

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SD, SPDIF-Rx, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	143-UFBGA, WLCSP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f746zgy6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Embedded Flash memory

The STM32F745xx and STM32F746xx devices embed a Flash memory of up to 1 Mbyte available for storing programs and data.

2.4 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify the data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean of verifying the Flash memory integrity. The CRC calculation unit helps to compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.5 Embedded SRAM

All the devices features:

- System SRAM up to 320 Kbytes:
 - SRAM1 on AHB bus Matrix: 240 Kbytes
 - SRAM2 on AHB bus Matrix: 16 Kbytes
 - DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 64 Kbytes for critical real-time data.
- Instruction RAM (ITCM-RAM) 16 Kbytes:
 - It is mapped on TCM interface and reserved only for CPU Execution/Instruction useful for critical real-time routines.

The Data TCM RAM is accessible by the GP-DMAs and peripherals DMAs through specific AHB slave of the CPU. The TCM RAM instruction is reserved only for CPU. It is accessed at CPU clock speed with 0-wait states.

• 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.6 AXI-AHB bus matrix

The STM32F745xx and STM32F746xx system architecture is based on 2 sub-systems:

- An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol:
 - 3x AXI to 32-bit AHB bridges connected to AHB bus matrix
 - 1x AXI to 64-bit AHB bridge connected to the embedded flash
- A multi-AHB Bus-Matrix:
 - The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, Quad-SPI, AHB and APB peripherals) and ensures a seamless and an efficient operation even when several high-speed peripherals work simultaneously.

DocID027590 Rev 4

2.18.3 Regulator ON/OFF and internal reset ON/OFF availability

Table	Table 4. Regulator ON/OFF and Internal reset ON/OFF availability										
Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF							
LQFP100	Yes	No	Yes	No							
LQFP144, LQFP208	The second secon	No									
TFBGA100, LQFP176, WLCSP143, UFBGA176, TFBGA216	Yes BYPASS_REG set to V _{SS}	Yes BYPASS_REG set to V _{DD}	Yes PDR_ON set to V _{DD}	Yes PDR_ON set to VSS							

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

2.19 Real-time clock (RTC), backup SRAM and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V_{BAT} mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the V_{BAT} pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator(LSE)
- The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

2.22.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

2.22.4 Low-power timer (LPTIM1)

The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.

This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous / one-shot mode
- Selectable software / hardware input trigger
- Selectable clock source:
- Internal clock source: LSE, LSI, HSI or APB clock
- External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application)
- Programmable digital glitch filter
- Encoder mode

2.22.5 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

2.22.6 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.22.7 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

