

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f746zgt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Description

The STM32F745xx and STM32F746xx devices are based on the high-performance ARM[®] Cortex[®]-M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex[®]-M7 core features a single floating point unit (SFPU) precision which supports all ARM[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances the application security.

The STM32F745xx and STM32F746xx devices incorporate high-speed embedded memories with a Flash memory up to 1 Mbyte, 320 Kbytes of SRAM (including 64 Kbytes of Data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM (for critical real-time routines), 4 Kbytes of backup SRAM available in the lowest power modes, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memories access.

All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, thirteen generalpurpose 16-bit timers including two PWM timers for motor control and one low-power timer available in Stop mode, two general-purpose 32-bit timers, a true random number generator (RNG). They also feature standard and advanced communication interfaces.

- Up to four I²Cs
- Six SPIs, three I²Ss in duplex mode. To achieve the audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI),
- Two CANs
- Two SAI serial audio interfaces
- An SDMMC host interface
- Ethernet and camera interfaces
- LCD-TFT display controller
- Chrom-ART Accelerator™
- SPDIFRX interface
- HDMI-CEC

Advanced peripherals include an SDMMC interface, a flexible memory control (FMC) interface, a Quad-SPI Flash memory interface, a camera interface for CMOS sensors. Refer to *Table 2: STM32F745xx and STM32F746xx features and peripheral counts* for the list of peripherals available on each part number.

The STM32F745xx and STM32F746xx devices operate in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) is available on all the packages except LQFP100 for a greater power supply choice.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to *Section 2.17.2: Internal reset OFF*). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F745xx and STM32F746xx devices offer devices in 8 packages ranging from 100 pins to 216 pins. The set of included peripherals changes with the device chosen.

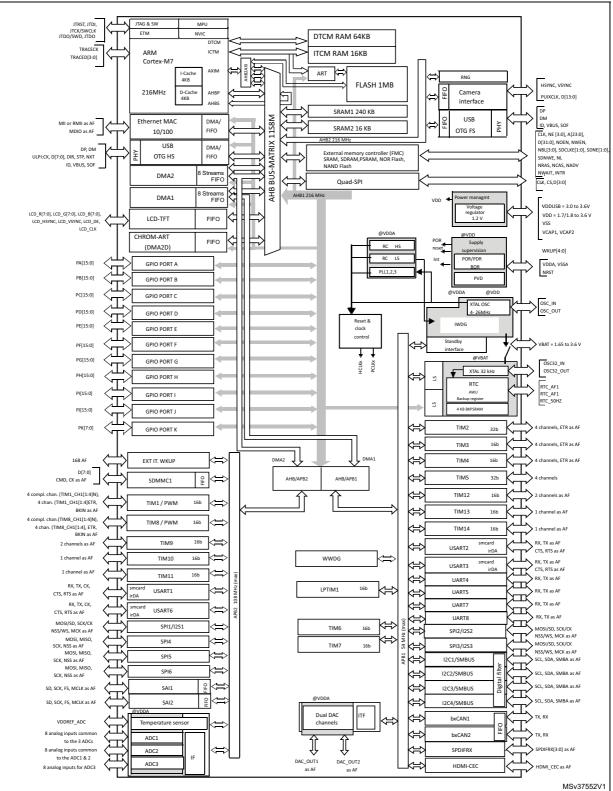


Figure 2. STM32F745xx and STM32F746xx block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 216 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 108 MHz or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2.22.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

2.22.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F74xxx devices (see *Table 6* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F74xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

features ⁽¹⁾	USART1/2/3/6	UART4/5/7/8
Smartcard mode	Х	-
Single-wire half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	Х
LIN mode	Х	Х
Dual clock domain	Х	Х
Receiver timeout interrupt	Х	Х
Modbus communication	Х	Х
Auto baud rate detection	Х	Х
Driver Enable	Х	х

Table 8. USART implementation (continued)

1. X: supported.

2.25 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S)

The devices feature up to six SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 50 Mbits/s, SPI2 and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation. All SPIs can be served by the DMA controller.

