E. Fenesas Electronics America Inc - <u>R7FS7G27H3A01CFB#AA0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	240MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, MMC/SD, QSPI, SCI, SPI, SSI, UART/USART, USB
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	104
Program Memory Size	4MB (4M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs7g27h3a01cfb-aa0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Overview

The S7G2 MCU integrates multiple series of software- and pin-compatible ARM[®]-based 32-bit MCUs that share the same set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

The MCU provides a high-performance ARM Cortex[®]-M4 core running up to 240 MHz with the following features:

- Up to 4-MB code flash memory
- 640-KB SRAM
- Graphics LCD Controller (GLCDC)
- 2D Drawing Engine (DRW)
- Capacitive Touch Sensing Unit (CTSU)
- Ethernet MAC Controller (ETHERC) with IEEE 1588 PTP, USBFS, USBHS, SD/MMC Host Interface
- Quad Serial Peripheral Interface (QSPI)
- Security and safety features
- Analog peripherals.

1.1 Function Outline

Table 1.1 ARM core

Feature	Functional description
ARM Cortex-M4	 Maximum operating frequency: up to 240 MHz ARM Cortex-M4 core: Revision: r0p1-01rel0 ARMv7E-M architecture profile Single precision floating point unit compliant with the ANSI/IEEE Std 754-2008 ARM Memory Protection Unit (MPU): ARMv7 Protected Memory System Architecture 8 protect regions SysTick timer: Driven by LOCO clock

Table 1.2 Memory

Feature	Functional description							
Code flash memory	Maximum 4 MB of code flash memory. See section 54, Flash Memory in User's Manual.							
Data flash memory	64 KB of data flash memory. See section 54, Flash Memory in User's Manual.							
Memory Mirror Function (MMF)	The MMF can be configured to mirror the wanted application image load address in code flash memory to the application image link address in the 23-bit unused memory space (memory mirror space addresses). Your application code is developed and linked to run from this MMF destination address. The application code does not need to know the load location where it is stored in code flash memory. See section 5, Memory Mirror Function (MMF) in User's Manual.							
SRAM	On-chip high-speed SRAM providing either parity-bit or double-bit error detection (DED). The first 32 KB of SRAM0 is subject to DED. Parity check is performed for other areas. See section 52, SRAM in User's Manual.							
Standby SRAM	On-chip SRAM that can retain data in Deep Software Standby mode. See section 53, Standby SRAM in User's Manual.							

Table 1.3 System (1/2)

Feature	Functional description
Operating modes	Two operating modes: - Single-chip mode - SCI or USB boot mode. See section 3, Operating Modes in User's Manual.

RENESAS

1.3 Part Numbering

Figure 1.2 Part numbering scheme

1.5 Pin Functions

Table 1.16Pin functions (1/5)

