	Conditions	Т	_A = 25 °	С	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit						
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v	v _{DD} = 3.3	v							
		Backup SRAM OFF, RTC and LSE OFF	1.7	1.9	2.3	5 ⁽³⁾	15 ⁽³⁾	31 ⁽³⁾							
								Backup SRAM ON, RTC and LSE OFF	2.4	2.6	3.0	6 ⁽³⁾	20 ⁽³⁾	40 ⁽³⁾	
		Backup SRAM OFF, RTC ON and LSE in low drive mode	2.1	2.4	2.9	6	19	39							
		Backup SRAM OFF, RTC ON and LSE in medium low drive mode	2.1	2.4	2.9	6	19	39							
	Supply current in Standby	Backup SRAM OFF, RTC ON and LSE in medium high drive mode	2.2	2.5	3.0	7	20	40							
IDD_STBY	mode	Backup SRAM OFF, RTC ON and LSE in high drive mode	2.3	2.6	3.1	7	20	42	μA						
		Backup SRAM ON, RTC ON and LSE in low drive mode	2.7	3.0	3.6	8	23	49							
		Backup SRAM ON, RTC ON and LSE in Medium low drive mode	2.7	3.0	3.6	8	23	49							
	a r E	Backup SRAM ON, RTC ON and LSE in Medium high drive mode	2.8	3.1	3.7	8	24	50							
		Backup SRAM ON, RTC ON and LSE in High drive mode	2.9	3.2	3.8	8	25	51							

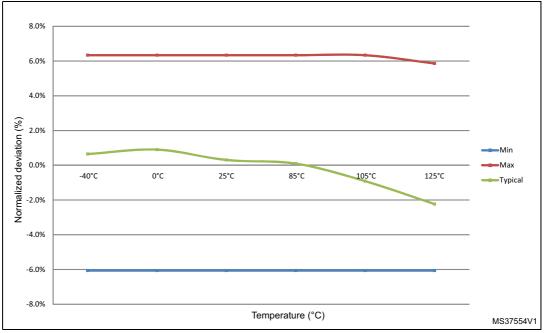
Table 32. Typical and maximum current consumptions in Standby mode
--

1. PDR is OFF for V_{DD} =1.7V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μ A.

2. Guaranteed by characterization results.

3. Based on characterization, tested in production.

Low-speed internal (LSI) RC oscillator


Table 42. LSI oscillator characteristics ⁽¹⁾)
---	---

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	17	32	47	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	15	40	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.4	0.6	μA

1. V_{DD} = 3 V, T_A = –40 to 105 $^\circ C$ unless otherwise specified.

2. Guaranteed by characterization results.

3. Guaranteed by design.

Figure 35. LSI deviation versus temperature

5.3.11 PLL characteristics

The parameters given in *Table 43* and *Table 44* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 43.	Main	PLL	characteristics
-----------	------	-----	-----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	
f _{PLL_OUT}	PLL multiplier output clock	-	24	-	216	
f _{PLL48_OUT}	48 MHz PLL multiplier output clock	-	-	48	75	MHz
f _{VCO_ОUT}	PLL VCO output	-	100	-	432	1

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{erase256kb}		Program/erase parallelism (PSIZE) = x 8	-	2.1	4	
	Sector (256 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.5	2.6	s
		Program/erase parallelism (PSIZE) = x 32	-	1	2	
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 8	-	8	16	
		Program/erase parallelism (PSIZE) = x 16	-	5.6	11.2	s
		Program/erase parallelism (PSIZE) = x 32	-	4	8	
		32-bit program operation	2.7	-	3	V
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	V

Table 48. Flash memory programming (continued)

2. The maximum programming time is measured after 100K erase operations.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE32KB}	Sector (32 KB) erase time	$T_A = 0$ to +40 °C	-	180	-	
t _{ERASE128KB}			-	450	-	ms
t _{ERASE256KB}	ASE256KB Sector (256 KB) erase time VPP		-	900	-	
t _{ME}	Mass erase time		-	6.9	-	S
V _{prog}	Programming voltage	-	2.7	-	3.6	V
V _{PP}	V _{PP} voltage range	-	7	-	9	V
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA
t _{VPP} ⁽³⁾ Cumulative time during which V _{PP} is applied		-	-	-	1	hour

Table 49. Flash memory programming with V_{PP}

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit	
ET	Total unadjusted error		±4	±7		
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V,	±2	±3		
EG	Gain error	V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V	±3	±6	LSB	
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3		
EL	Integral linearity error		±3	±6		

Table 65. ADC static accuracy at f_{ADC} = 36 MHz

Symbol	Parameter Test conditions		Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 67	- 72	-	

1. Guaranteed by characterization results.

Table 67. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz	64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 70	- 72	-	

1. Guaranteed by characterization results.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.17 does not affect the ADC accuracy.

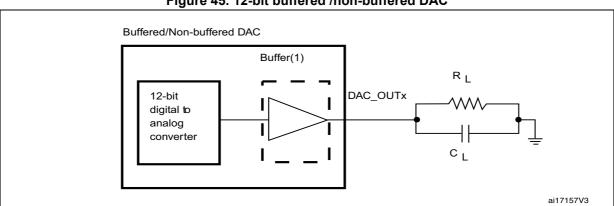


Figure 45. 12-bit buffered /non-buffered DAC

The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Communications interfaces 5.3.26

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.
- Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0385 reference manual) and when the I2CCLK frequency is greater than the minimum shown in the table below:

Symbol	Parameter	Con	dition	Min	Unit
		Standard-mode		2	
	I2CCLK frequency	Fast-mode	Analog Filtre ON DNF=0	10	
f(I2CCLK)			Analog Filtre OFF DNF=1	9	MHz
		Fast-mode Plus	Analog Filtre ON DNF=0	22.5	
		Fast-mode Flus	Analog Filtre OFF DNF=1	16	

