E. Kenesas Electronics America Inc - <u>R7FS7G27G2A01CLK#AC0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	240MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, MMC/SD, QSPI, SCI, SPI, SSI, UART/USART, USB
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	104
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	145-TFLGA
Supplier Device Package	145-TFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs7g27g2a01clk-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Overview

The S7G2 MCU integrates multiple series of software- and pin-compatible ARM[®]-based 32-bit MCUs that share the same set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

The MCU provides a high-performance ARM Cortex[®]-M4 core running up to 240 MHz with the following features:

- Up to 4-MB code flash memory
- 640-KB SRAM
- Graphics LCD Controller (GLCDC)
- 2D Drawing Engine (DRW)
- Capacitive Touch Sensing Unit (CTSU)
- Ethernet MAC Controller (ETHERC) with IEEE 1588 PTP, USBFS, USBHS, SD/MMC Host Interface
- Quad Serial Peripheral Interface (QSPI)
- Security and safety features
- Analog peripherals.

1.1 Function Outline

Table 1.1 ARM core

Feature	Functional description
ARM Cortex-M4	 Maximum operating frequency: up to 240 MHz ARM Cortex-M4 core: Revision: r0p1-01rel0 ARMv7E-M architecture profile Single precision floating point unit compliant with the ANSI/IEEE Std 754-2008 ARM Memory Protection Unit (MPU): ARMv7 Protected Memory System Architecture 8 protect regions SysTick timer: Driven by LOCO clock

Table 1.2 Memory

Feature	Functional description
Code flash memory	Maximum 4 MB of code flash memory. See section 54, Flash Memory in User's Manual.
Data flash memory	64 KB of data flash memory. See section 54, Flash Memory in User's Manual.
Memory Mirror Function (MMF)	The MMF can be configured to mirror the wanted application image load address in code flash memory to the application image link address in the 23-bit unused memory space (memory mirror space addresses). Your application code is developed and linked to run from this MMF destination address. The application code does not need to know the load location where it is stored in code flash memory. See section 5, Memory Mirror Function (MMF) in User's Manual.
SRAM	On-chip high-speed SRAM providing either parity-bit or double-bit error detection (DED). The first 32 KB of SRAM0 is subject to DED. Parity check is performed for other areas. See section 52, SRAM in User's Manual.
Standby SRAM	On-chip SRAM that can retain data in Deep Software Standby mode. See section 53, Standby SRAM in User's Manual.

Table 1.3 System (1/2)

Feature	Functional description
Operating modes	Two operating modes: - Single-chip mode - SCI or USB boot mode. See section 3, Operating Modes in User's Manual.

RENESAS

Table 1.4 Interrupt control

Feature	Functional description
Interrupt Controller Unit (ICU)	The ICU controls which event signals are linked to the NVIC/DTC module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt Controller Unit (ICU) in User's Manual.

Table 1.5 Event link

Feature	Functional description
Event Link Controller (ELC)	The ELC uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 19, Event Link Controller (ELC) in User's Manual.

Table 1.6 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A DTC module is provided for transferring data when activated by an interrupt request. See section 18, Data Transfer Controller (DTC) in User's Manual.
DMA Controller (DMAC)	An 8-channel DMAC module is provided for transferring data without the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. See section 17, DMA Controller (DMAC) in User's Manual.

Table 1.7 External bus interface

Feature	Functional description
External buses	 CS area (EXBIU): Connected to the external devices (external memory interface) SDRAM area (EXBIU): Connected to the SDRAM (external memory interface) QSPI area (EXBIUT2): Connected to the QSPI (external device interface).

Table 1.8 Timers

Feature	Functional description
General PWM Timer (GPT)	The GPT is a 32-bit timer with 14 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 23, General PWM Timer (GPT) in User's Manual.
Port Output Enable for GPT (POEG)	Use the Port Output Enable (POEG) function to place the General PWM Timer (GPT) output pins in the output disable state.
Asynchronous General-Purpose Timer (AGT)	The AGT is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting of external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and can be accessed with the AGT register. See section 25, Asynchronous General-Purpose Timer (AGT) in User's Manual.
Realtime Clock (RTC)	The RTC has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 26, Realtime Clock (RTC) in User's Manual.