Pinouts and pin description

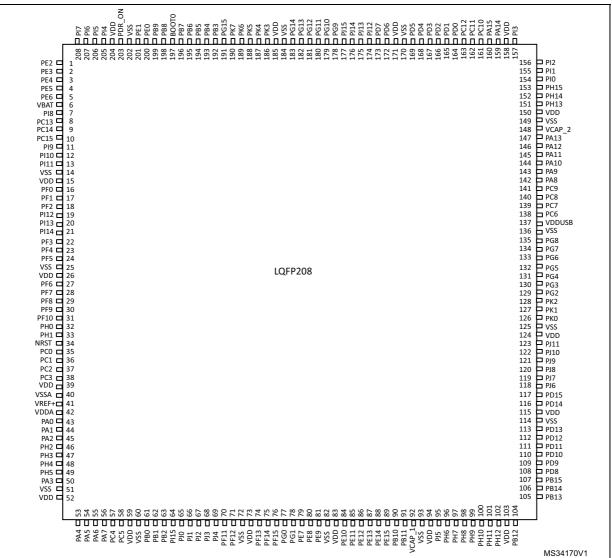


Figure 16. STM32F74xBx LQFP208 pinout

1. The above figure shows the package top view.

STM32F745xx STM32F746xx

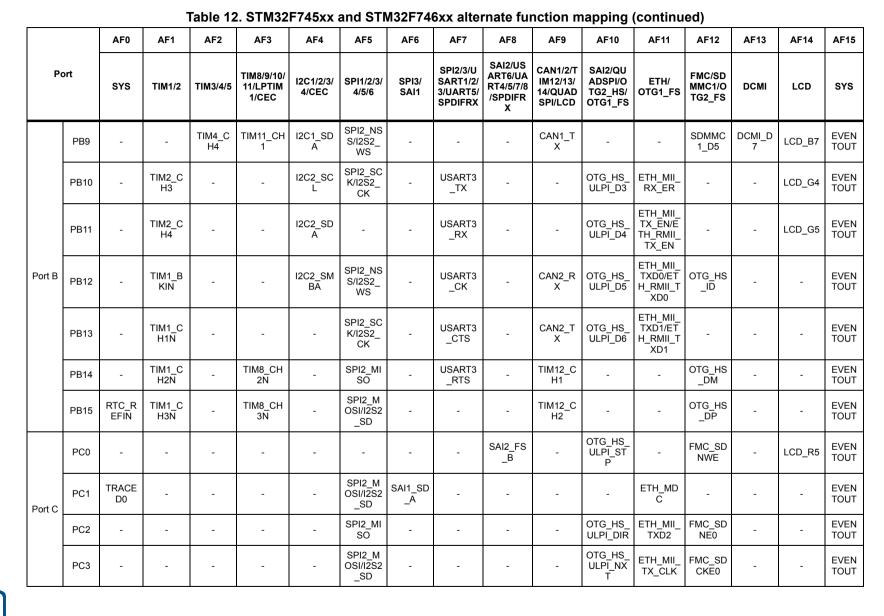

		11. FMC pin defin		
Pin name	NOR/PSRAM/SR AM	NOR/PSRAM Mux	NAND16	SDRAM
PF0	A0	-	-	A0
PF1	A1	-	-	A1
PF2	A2	-	-	A2
PF3	A3	-	-	A3
PF4	A4	-	-	A4
PF5	A5	-	-	A5
PF12	A6	-	-	A6
PF13	A7	-	-	A7
PF14	A8	-	-	A8
PF15	A9	-	-	A9
PG0	A10	-	-	A10
PG1	A11	-	-	A11
PG2	A12	-	-	A12
PG3	A13	-	-	-
PG4	A14	-	-	BA0
PG5	A15	-	-	BA1
PD11	A16	A16	CLE	-
PD12	A17	A17	ALE	-
PD13	A18	A18	-	-
PE3	A19	A19	-	-
PE4	A20	A20	-	-
PE5	A21	A21	-	-
PE6	A22	A22	-	-
PE2	A23	A23	-	-
PG13	A24	A24	-	-
PG14	A25	A25	-	-
PD14	D0	DA0	D0	D0
PD15	D1	DA1	D1	D1
PD0	D2	DA2	D2	D2
PD1	D3	DA3	D3	D3
PE7	D4	DA4	D4	D4
PE8	D5	DA5	D5	D5
PE9	D6	DA6	D6	D6
PE10	D7	DA7	D7	D7