Three standard I^2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I^2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

2.26 Serial audio interface (SAI)

The devices embed two serial audio interfaces.

The serial audio interface is based on two independent audio subblocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be

configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

DocID027590 Rev 4

5

DocID027590 Rev 4

77/227

				Table 12	2. STM32	F/45XX	and SI	VI32F/4	bxx alte	rnate fui	nction in	apping	(continu	ea)			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PA12	-	TIM1_ET R	-	-	-	-	-	USART1 _RTS	SAI2_FS _B	CAN1_T X	OTG_FS_ DP	-	-	-	LCD_R5	EVEN TOUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
Port A	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PA15	JTDI	TIM2_C H1/TIM2 _ETR	-	-	HDMI- CEC	SPI1_NS S/I2S1_ WS	SPI3_NS S/I2S3_ WS	-	UART4_ RTS	-	-	-	-	-	-	EVEN TOUT
	PB0	-	TIM1_C H2N	TIM3_C H3	TIM8_CH 2N	-	-	-	-	UART4_ CTS	LCD_R3	OTG_HS_ ULPI_D1	ETH_MII_ RXD2	-	-	-	EVEN TOUT
	PB1	-	TIM1_C H3N	TIM3_C H4	TIM8_CH 3N	-	-	-	-	-	LCD_R6	OTG_HS_ ULPI_D2	ETH_MII_ RXD3	-	-	-	EVEN TOUT
	PB2	-	-	-	-	-	-	SAI1_SD _A	SPI3_MO SI/I2S3_ SD		QUADSP I_CLK	-	-	-	-	-	EVEN TOUT
	PB3	JTDO/T RACES WO	TIM2_C H2	-	-	-	SPI1_SC K/I2S1_ CK	SPI3_SC K/I2S3_ CK	-	-	-	-	-	-	-	-	EVEN TOUT
Port B	PB4	NJTRST	-	TIM3_C H1	-	-	SPI1_MI SO	SPI3_MI SO	SPI2_NS S/I2S2_ WS	-	-	-	-	-	-	-	EVEN TOUT
	PB5	-	-	TIM3_C H2	-	I2C1_SM BA	SPI1_M OSI/I2S1 _SD	SPI3_M OSI/I2S3 _SD	-	-	CAN2_R X	OTG_HS_ ULPI_D7	ETH_PPS _OUT	FMC_SD CKE1	DCMI_D 10	-	EVEN TOUT
	PB6	-	-	TIM4_C H1	HDMI- CEC	I2C1_SC L	-	-	USART1 _TX	-	CAN2_T X	QUADSPI _BK1_NC 	-	FMC_SD NE1	DCMI_D 5	-	EVEN TOUT
	PB7	-	-	TIM4_C H2	-	I2C1_SD A	-	-	USART1 _RX	-	-	-	-	FMC_NL	DCMI_V SYNC	-	EVEN TOUT
	PB8	-	-	TIM4_C H3	TIM10_C H1	I2C1_SC L	-	-	-	-	CAN1_R X		ETH_MII_ TXD3	SDMMC 1_D4	DCMI_D 6	LCD_B6	EVEN TOUT

Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

80/227

DocID027590 Rev 4

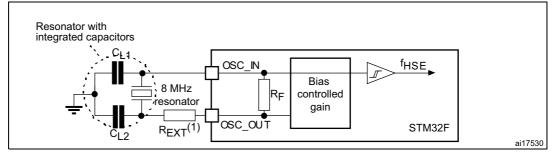

				Table 12	2. STM32	F/45XX	and ST	VI32F/4	oxx alle	nate iui	iction n	apping	(continu	ea)			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PD0	-	-	-	-	-	-	-	-	-	CAN1_R X	-	-	FMC_D2	-	-	EVEN TOUT
	PD1	-	-	-	-	-	-	-	-	-	CAN1_T X	-	-	FMC_D3	-	-	EVEN TOUT
	PD2	TRACE D2	-	TIM3_ET R	-	-	-	-	-	UART5_ RX	-	-	-	SDMMC 1_CMD	DCMI_D 11	-	EVEN TOUT
	PD3	-	-	-	-	-	SPI2_SC K/I2S2_ CK	-	USART2 _CTS	-	-	-	-	FMC_CL K	DCMI_D 5	LCD_G7	EVEN TOUT
	PD4	-	-	-	-	-	-	-	USART2 _RTS	-	-	-	-	FMC_N OE	-	-	EVEN TOUT
	PD5	-	-	-	-	-	-	-	USART2 _TX	-	-	-	-	FMC_N WE	-	-	EVEN TOUT
	PD6	-	-	-	-	-	SPI3_M OSI/I2S3 _SD	SAI1_SD _A	USART2 _RX	-	-	-	-	FMC_N WAIT	DCMI_D 10	LCD_B2	EVEN TOUT
Port D	PD7	-	-	-	-	-	-	-	USART2 _CK	SPDIFRX _IN0	-	-	-	FMC_NE 1	-	-	EVEN TOUT
	PD8	-	-	-	-	-	-	-	USART3 _TX	SPDIFRX _IN1	-	-	-	FMC_D1 3	-	-	EVEN TOUT
	PD9	-	-	-	-	-	-	-	USART3 _RX	-	-	-	-	FMC_D1 4	-	-	EVEN TOUT
	PD10	-	-	-	-	-	-	-	USART3 _CK	-	-	-	-	FMC_D1 5	-	LCD_B3	EVEN TOUT
	PD11	-	-	-	-	I2C4_SM BA	-	-	USART3 _CTS	-	QUADSP I_BK1_IO 0	SAI2_SD_ A	-	FMC_A1 6/FMC_ CLE	-	-	EVEN TOUT
	PD12	-	-	TIM4_C H1	LPTIM1_I N1	I2C4_SC L	-	-	USART3 _RTS	-	QUADSP I_BK1_IO 1	SAI2_FS_ A	-	FMC_A1 7/FMC_ ALE	-	-	EVEN TOUT
	PD13	-	-	TIM4_C H2	LPTIM1_ OUT	I2C4_SD A	-	-	-	-	QUADSP I_BK1_IO 3	SAI2_SC K_A	-	FMC_A1 8	-	-	EVEN TOUT

Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 32*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
	LSE current consumption	LSEDRV[1:0]=00 Low drive capability	-	250	-			
1		LSEDRV[1:0]=10 Medium low drive capability	-	300	-	nA		
I _{DD}		LSEDRV[1:0]=01 Medium high drive capability	-	370	-	ΠA		
		LSEDRV[1:0]=11 High drive capability	-	480	-			

Table 40. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

				,	Ŧ		
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
		Cycle to cycle at	RMS	-	90	-	
Jitter ⁽³⁾	Master I2S clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency o 12.288 MHz N = 432, R = 5 on 1000 samples	-	90	-	ps	
	WS I2S clock jitter	Cycle to cycle at 48 k on 1000 samples	-	400	-	ps	
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	mA	
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	_	0.40 0.85	mA

Table 44. PLLI2S characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Table 45. PLLISAI characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	
f _{PLLSAIP_OUT}	PLLSAI multiplier output clock for 48 MHz	-	-	48	75	
f _{PLLSAIQ_OUT}	PLLSAI multiplier output clock for SAI	-	-	-	216	MHz
f _{PLLSAIR_OUT}	PLLSAI multiplier output clock for LCD-TFT	-	-	216		
f _{VCO_OUT}	PLLSAI VCO output	-	100	-	432	
+	PLLSAI lock time	VCO freq = 100 MHz	75	-	200	
t _{LOCK}		VCO freq = 432 MHz	100	-	300	μs

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit	
ET	Total unadjusted error		±4	±7		
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V,	±2	±3		
EG	Gain error	V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V	±3	±6	LSB	
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3		
EL	Integral linearity error		±3	±6		

Table 65. ADC static accuracy at f_{ADC} = 36 MHz

1. Guaranteed by characterization results.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 67	- 72	-	

1. Guaranteed by characterization results.

Table 67. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz	64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 70	- 72	-	

1. Guaranteed by characterization results.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.17 does not affect the ADC accuracy.