Feature	Functional description
Serial Communications Interface (SCI)	 The SCI is configurable to five asynchronous and synchronous serial interfaces: Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) 8-bit clock synchronous interface Simple IIC (master-only) Simple SPI Smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 34, Serial Communications Interface (SCI) in User's Manual.
IrDA Interface (IrDA)	The IrDA interface sends and receives IrDA data communication waveforms in cooperation with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 35, IrDA Interface in User's Manual.
I ² C Bus Interface (IIC)	The three-channel IIC conforms with and provides a subset of the NXP I ² C bus (Inter- Integrated Circuit bus) interface functions. See section 36, I ² C Bus Interface (IIC) in User's Manual.
Serial Peripheral Interface (SPI)	Two independent SPI channels are capable of high-speed, full-duplex synchronous serial communications with multiple processors and peripheral devices. See section 38, Serial Peripheral Interface (SPI) in User's Manual.
Serial Sound Interface (SSI)	The SSI peripheral provides functionality to interface with digital audio devices for transmitting PCM audio data over a serial bus with the MCU. The SSI supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSI includes 8-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission. See section 41, Serial Sound Interface (SSI) in User's Manual.
Quad Serial Peripheral Interface (QSPI)	The QSPI is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface. See section 39, Quad Serial Peripheral Interface (QSPI) in User's Manual.
Controller Area Network (CAN) Module	The CAN module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically-noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 37, Controller Area Network (CAN) Module in User's Manual.
USB 2.0 Full-Speed Module (USBFS)	Full-Speed USB controller that can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system. See section 32, USB 2.0 Full-Speed Module (USBFS) in User's Manual.
USB 2.0 High-Speed Module (USBHS)	High-Speed USB controller that can operate as a host controller or a device controller. As a host controller, the USBHS supports high-speed transfer, full-speed transfer, and low-speed transfer as defined in Universal Serial Bus Specification 2.0. As a device controller, the USBHS supports high-speed transfer and full-speed transfer as defined in Universal Serial Bus Specification 2.0. As a device controller, the USBHS has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USBHS has FIFO buffers for data transfer, providing a maximum of 10 pipes. Any endpoint number can be assigned to pipes 1 to 9, based on the peripheral devices or your system for communication. See section 33, USB 2.0 High-Speed Module (USBHS) in User's Manual.

 Table 1.9
 Communication interfaces (1/2)

Table 1.9 Communication interfaces	s (2/2)
------------------------------------	---------

Feature	Functional description
Ethernet MAC with IEEE 1588 PTP (ETHERC)	Two-channel Ethernet MAC Controller (ETHERC) compliant with the Ethernet/IEEE802.3 Media Access Control (MAC) layer protocol. Each ETHERC channel provides one channel of the MAC layer interface, connecting the MCU to the physical layer LSI (PHY-LSI) that allows transmission and reception of frames compliant with the Ethernet and IEEE802.3 standards. The ETHERC is connected to the Ethernet DMA Controller (EDMAC) so data can be transferred without using the CPU. To handle timing and synchronization between devices, an on-chip Precision Time Protocol (PTP) module for the Ethernet PTP Controller (EPTPC) applies the PTP defined in the IEEE 1588-2008 version 2.0 standard. The EPTPC is composed of: • Synchronization Frame Processing units (SYNFP0 and SYNFP1) • A Packet Relation Controller unit (PRC-TC) • A Statistical Time Correction Algorithm unit (STCA). Use the EPTPC in combination with the on-chip Ethernet MAC Controller (ETHERC) and the DMA Controller for the PTP Ethernet Controller (PTPEDMAC). See section 29, Ethernet MAC Controller (ETHERC) in User's Manual.
SD/MMC Host Interface (SDHI)	The SDHI and MultiMediaCard (MMC) interface provide the functionality required to connect a variety of external memory cards to the MCU. The SDHI supports both 1- and 4-bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When developing host devices that are compliant with the SD Specifications, you must comply with the SD Host/Ancillary Product License Agreement (SD HALA). The MMC interface supports 1-, 4-, and 8-bit MMC buses that provide eMMC 4.51 (JEDEC Standard JESD 84-B451) device access. This interface also provides backward compatibility and supports high-speed SDR transfer modes. See section 43, SD/MMC Host Interface (SDHI) in User's Manual.