Table 11. FMC pin definition

78/227

DocID027590 Rev 4

Pinouts and pin description

STM32F745xx STM32F746xx

5

Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

Table 12. STMS2F745XX and STMS2F746XX alternate function mapping (continued)																	
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	SAI2/QU ADSPI/O TG2_HS/ OTG1_FS	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PC4	-	-	-	-	-	I2S1_M CK	-	-	SPDIFRX _IN2	-	-	ETH_MII_ RXD0/ET H_RMII_ RXD0	FMC_SD NE0	-	-	EVEN TOUT
	PC5	-	-	-	-	-	-	-	-	SPDIFRX _IN3	-	-	ETH_MII_ RXD1/ET H_RMII_ RXD1	FMC_SD CKE0	-	-	EVEN TOUT
	PC6	-	-	TIM3_C H1	TIM8_CH 1	-	I2S2_M CK	-	-	USART6 _TX	-	-	-	SDMMC 1_D6	DCMI_D 0	LCD_HS YNC	EVEN TOUT
	PC7	-	-	TIM3_C H2	TIM8_ CH2	-	-	I2S3_M CK	-	USART6 _RX	-	-	-	SDMMC 1_D7	DCMI_D 1	LCD_G6	EVEN TOUT
	PC8	TRACE D1	-	TIM3_C H3	TIM8_ CH3	-	-	-	UART5_ RTS	USART6 _CK	-	-	-	SDMMC 1_D0	DCMI_D 2	-	EVEN TOUT
Port C	PC9	MCO2	-	TIM3_C H4	TIM8_ CH4	I2C3_SD A	I2S_CKI N	-	UART5_ CTS	-	QUADSP I_BK1_IO 0	-	-	SDMMC 1_D1	DCMI_D 3	-	EVEN TOUT
	PC10	-	-	-	-	-	-	SPI3_SC K/I2S3_ CK	USART3 _TX	UART4_T X	QUADSP I_BK1_IO 1	-	-	SDMMC 1_D2	DCMI_D 8	LCD_R2	EVEN TOUT
	PC11	-	-	-	-	-	-	SPI3_MI SO	USART3 _RX	UART4_ RX	QUADSP I_BK2_N CS	-	-	SDMMC 1_D3	DCMI_D 4	-	EVEN TOUT
	PC12	TRACE D3	-	-	-	-	-	SPI3_M OSI/I2S3 _SD	USART3 _CK	UART5_T X	-	-	-	SDMMC 1_CK	DCMI_D 9	-	EVEN TOUT
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT

STM32F745xx STM32F746xx

79/227

Pinouts and pin description

88/227

DocID027590 Rev 4

										indic id			(
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/CEC	I2C1/2/3/ 4/CEC	SPI1/2/3/ 4/5/6	SPI3/ SAI1	SPI2/3/U SART1/2/ 3/UART5/ SPDIFRX	SAI2/US ART6/UA RT4/5/7/8 /SPDIFR X	CAN1/2/T IM12/13/ 14/QUAD SPI/LCD	ADSPI/O	ETH/ OTG1_FS	FMC/SD MMC1/O TG2_FS	DCMI	LCD	SYS
	PK0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G5	EVEN TOUT
	PK1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G6	EVEN TOUT
	PK2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G7	EVEN TOUT
Port K	PK3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B4	EVEN TOUT
POILK	PK4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B5	EVEN TOUT
	PK5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B6	EVEN TOUT
	PK6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B7	EVEN TOUT
	PK7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DE	EVEN TOUT

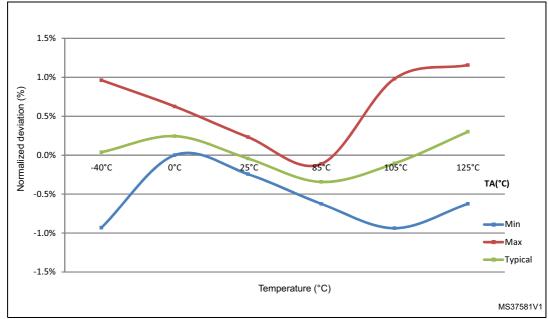
Table 12. STM32F745xx and STM32F746xx alternate function mapping (continued)

5.3.10 Internal clock source characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

			-			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user trimming step ⁽²⁾	-	-	-	1	%
100	Accuracy of the HSI oscillator	$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
ACC _{HSI}		$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA


Table 41. HS	loscillator	characteristics	(1)
--------------	-------------	-----------------	-----

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Factory calibrated, parts not soldered.