Symbol	Parameter	Min	Тур	Max	Unit	Comments
			- 76			With no load, middle code (0x800) on the
	DAC DC V _{DDA} current	-	280	380	μA	inputs
I _{DDA} ⁽⁴⁾	consumption in quiescent mode ⁽³⁾	-	475	625	μA	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	(difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	(0x800) and the ideal value = V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} ⁽⁴⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	3	6	μs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
t _{WAKEUP} ⁽⁴⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
PSRR+ ⁽²⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

 Table 73. DAC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to *Section 2.17.2: Internal reset OFF*).

2. Guaranteed by design.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization results.

Г

Т

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 76* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Т

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode SPI1,4,5,6 2.7≤VDD≤3.6			54 ⁽²⁾	
		Master mode SPI1,4,5,6 1.71≤VDD≤3.6			27	
		Master transmitter mode SPI1,4,5,6 1.71≤VDD≤3.6			54	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave receiver mode SPI1,4,5,6 1.71≤VDD≤3.6	-	-	54	MHz
		Slave mode transmitter/full duplex SPI1,4,5,6 2.7≤VDD≤3.6			50 ⁽³⁾	
		Slave mode transmitter/full duplex SPI1,4,5,6 1.71≤VDD≤3.6			38 ⁽³⁾	
		Master & Slave mode SPI2,3 1.71≤VDD≤3.6			27	
tsu(NSS)	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
th(NSS)	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	ns
tw(SCKH) tw(SCKL)	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	

USB OTG full speed (FS) characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB OTG full speed transceiver startup time	1	μs

Table 79. USB OTG full speed startup time

1. Guaranteed by design.

Syn	nbol	Parameter	Conditions	Min. (1)	Тур.	Max. (1)	Unit
V _{DDUSB}		USB OTG full speed transceiver operating voltage	-	3.0 ⁽²⁾	-	3.6	V
Input levels	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-	
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V
V _{SE} ⁽³⁾		Single ended receiver threshold	-	1.3	-	2.0	
Output V _{OL}		Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 ${\sf V}^{(4)}$	-	-	0.3	v
levels V _{OH}		Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}^{(4)}$	2.8	-	3.6	v
R _{PD}		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	V _{IN} = V _{DD}	17	21	24	
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDD	0.65	1.1	2.0	kΩ
		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1	
R	PU	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	

Table 80. USB OTG full speed DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DDUSB} voltage range.

- 3. Guaranteed by design.
- 4. R_L is the load connected on the USB OTG full speed drivers.

Note:

When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 μ A current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