Table 1.10 Analog

Feature	Functional description
12-Bit A/D Converter (ADC12)	Up to two successive approximation 12-Bit A/D Converters are provided. In unit 0, up to 13 analog input channels are selectable. In unit 1, up to 12 analog input channels, the temperature sensor output, and an internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-, 10-, and 8-bit conversion, making it possible to optimize the tradeoff between speed and resolution in generating a digital value. See section 46, 12-Bit A/D Converter (ADC12) in User's Manual.
12-Bit D/A Converter (DAC12)	The DAC12 D/A converts data and includes an output amplifier. See section 47, 12-Bit D/A Converter (DAC12) in User's Manual.
Temperature sensor (TSN)	The on-chip temperature sensor can determine and monitor the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC12 for conversion and can also be used by the end application. See section 48, Temperature Sensor (TSN) in User's Manual.
High-Speed Analog Comparator (ACMPHS)	Analog comparators can be used to compare a test voltage with a reference voltage and to provide a digital output based on the conversion result. Both the test and reference voltages can be provided to the comparator from internal sources such as the DAC12 output and internal reference voltage, and an external source with or without an internal PGA. Such flexibility is useful in applications that require go/no-go comparisons to be performed between analog signals without necessarily requiring A/D conversion. See section 49, High-Speed Analog Comparator (ACMPHS) in User's Manual.

Table 1.11 Human machine interfaces (1/2)

Feature	Functional description
Key interrupt function (KINT)	A key interrupt can be generated by setting the Key Return Mode register (KRM) and inputting a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function (KINT) in User's Manual.

1.3 Part Numbering

Figure 1.2 Part numbering scheme

Figure 1.6 Pin assignment for 145-pin LGA (top view)

Table 1.17 Pin list (12/12)

Pin	numbe	ər				<u> </u>	1	Extb	us	Time	ers			Con	nmuni	cation	interfa	aces						Ana	log	HMI		
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug,	VO port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz)	S	SPI, QSPI	SSI	MII (25 MHz)	RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	Interrupt	GLCDC, PDC
N10	-	-	-	-	-	-	P01 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 104	-	-	IRQ 15- DS	-
M1 0	M8	159	-	-	-	-	P01 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 103	-	-	IRQ 14-	-
R10	M9	160	M9	131	-	-	P00 9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 004	-	-	IRQ 13-	-
N11	P10	161	N9	132	92	-	P00 8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 003	-	-	IRQ 12-	-
L9	M6	162	K7	133	93	-	P00 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PG AV	-	-	-	-
P10	N10	163	L9	134	94	-	P00 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100 AN 102	IVC MP	-	IRQ 11-	-
R11	R10	164	K8	135	95	-	P00 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 101	2 IVC MP	-	DS IRQ 10-	-
M11	P11	165	K9	136	96	-	P00 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 100	2 IVC MP	-	DS IRQ 9-	-
L10	M5	166	K10	137	97	-	P00 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PG AV SS	-	-	-	-
N12	R11	167	M1 0	138	98	-	P00 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	000 AN 002	IVC MP	-	IRQ 8-	-
P11	N11	168	N10	139	99	-	P00 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 001	2 IVC MP	-	DS IRQ 7-	-
R12	R12	169	L10	140	100	-	P00 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 000	2 IVC MP 2	-	IRQ 6-	-
L11	M1	170	N11	141	-	VS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L12	M11	171	N12	142	-	VC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
M1 2	P12	172	-	-	-	-	P80 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ EX TC LK_ B
R13	R13	173	-	-	-	-	P80 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1 7_B
P12	-	-	-	-	-	-	P80 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P13	N12	174	-	-	-	-	P51 3	-	-	-	-	-	-	-	-	-	-	-	-	ET1 _ET XD 3	-	-		-	-	-	-	LC D_ DA TA1
K9	-	-	-	-	-	-	P51 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R14	R14	175	M11	143	-	-	P51 2	-	-	-	-	GTI OC	-	CT X1_	TX D4_	-	SC L2	-	-	ET1 _ET	-	-	-	-	-	-	IRQ 14	VS YN
_												0A_ B		В	B/ MO SI4 _B/ SD A4_ B					XD 2								С
P14	-	-	-	-	-	-	P51 4	-	-	-	GT ET RG B_ C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
R15	P13	176	M1 2	144	-	-	P51 1	-	-	-	-	GTI OC 0B_ B	-	CR X1_ B	RX D4_ B/ MIS O4 _B/ SC L4_ B	-	SD A2	-	-	ET1 _TX _E R	-	-	-	-	-	-	IRQ 15	PC KO