Figure 34. HSI deviation versus temperature

1. Guaranteed by characterization results.

			,	-			
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
		Cycle to cycle at	RMS	-	90	-	
Jitter ⁽³⁾	Master I2S clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency o 12.288 MHz N = 432, R = 5 on 1000 samples	-	90	-	ps	
	WS I2S clock jitter	Cycle to cycle at 48 k on 1000 samples	-	400	-	ps	
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	_	0.40 0.85	mA

Table 44. PLLI2S characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Table 45. PLLISAI characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	
f _{PLLSAIP_OUT}	PLLSAI multiplier output clock for 48 MHz	-	-	48	75	
f _{PLLSAIQ_OUT}	PLLSAI multiplier output clock for SAI	-	-	-	216	MHz
f _{PLLSAIR_OUT}	PLLSAI multiplier output clock for LCD-TFT	-	-	-	216	
f _{VCO_OUT}	PLLSAI VCO output	-	100	-	432	
+	PLLSAI lock time	VCO freq = 100 MHz	75	-	200	
t _{LOCK}		VCO freq = 432 MHz	100	-	300	μs

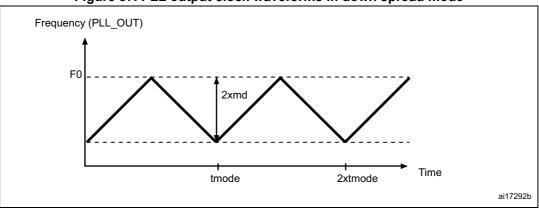


Figure 37. PLL output clock waveforms in down spread mode

5.3.13 Memory characteristics

Flash memory

The characteristics are given at TA = -40 to 105 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
	I _{DD} Supply current	Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	14	-				
I _{DD}		Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	17	-	mA			
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	24	-				

Table 47. Flash memory characteristics

Symbol	Parameter	Parameter Conditions			Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
		Program/erase parallelism (PSIZE) = x 8	-	400	800	
t _{erase32kb}	Sector (32 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	250	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	200	500	
		Program/erase parallelism (PSIZE) = x 8	-	1100	2400	
t _{erase128kb}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	800	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	500	1100	

STM32F745xx STM32F746xx

Symbol	Para	neter	Conditions	Min	Тур	Мах	Unit
	FT, TTa and NF		17/10/ 26/	0.45V _{DD} +0.3 ⁽¹⁾			
	high level volta	ge ⁽⁵⁾	1.7 V≤V _{DD} ≤3.6 V	0.7V _{DD} ⁽²⁾	-	-	
V _{IH}	BOOT I/O inpu	t high level	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	0.17V _{DD} +0.7 ⁽¹⁾			V
	voltage		1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.17 V _{DD} +0.7 V	-	-	
	FT, TTa and NF hysteresis	RST I/O input	1.7 V≤V _{DD} ≤3.6 V	10%V _{DD} ⁽³⁾	-	-	
V _{HYS}		thystoropia	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	0.1			v
BOOT I/O input	rysteresis	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.1	-	-		
	I/O input leakage current ⁽⁴⁾		V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	
l _{lkg}	I/O FT input leakage current ⁽⁵⁾		$V_{IN} = 5 V$	-	-	3	μA
Weak pull-up R _{PU} equivalent	R _{PU}	All pins except for PA10/PB12 (OTG_FS_ID ,OTG_HS_ID)	V _{IN} = V _{SS}	30	40	50	
	resistor ⁽⁶⁾	PA10/PB12 (OTG_FS_ID ,OTG_HS_ID)		7	10	14	ko
Weak pull- down equivalent resistor ⁽⁷⁾	All pins except for PA10/PB12 (OTG_FS_ID ,OTG_HS_ID)	V _{IN} = V _{DD}	30	40	50	- kΩ	
	resistor ⁽⁷⁾	PA10/PB12 (OTG_FS_ID ,OTG_HS_ID)		7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacita	ince	-	-	5	-	pF

Table 56. I/O static characteristics (continued)

1. Guaranteed by design.

2. Tested in production.

3. With a minimum of 200 mV.

4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O current injection susceptibility

- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 55: I/O current injection susceptibility
- 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).

DocID027590 Rev 4

- Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 38*.