1. Guaranteed by characterization results.

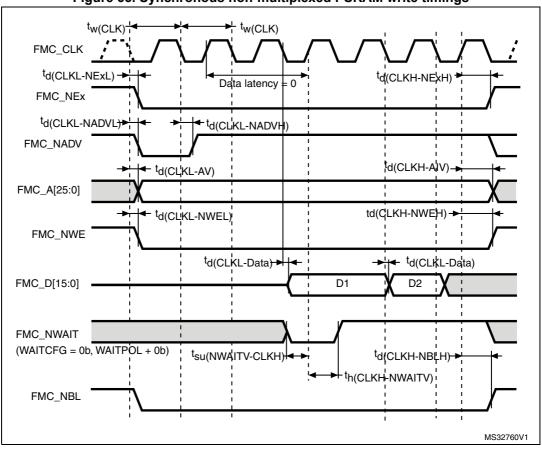


Figure 65. Synchronous non-multiplexed PSRAM write timings

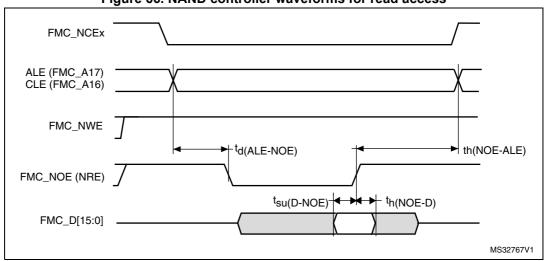


Figure 66. NAND controller waveforms for read access

Figure 67. NAND controller waveforms for write access

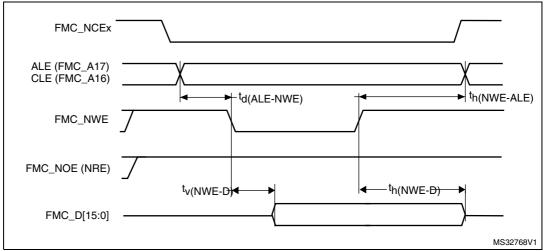
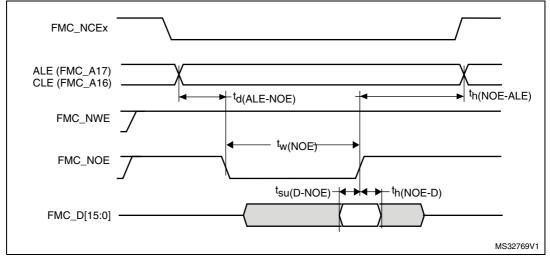
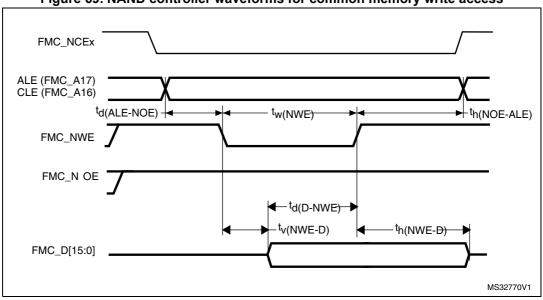




Figure 68. NAND controller waveforms for common memory read access

Figure 69. NAND controller waveforms for common memory write access

Table 100. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} -0.5	4T _{HCLK}	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	13	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	3	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} -0.5	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} -2	-	

1. Guaranteed by characterization results.

Table 101. Switching characteristics for NAND Flash write cycles ⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NWE)}	FMC_NWE low width	4T _{HCLK} -0.5	4T _{HCLK}	
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	3T _{HCLK} -1	-	ns
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{HCLK} -3	-	115
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	3T _{HCLK} -0.5	
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} -2	-	

1. Guaranteed by characterization results.

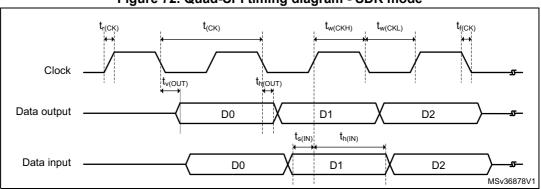
Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} -0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	4	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	3.5	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	0.5	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	0	-	ns
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	0.5	115
t _{h(SDCLKL} - SDNE)	Chip select hold time	0	-	
t _d (SDCLKL-SDNRAS)	SDNRAS valid time	-	0.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL} -SDNCAS)	SDNCAS valid time	-	0.5	
t _{d(SDCLKL-SDNCAS)}	SDNCAS hold time	0	-	

Table 105. LPSDR SDRAM write timings⁽¹⁾

1. Guaranteed by characterization results.

5.3.28 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 106* and *Table 107* for Quad-SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 17: General operating conditions*, with the following configuration:


- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 5.3.17: I/O port characteristics for more details on the input/output alternate function characteristics.