Note: Some pin names have the added suffix of _A, _B, and _C. When assigning the IIC, SPI, and SSI functionality, select the functional pins with the same suffix. The other pins can be selected regardless of the suffix.

RENESAS

2.2.5 Operating and Standby Current

Table 2.7 Operating and standby current (1/2)

						LDO	mode		DCDC	c mode																										
ltem					Symbol	Min	Тур	Мах	Min	Тур	Max	Unit	Test conditions																							
Supply		Maximum*2			I _{CC}	-	-	330	-	-	140	mA	ICLK = 240 MHz																							
current"		CoreMark®*4				-	45	-	-	24	-		PCLKA = 120 MHZ ^{*0} PCLKB = 60 MHz																							
		Normal mode ^{*3}	All pe enab from	eripheral clocks led, code executing flash		-	75	-	-	38	-		PCLKC = 60 MHz PCLKD = 120 MHz FCLK = 60 MHz BCLK = 120 MHz																							
	node		All pe disat from	eripheral clocks bled, code executing flash		-	32	-	-	18	-																									
	sed r	Sleep mode*4	ŀ			-	25	150	-	15	75																									
	9ds-ı	Increase	Data	flash P/E		- 7		-		7	-																									
	High	during BGO operation	Code	e flash P/E		-	10	-	-	10	-																									
	Lo	w-speed mode'	*4			.	-	4.4	-	-	3	-		ICLK = 1 MHz																						
	Su	bosc-speed mo	de*4			-	3	-	-	2	-		ICLK = 32.768 kHz																							
	So	ftware Standby	mode			-	2.4	110	-	1.2	55		-																							
		Power supplie	ed to St	andby SRAM and USB		-	37	255	-	37	255	μA	VBAT ≠ VCC* ⁷																							
		resume detect	ting un	it		-	37	285	-	37	285		VBAT = VCC																							
		Power not	Powe	er-on reset circuit low-		-	25	50	-	25	50		VBAT ≠ VCC* ⁷																							
		SRAM or	powe	er function disabled		-	25	80	-	25	80		VBAT = VCC																							
	abor	USB resume detectina	USB resume Power-on re			-	16	35	-	16	35		VBAT ≠ VCC* ⁷																							
					-	16	65	-	16	65		VBAT = VCC																								
	Stand	Increase when the	When oscill	n the low-speed on-chip ator (LOCO) is in use		-	9	-	-	9	-		-																							
	e RIC and v AGT are W ∉ operating lov		When low c	n a crystal oscillator for lock loads is in use		-	1.0	-	-	1.0	-		-																							
	Deep So		When stand use	n a crystal oscillator for lard clock loads is in						-	3.0	-	-	3.0	-		-																			
	RT VC	C operating wh CC is off (with th	nile ne	When a crystal oscillator for low clock		-	0.9	-	-	0.9	-		V _{BATT} = 2.0 V, VCC = 0 V																							
	ba fur an	ttery backup action, only the d sub-clock	RTC	loads is in use									1																-	1.6	-	-	1.6	-		V _{BATT} = 3.3 V, VCC = 0 V
	os	cillator operate)		When a crystal oscillator for standard		-	1.7	-	-	1.7	-		V _{BATT} = 2.0 V, VCC = 0 V																							
				CIOCK IDAUS IS III USE		-	3.3	-	-	3.3	-		V _{BATT} = 3.3 V, VCC = 0 V																							
Analog	Du	ring 12-bit A/D	convei	rsion	AI _{CC}	-	0.8	1.1	-	0.8	1.1	mA	-																							
supply	Du	ring 12-bit A/D	convei	rsion with S/H amp		-	2.3	3.3	-	2.3	3.3	mA	-																							
current	PG	GA (1ch)				-	1	3	-	1	3	mA	-																							
	AC	CMPHS (1unit)					100	150		100	150	μA	AVCC ≥ 2.7 V																							
	Te	mperature sens	or			-	0.1	0.2	-	0.1	0.2	mA	-																							
	Du (né	Iring D/A conve	rsion	Without AMP output		-	0.1	0.2	-	0.1	0.2	mA	-																							
	(PC			With AMP output		-	0.5	0.8	-	0.5	0.8	mA	-																							
	Wa	aiting for A/D, D	/A con	version (all units)		-	0.9	1.6	-	0.9	1.6	mA	-																							
	AD	0C12, DAC12 ir	n stand	by modes (all units)		-	2	6	-	2	6	μA	-																							
Reference power	Du	Iring 12-bit A/D	convei	rsion (unit 0)	AI _{REFH0}	-	70	120	-	70	120	μA	-																							
supply	Wa	aiting for 12-bit	A/D co	nversion (unit 0)		-	0.07	0.4	-	0.07	0.4	μA	-																							
(VREFH0)	AD	C12 in standby	/ mode	s (unit 0)		-	0.07	0.2	-	0.07	0.2	μA	-																							