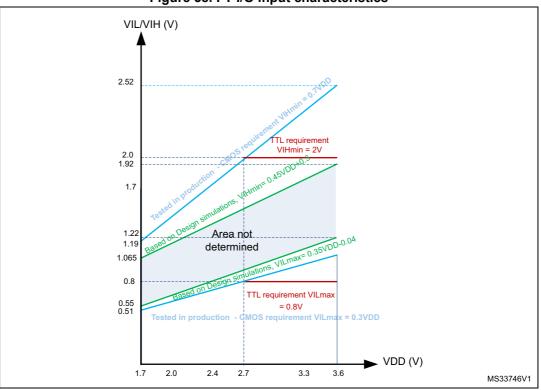


Figure 38. FT I/O input characteristics

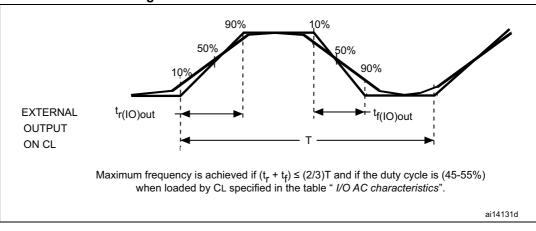
Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14, PC15 and PI8 which can sink or source up to ± 3 mA. When using the PC13 to PC15 and PI8 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 15*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 15*).

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		Maximum frequency ⁽³⁾	$C_L = 30 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	100 ⁽⁴⁾		
			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50		
	f		C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5	MHz	
	t _{max(IO)out}		C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾		
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100		
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5		
11			C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4		
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6		
	t _{f(IO)out} /		C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7	ns	
	t _{r(IO)out}		C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5		
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5		
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4		
-	tEXTIpw	Pulse width of external signals detected by the EXTI - controller		10	-	-	ns	


Table 58. I/O AC characteristics ⁽¹⁾⁽²⁾	(continued)
--	-------------

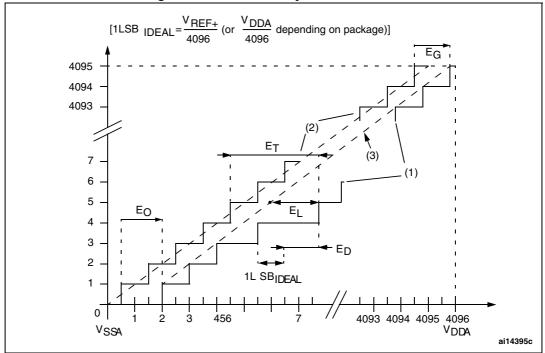
1. Guaranteed by design.

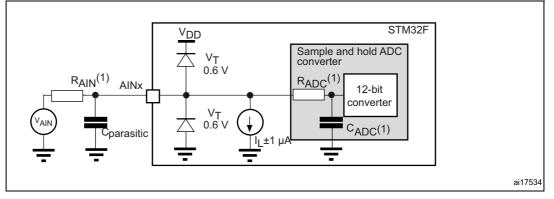
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F75xxx and STM32F74xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 39*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 39. I/O AC characteristics definition




Figure 41. ADC accuracy characteristics

- 1. See also Table 64.
- 2. Example of an actual transfer curve.
- 3. Ideal transfer curve.
- 4 End point correlation line.

 E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. 5.

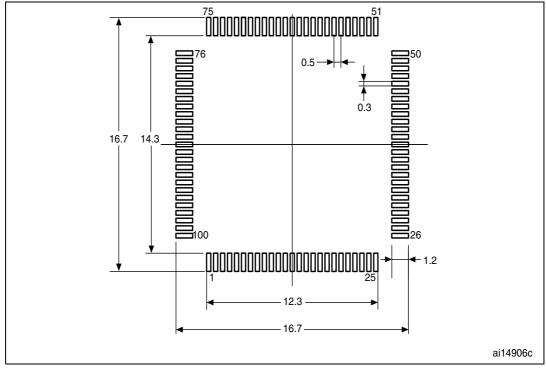
EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

- 1. Refer to Table 62 for the values of RAIN, RADC and CADC.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} +0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625) T _{HCLK}		-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low -		1.5	
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	- 3		
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	1	-	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} +0.5 -]
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	