Function	Signal	I/O	Description					
Power supply	VCC	Input	Power supply pin. Connect to the system power supply. Connect this pin to VSS through a $0.1-\mu$ F capacitor. Place the capacitor close to the pin.					
	VCC_DCDC	Input	Switching regulator power supply pin.					
	VLO	I/O	Switching regulator pin.					
	VCL0 to VCL2	Input	Connect this pin to VSS through the smoothing capacitor used to stabilize					
	VCL_F	Input	the internal power supply. Place the capacitor close to the pin.					
	VSS	Input	Ground pin. Connect to the system power supply (0 V).					
	VBATT	Input	Backup power pin.					
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input through the					
	EXTAL	Input	EXTAL pin.					
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal resonator					
	XCOUT	Output	between XCOUT and XCIN.					
	EBCLK	Output	Outputs the external bus clock for external devices.					
	SDCLK	Output	Outputs the SDRAM-dedicated clock.					
	CLKOUT	Output	Clock output pin.					
Operating mode control	MD	Input	Pins for setting the operating mode. The signal levels on these pins must not be changed during operation mode transition on release from the reset state.					
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.					
CAC	CACREF	Input	Measurement reference clock input pin.					
On-chip emulator	TMS	I/O	On-chip emulator or boundary scan pins.					
	TDI	Input						
	TCK	Input						
	TDO	Output						
	TCLK	Output	This pin outputs the clock for synchronization with the trace data.					
	TDATA0 to TDATA3	Output	These pins indicate that output from the TDATA0 to TDATA3 pins is valid.					
	SWDIO	I/O	Serial wire debug data input/output pin.					
	SWCLK	Input	Serial wire clock pin.					
	SWO	Output	Serial wire trace output pin.					
External bus interface	RD	Output	Strobe signal indicating that reading from the external bus interface space is in progress, active LOW.					
	WR	Output	Strobe signal indicating that writing to the external bus interface space is in progress, in 1-write strobe mode, active LOW.					
	WR0, WR1	Output	Strobe signals indicating that either group of data bus pins (D07 to D00 or D15 to D08) is valid in writing to the external bus interface space, in byte strobe mode, active LOW.					
	BC0, BC1	Output	Strobe signals indicating that either group of data bus pins (D07 to D00 or D15 to D08) is valid in access to the external bus interface space, in 1-write strobe mode, active LOW.					
	WAIT	Input	Input pin for wait request signals in access to the external space, active LOW.					
	CS0 to CS7	Output	Select signals for CS areas, active LOW.					
	A00 to A23	Output	Address bus.					
	D00 to D15	I/O	Data bus.					

Function	Signal	I/O	Description
ETHERC	REF50CK0, REF50CK1	Input	50-MHz reference clocks. These pins input reference signals for transmission/reception timing in RMII mode.
	RMII0_CRS_DV, RMII1_CRS_DV	Input	Indicate carrier detection signals and valid receive data on RMII_RXD1 and RMII_RXD0 in RMII mode.
	RMII0_TXD0, RMII0_TXD1, RMII1_TXD0, RMII1_TXD1	Output	2-bit transmit data in RMII mode.
	RMII0_RXD0, RMII0_RXD1, RMII1_RXD0, RMII1_RXD1	Input	2-bit receive data in RMII mode.
	RMII0_TXD_EN, RMII1_TXD_EN	Output	Output pins for data transmit enable signals in RMII mode.
	RMII0_RX_ER, RMII1_RX_ER	Input	Indicate an error occurred during reception of data in RMII mode.
	ET0_CRS, ET1_CRS	Input	Carrier detection/data reception enable signals.
	ET0_RX_DV, ET1_RX_DV	Input	Indicate valid receive data on ET_ERXD3 to ET_ERXD0.
	ET0_EXOUT, ET1_EXOUT	Input	General-purpose external output pins.
	ET0_LINKSTA, ET1_LINKSTA	Output	Input link status from the PHY-LSI.
	ET0_ETXD0 to ET0_ETXD3, ET1_ETXD0 to ET1_ETXD3	output	4 bits of MII transmit data.
	ET0_ERXD0 to ET0_ERXD3, ET1_ERXD0 to ET1_ERXD3	Input	4 bits of MII receive data.
	ET0_TX_EN, ET1_TX_EN	Output	Transmit enable signals. Function as signals indicating that transmit data is ready on ET_ETXD3 to ET_ETXD0.
	ET0_TX_ER, ET1_TX_ER	Output	Transmit error pins. Function as signals notifying the PHY_LSI of an error during transmission.
	ET0_RX_ER, ET1_RX_ER	Input	Receive error pins. Function as signals to recognize an error during reception.
	ET0_TX_CLK, ET1_TX_CLK	Input	Transmit clock pins. These pins input reference signals for output timing from ET_TX_EN, ET_ETXD3 to ET_ETXD0, and ET_TX_ER.
	ET0_RX_CLK, ET1_RX_CLK	Input	Receive clock pins. These pins input reference signals for input timing to ET_RX_DV, ET_ERXD3 to ET_ERXD0, and ET_RX_ER.
	ET0_COL, ET1_COL	Input	Input collision detection signals.
	ET0_WOL, ET1_WOL	Output	Receive Magic packets.
	ET0_MDC, ET1_MDC	Output	Output reference clock signals for information transfer through ET_MDIO.
	ET0_MDIO, ET1_MDIO	I/O	Input or output bidirectional signals for exchange of management data with PHY-LSI.
SDHI	SD0CLK, SD1CLK	Output	SD clock output pin.
	SD0CMD, SD1CMD	I/O	Command output pin and response input signal pin.
	SD0DAT0 to SD0DAT7, SD1DAT0 to SD1DAT7	I/O	SD and MMC data bus pins.
	SD0CD, SD1CD	Input	SD card detection pin.
	SD0WP, SD1WP	Input	SD write-protect signal.