equation:

 t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 00h) + ($t_{MAINOSCWT}$ (MOSCWTCR = Xh) - $t_{MAINOSCWT}$ (MOSCWTCR = 00h))

Note 6. The HOCO frequency is 20 MHz.

Note 7. The MOCO frequency is 8 MHz.

Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.

Note 9. When the SNZCR.RXDREQEN bit is set to 0, 86 μs is added as the power supply recovery time.

Note 10. This defines the duration of Normal mode after a transition from Snooze to Normal mode.

The following cases are valid uses of the main clock oscillator:

- The crystal resonator is connected to main clock oscillator

- The external clock is input to main clock oscillator.

The following cases are excluded:

- The main clock resonator is not connected to the system clock source

- Transition is made from Software Standby to Normal mode.

Note 11. The same value as set in MOSCWTCR.MSTS[3:0]. Duration of Normal mode must be longer than the main clock oscillator wait time.

MOSCWTCR: Main Clock Oscillator Wait Control Register

 $t_{cycmosc}$: Main clock oscillator frequency cycle.

Figure 2.14 External bus timing for normal read cycle with bus clock synchronized

Figure 2.18 External bus timing for external wait control

 Table 2.23
 SCI timing (2)

 Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SCK0 to SCK9
 (except for SCK4_B, SCK7_A).

For the SCK4_B and SCK7_A pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.

For the MISO1_A pins, low drive output is selected in the port drive capability bit in the PmnPFS register.