Table 74. Minimum I2CCLK frequency in all I2C modes

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

5.3.27 FMC characteristics

Unless otherwise specified, the parameters given in *Table 88* to *Table 101* for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.17: I/O port characteristics for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 58 through *Figure 61* represent asynchronous waveforms and *Table 88* through *Table 95* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- Capcitive load CL = 30 pF

In all timing tables, the $T_{\mbox{HCLK}}$ is the HCLK clock period

Table 00. Asynemonous multiplexed i ortain/rort write remainings						
Symbol	Parameter	Min	Max	Unit		
t _{w(NE)}	FMC_NE low time 9T _{HCLK} 9T _{HCLK} +1		9T _{HCLK} +1.5			
t _{w(NWE)}	FMC_NWE low time	7T _{HCLK} –0.5	-0.5 7T _{HCLK} +0.5			
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high 6T _{HCLK} +2 -		-			
t _{h(NE_NWAIT)}	NWAIT) FMC_NEx hold time after FMC_NWAIT 4T _{HCLK} -1 -		-			

1. Guaranteed by characterization results.

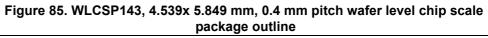
Synchronous waveforms and timings

Figure 62 through *Figure 65* represent synchronous waveforms and *Table 96* through *Table 99* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1;
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
- CL = 30 pF on data and address lines. CL = 10 pF on FMC_CLK unless otherwise specified.

In all timing tables, the T_{HCLK} is the HCLK clock period.

- For 2.7 V \leq V_{DD} \leq 3.6 V, maximum FMC_CLK = 108 MHz at CL=20 pF or 90 MHz at CL=30 pF (on FMC_CLK).
- For 1.71 V \leq V_{DD}<2.7 V, maximum FMC_CLK = 70 MHz at CL=10 pF (on FMC_CLK).



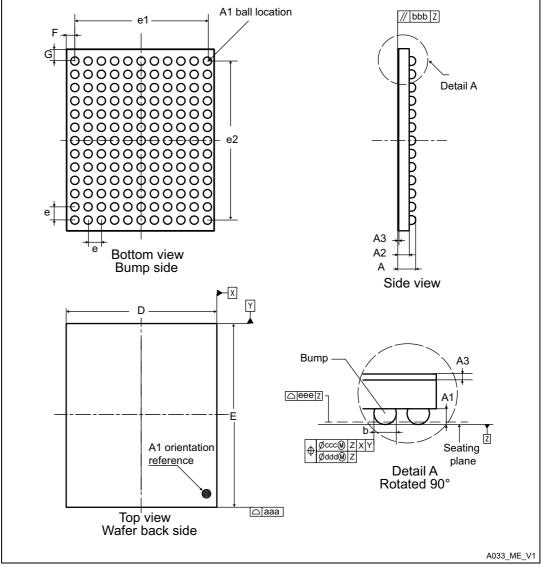
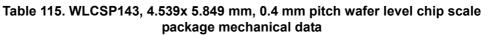

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	(x=1625) T _{HCLK}		
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	1.5	
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	1	-	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} +0.5	-]
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	

Table 97. Synchronous multiplexed PSRAM write timings⁽¹⁾



6.3 WLCSP143, 4.539x 5.849 mm, 0.4 mm pitch wafer level chip scale package information

1. Drawing is not to scale.

Symbol	millimeters		inches ⁽¹⁾			
Min	Min	Тур	Max	Min	Тур	Мах
A	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-

Figure 98. UFBGA176+25, 10 x 10 x 0.65 mm, ultra fine-pitch ball grid array
package recommended footprint

000000000000000000000000000000000000

Table 121. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask reg- istration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Table 127. Document revision history (continued)			
Date	Revision	Changes	
10-Dec-2015	3	Updated <i>Table 10: STM32F745xx and STM32F746xx pin and ball</i> <i>definition</i> additional functions column: WKUP1, 2, 3, 4, 5, 6 must be respectively PA0, PA2, PC1, PC13, PI8, PI11. Updated <i>Table 62: ADC characteristics</i> adding V _{REF-} negative voltage reference. Update <i>Table 14: Voltage characteristics</i> adding table note 3. Updated <i>Table 69: Temperature sensor calibration values</i> memory addresses. Updated <i>Table 72: Internal reference voltage calibration values</i> memory addresses.	
18-Feb-2016	4	 Updated Table 52: EMI characteristics modifying 25/180 MHz by 25/200 MHz. Updated Figure 13: STM32F74xZx WLCSP143 ballout. Added TFBGA100 8 x 8 mm package: Updated Cover page. Updated Section 1: Description. Updated Table 2: STM32F745xx and STM32F746xx features and peripheral counts. Updated Table 4: Regulator ON/OFF and internal reset ON/OFF availability. Updated Section 3: Pinouts and pin description adding Figure 12: STM32F74xVx TFBGA100 ballout and adding TFBGA100 ball description in Table 10: STM32F745xx and STM32F746xx pin and ball definition. Updated Table 53: ESD absolute maximum ratings. Updated Table 53: ESD absolute maximum ratings. Updated Section 6: Package information adding TFBGA100 package information and adding thermal resistance in Table 124: Package thermal characteristics. Updated Table 10: STM32F745xx and STM32F746xx pin and ball definition note 5. Updated Table 10: STM32F745xx and STM32F746xx pin and ball definition note 5. Updated Table 10: STM32F745xx and STM32F746xx pin and ball definition note 5. Updated Table 10: STM32F745xx and STM32F746xx pin and ball definition note 5. 	