Table 97. Synchronous multiplexed PSRAM write timings⁽¹⁾

1. Guaranteed by characterization results.



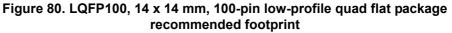

			data			
Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 112. LQPF100,	14 x 14 mm	100-pin low-profile	quad flat package mechanical
		data	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

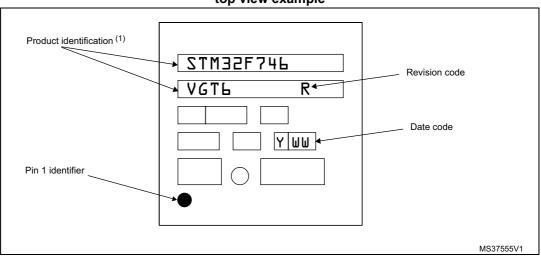


Figure 81. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.6 LQFP208, 28 x 28 mm low-profile quad flat package information

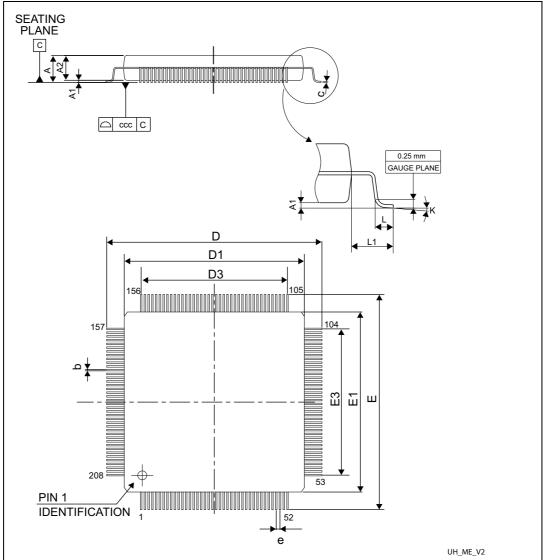


Figure 94. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 119. LQFP208, 2	28 x 28 mm, 208-pin low-profile quad flat package
	mechanical data

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
A	-	-	1.600		-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571

DocID027590 Rev 4

Dut	D	
Date	Revision	Changes
10-Dec-2015	3	Updated <i>Table 10: STM32F745xx and STM32F746xx pin and ball</i> <i>definition</i> additional functions column: WKUP1, 2, 3, 4, 5, 6 must be respectively PA0, PA2, PC1, PC13, PI8, PI11. Updated <i>Table 62: ADC characteristics</i> adding V _{REF-} negative voltage reference. Update <i>Table 14: Voltage characteristics</i> adding table note 3. Updated <i>Table 69: Temperature sensor calibration values</i> memory addresses. Updated <i>Table 72: Internal reference voltage calibration values</i> memory addresses.
18-Feb-2016	4	 Updated Table 52: EMI characteristics modifying 25/180 MHz by 25/200 MHz. Updated Figure 13: STM32F74xZx WLCSP143 ballout. Added TFBGA100 8 x 8 mm package: Updated Cover page. Updated Section 1: Description. Updated Table 2: STM32F745xx and STM32F746xx features and peripheral counts. Updated Table 4: Regulator ON/OFF and internal reset ON/OFF availability. Updated Section 3: Pinouts and pin description adding Figure 12: STM32F74xVx TFBGA100 ballout and adding TFBGA100 ball description in Table 10: STM32F745xx and STM32F746xx pin and ball definition. Updated Table 53: ESD absolute maximum ratings. Updated Table 53: ESD absolute maximum ratings. Updated Section 6: Package information adding TFBGA100 package information and adding thermal resistance in Table 124: Package thermal characteristics. Updated Table 10: STM32F745xx and STM32F746xx pin and ball definition note 5. Updated Table 10: STM32F745xx and STM32F746xx pin and ball definition note 5. Updated Table 10: STM32F745xx and STM32F746xx pin and ball definition note 5. Updated Table 10: STM32F745xx and STM32F746xx pin and ball definition note 5.