For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.

ltem		Symbol	Min	Max	Unit	Test conditions
Simple SPI	SCK clock cycle output (master)	t _{SPcyc}	4 (PCLKA ≤ 60 MHz) 8 (PCLKA > 60 MHz)	65536	t _{Pcyc}	Figure 2.37
	SCK clock cycle input (slave)	-	6 (PCLKA ≤ 60 MHz) 12 (PCLKA > 60 MHz)	65536		
	SCK clock high pulse width	t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK clock low pulse width	t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise and fall time	t _{SPCKr} , t _{SPCKf}	-	20	ns	
	Data input setup time	t _{SU}	33.3	-	ns	Figure 2.38 to
	Data input hold time	t _H	33.3	-	ns	Figure 2.41
	SS input setup time	t _{LEAD}	1	-	t _{SPcyc}	
	SS input hold time	t _{LAG}	1	-	t _{SPcyc}	
	Data output delay	t _{OD}	-	33.3	ns	
	Data output hold time	t _{OH}	-10	-	ns	
	Data rise and fall time	t _{Dr} , t _{Df}	-	16.6	ns	
	SS input rise and fall time	t _{SSLr} , t _{SSLf}	-	16.6	ns	
	Slave access time	t _{SA}	-	4 (PCLKA ≤ 60 MHz) 8 (PCLKA > 60 MHz)	t _{Pcyc}	Figure 2.41
	Slave output release time	t _{REL}	-	5 (PCLKA ≤ 60 MHz) 10 (PCLKA > 60 MHz)	t _{Pcyc}	

MISO1_A is not supported in these specifications. Note:

Figure 2.37 SCI simple SPI mode clock timing

Figure 2.38 SCI simple SPI mode timing for master when CKPH = 1

Figure 2.39 SCI simple SPI mode timing for master when CKPH = 0

Figure 2.44 SPI timing for master when CPHA = 0

Figure 2.51 Transmit and receive timing

IIC Timing 2.3.13

 Table 2.27
 IIC timing (1) (1/2)

 Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SDA0_B, SCL0_B,
 SDA1_A, SCL1_A, SDA1_B, SCL1_B.

The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.

Item		Symbol	Min* ¹ , * ²	Max	Unit	Test conditions
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	-	ns	Figure 2.52
(Standard mode, SMBus)	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	-	ns	
ICFER.FMPE = 0	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL, SDA input rise time	t _{Sr}	-	1000	ns	
	SCL, SDA input fall time	t _{Sf}	-	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time when twakeup function is disabled		3 (6) × t _{IICcyc} + 300	-	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 300	-	ns	
	START condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 300	-	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	1 (5) × t _{IICcyc} + t _{Pcyc} + 300	-	ns	
	Repeated START condition input setup time	t _{STAS}	1000	-	ns	
	STOP condition input setup time	t _{STOS}	1000	-	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	Cb	-	400	pF	

Figure 2.62 WOL output timing for RMII

Figure 2.63 MII transmission timing in normal operation

MII transmission timing when a conflict occurs

Figure 2.65 MII reception timing in normal operation

Figure 2.66 MII reception timing when an error occurs

Figure 2.67 WOL output timing for MII

2.6 DAC12 Characteristics

Table 2.43	D/A conversion	characteristics

Item	Min	Тур	Max	Unit	Test conditions
Resolution	-	-	12	Bits	-
Without output amplifier					
Absolute accuracy	-	-	±24	LSB	Resistive load 2 $M\Omega$
DNL		±1.0	±2.0	LSB	Resistive load 2 $M\Omega$
Output impedance	-	7.5	-	kΩ	-
Conversion time	-	-	3.0	μs	Capacitive load 20 pF
With output amplifier					
INL	-	±2.0	±4.0	LSB	-
DNL	-	±1.0	±2.0	LSB	-
Conversion time	-	-	4.0	μs	-
Resistive load	5	-	-	kΩ	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.2	-	VREFH – 0.2	V	-

2.7 TSN Characteristics

Table 2.44TSN characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Relative accuracy	-	-	±1.0	-	°C	-
Temperature slope	-	-	4.1	-	mV/°C	-
Output voltage (at 25°C)	-	-	1.24	-	V	-
Temperature sensor start time	t _{START}	-	-	30	μs	-
Sampling time	-	4.15	-	-	μs	-

2.8 OSC Stop Detect Characteristics

Table 2.45 Oscillation stop detection circuit characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	-	-	1	ms	Figure 2.88