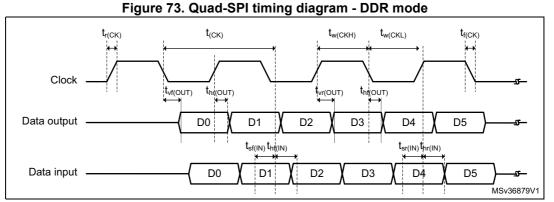

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Eck1/t(CK)	Quad-SPI clock	2.7 V⊴V _{DD} <3.6 V CL=20 pF	-	-	108	MHz
Fck1/t(CK)	frequency	1.71 V <v<sub>DD<3.6 V CL=15 pF</v<sub>	-	-	100	

Table 106. Quad-SPI characteristics in SDR mode⁽¹⁾

5.3.29 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 108* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits

Table 108. DCMI characteristics ⁽¹⁾
--

Symbol	Parameter	Min	Max	Unit
-	Frequency ratio DCMI_PIXCLK/f _{HCLK}		0.4	
DCMI_PIXCLK	CLK Pixel clock input		54	MHz
D _{Pixel}	Pixel Clock input duty cycle		70	%
t _{su(DATA)}	Data input setup time	3.5	-	
t _{h(DATA)}	Data input hold time	0	-	
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input setup time	2.5	-	ns
t _{h(HSYNC)} t _{h(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input hold time	0	-	

1. Guaranteed by characterization results.

			data				
Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 112. LQPF100,	14 x 14 mm	100-pin low-profile	quad flat package mechanical
		data	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

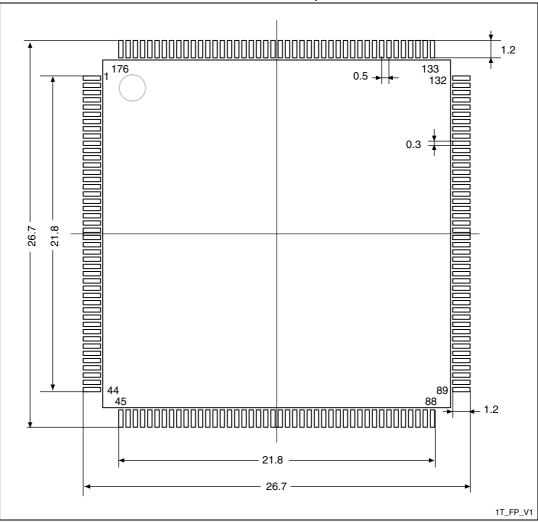


Figure 92. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

6.6 LQFP208, 28 x 28 mm low-profile quad flat package information

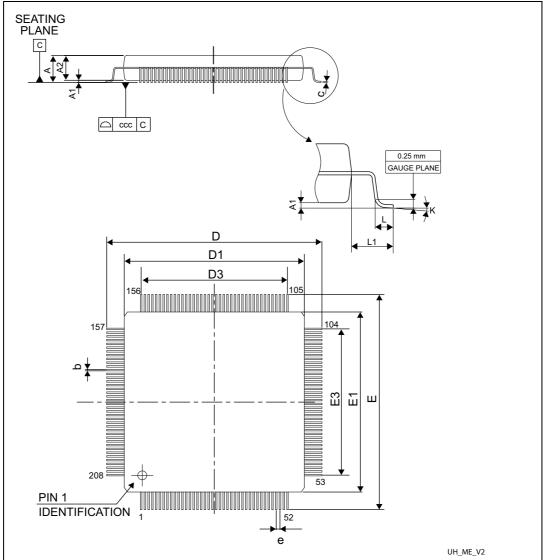


Figure 94. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 119. LQFP208, 2	28 x 28 mm, 208-pin low-profile quad flat package
	mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
A	-	-	1.600		-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571

DocID027590 Rev 4