Table 1.16Pin functions (4/5)

Table 1.17 Pin list (6/12)

Pin	numbe	ər			1	ć		Extb	ous	Tim	ers	1		Con	nmunio	ation	interfa	aces	1		1	1	1	Ana	log	HMI		1
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, Systen Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz)	S	SPI, QSPI	SSI	MII (25 MHz)	RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	Interrupt	GLCDC, PDC
E7	D8	70	-	-	-	-	P90 8	CS 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1 4_B
F7	D7	71	-	-	-	-	P90 7	CS 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1 3_B
F6	A7	72	-	-	-	-	P90 6	CS 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1 2_B
A6	B7	73	-	-	-	-	P90 5	CS 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1 1_B
B6	C7	74	C6	58	-	-	P31 2	CS 3	CA S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C7	D6	75	B5	59	-	-	P31 1	CS 2	RA S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA2 3 A
A4	-	-	-	-	-	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B4	-	-	-	-	-	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C6	A6	76	D7	60	-	-	P31 0	A15	A15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA2 2 A
C5	B6	77	A5	61	-	-	P30 9	A14	A14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA2 1 A
D7	A5	78	C5	62	-	-	P30 8	A13	A13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA2 0_A
D6	C6	79	A4	63	41	-	P30 7	A12	A12	-	-	-	-	-	CT S6_ RT S6_ A/ SS	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1 9_A
D5	A4	80	B4	64	42	-	P30 6	A11	A11	-	-	-	-	-	SC K6_ A	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1 8 A
D4	B5	81	D6	65	43	-	P30 5	A10	A10	-	-	-	-	-	TX D6_ A/ MO SI6 _A/ SD A6_ A	-	-	-	-	-	-	-	-	-	-	-	IRQ 8	LC D_ DA TA1 7_A
C4	B4	82	C4	66	44	-	P30 4	A09	A09	-	-	GTI OC 7A_ A	-	-	RX D6_ A/ MIS O6 _A/ SC L6_ A	-	-	-	-	-	-	-	-	-	-	-	IRQ 9	LC D_ DA TA1 6_A
A5	C5	83	A3	67	45	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B5	D5	84	В3	68	46	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E6	-	-	-	-	-	-	P91 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA2 0_B
E5	-	-	-	-	-	-	P91 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LC D_ DA TA1 9 B

Table 1.17 Pin list (11/12)