Item	Symbol	Min	Тур	Мах	Unit
Gain error	Gerr0 (G = 2.000)	-1.0	-	1.0	%
	Gerr1 (G = 2.500)	-1.0	-	1.0	%
	Gerr2 (G = 2.667)	-1.0	-	1.0	%
	Gerr3 (G = 2.857)	-1.0	-	1.0	%
	Gerr4 (G = 3.077)	-1.0	-	1.0	%
	Gerr5 (G = 3.333)	-1.5	-	1.5	%
	Gerr6 (G = 3.636)	-1.5	-	1.5	%
	Gerr7 (G = 4.000)	-1.5	-	1.5	%
	Gerr8 (G = 4.444)	-2.0	-	2.0	%
	Gerr9 (G = 5.000)	-2.0	-	2.0	%
	Gerr10 (G = 5.714)	-2.0	-	2.0	%
	Gerr11 (G = 6.667)	-2.0	-	2.0	%
	Gerr12 (G = 8.000)	-2.0	-	2.0	%
	Gerr13 (G = 10.000)	-2.0	-	2.0	%
	Gerr14 (G = 13.333)	-2.0	-	2.0	%
Offset error	Voff	-8	-	8	mV

 Table 2.50
 PGA characteristics in single mode (2/2)

Table 2.51 PGA characteristics in differential mode

Item		Symbol	Min	Тур	Max	Unit
PGAVSS input voltage range		PGAVSS	-0.3	-	0.3	V
Differential input voltage range (G = 1.500)		AIN-PGAVSS	-0.5	-	0.5	V
Input voltage range (G	out voltage range (G = 2.333)		-0.4	-	0.4	V
Input voltage range (G = 4.000)			-0.2	-	0.2	V
Input voltage range (G	ltage range (G = 5.667)		-0.15	-	0.15	V
Gain error	G = 1.500	Gerr	-2.5	-	2.5	%
	G = 2.333		-2	-	2	
	G = 4.000		-1	-	1	
	G = 5.667		-1	-	1]

2.14 Flash Memory Characteristics

2.14.1 Code Flash Memory Characteristics

Table 2.52	Code flash memory characteristics (1	/2)

Conditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

			FCLK = 4 MHz			20 MHz ≤ FCLK ≤ 60 MHz			
Item		Symbol	Min	Тур	Max	Min	Тур	Мах	Unit
Programming time $N_{PEC} \le 100$ times	256-byte	t _{P256}	-	0.9	13.2	-	0.4	6	ms
	8-KB	t _{P8K}	-	29	176	-	13	80	ms
	32-KB	t _{P32K}	-	116	704	-	52	320	ms
Programming time N _{PEC} > 100 times	256-byte	t _{P256}	-	1.1	15.8	-	0.5	7.2	ms
	8-KB	t _{P8K}	-	35	212	-	16	96	ms
	32-KB	t _{P32K}	-	140	848	-	64	384	ms
Erasure time $N_{PEC} \le 100$ times	8-KB	t _{E8K}	-	71	216	-	39	120	ms
	32-KB	t _{E32K}	-	254	864	-	141	480	ms

Figure 2.99 JTAG input/output timing

2.17 Serial Wire Debug (SWD)

Table 2.56 SWD

Item	Symbol	Min	Тур	Max	Unit	Test conditions
SWCLK clock cycle time	t _{SWCKcyc}	40	-	-	ns	Figure 2.100
SWCLK clock high pulse width	t _{SWCKH}	15	-	-	ns	
SWCLK clock low pulse width	t _{SWCKL}	15	-	-	ns	
SWCLK clock rise time	t _{SWCKr}	-	-	5	ns	
SWCLK clock fall time	t _{SWCKf}	-	-	5	ns	
SWDIO setup time	t _{SWDS}	8	-	-	ns	Figure 2.101
SWDIO hold time	t _{SWDH}	8	-	-	ns	
SWDIO data delay time	t _{SWDD}	2	-	28	ns	

S7G2