Pin	numbe	ər						Extb	us	Time	ers			Communication interfaces			Anal		log	НМІ		-						
BGA224	BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System Clock, Debug,	I/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz)	IIC	SPI, QSPI	SSI	MII (25 MHz)	RMII (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	Interrupt	GLCDC, PDC
P5	N5	143	K5	116	79	-	P50 3	-	-	-	GT ET RG C_ B	GTI OC 12B	-	US B_ EXI CE N_ B	CT S6_ RT S6_ B/ SS 6_B	SC K5_ A	-	QIO 1	-	-	-	-	SD 1D AT1	AN 117	-	-		-
R5	P5	144	L5	117	80	-	P50 4	-	-	-	GT ET RG D_ B	GTI OC 13A	-	US B_I D_ B	SC K6_ B	CT S5_ RT S5_ A/ SS 5_A		QIO 2	-	-	-	-	SD 1D AT2	AN 018	-	-		-
M5	P6	145	K6	118	-	-	P50 5	-	-	-	-	GTI OC 13B	-	-	RX D6_ B/ MIS O6 _B/ SC L6_ B	-	-	QIO 3	-	-	-	-	SD 1D AT3	AN 118	-	-	IRQ 14	-
M6	R5	146	L6	119	-	-	P50 6	-	-	-	-	-	-	-	TX D6_ B/ MO SI6 _B/ SD A6_ B	-	-	-	-	-	-	-	SD 1C D	AN 019	-	-	IRQ 15	-
N6	N6	147	-	-	-	-	P50 7	-	-	-	-	-	-	-		CT S5_ RT S5_ B/ SS 5_B	-	-	-	-	-	-	SD 1W P	AN 119	-	-	-	-
M7	-	-	-	-	-	-	P50 8	-	-	-	-	-	-	-		SC K5_ B	-	-	-	-	-	-	-	AN 020	-	-	-	-
P6	-	-	-	-	-	-	P50 9	-	-	-	-	-	-	-		TX D5_ B/ MO SI5 _B/ SD A5_ B	-	-	-	-	-	-	-	AN 120	-	-	-	-
N7	-	-	-	-	-	-	P51 0	-	-	-	-	-	-	-	-	RX D5_ B/ MIS O5 _B/ SC L5_ B	-	-	-	-	-	-	-	AN 021	-	-	-	-
R6	R6	148	N4	120	81	VC L2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P7	M7	149	N5	121	82	VC C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R7	N7	150	M5	122	83	VS S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
M8	P7	151	M6	123	84	-	P01 5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 006 /AN 106	DA 1/IV CM P1	-	IRQ 13	-
M9	R7	152	N6	124	85	-	P01 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN 005 /AN 105	DA 0/IV RE F3	-	-	-
N8	P8	153	M7	125	86	VR EFL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R8	R8	154	N7	126	87	VR EF H	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
P8	N8	155	L7	127	88	AV CC 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N9	N9	156	L8	128	89	AV SS 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P9	P9	157	M8	129	90	VR EFL 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R9	R9	158	N8	130	91	VR EF H0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note 1. This is the value when low driving ability is selected in the port drive capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

- Note 2. This is the value when middle driving ability is selected in the port drive capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.
- Note 3. This is the value when high driving ability is selected in the port drive capability bit in the PmnPFS register. When the following ports are configured for high driving ability, they shift to middle driving ability during Deep Software Standby mode: P203 to P207, P407 to P415, P602, P708 to P713, P813, PA12 to PA15, PB01.
- Note 4. Except for P000 to P007, P200, which are input ports.

2.2.4 I/O V_{OH}, V_{OL}, and Other Characteristics

ltem		Symbol	Min	Тур	Мах	Unit	Test conditions
Output voltage	IIC*1	V _{OL}	-	-	0.4	V	I _{OL} = 3.0 mA
		V _{OL}	-	-	0.6		I _{OL} = 6.0 mA
	IIC*2	V _{OL}	-	-	0.4		I _{OL} = 15.0 mA (ICFER.FMPE = 1)
		V _{OL}	-	0.4	-		I _{OL} = 20.0 mA (ICFER.FMPE = 1)
	ETHERC	V _{OH}	VCC - 0.5	-	-		I _{OH} = -1.0 mA
		V _{OL}	-	-	0.4		I _{OL} = 1.0 mA
	Ports P205, P206, P407 to P415, P602, P708 to P713, P813, PA12 to	V _{OH}	VCC - 1.0	-	-		I _{OH} = -20 mA VCC = 3.3 V
	PA15, PB01 (total 24 pins) ²⁹	V _{OL}	-	-	1.0		I _{OL} = 20 mA VCC = 3.3 V
	Other output pins	V _{OH}	VCC - 0.5	-	-		I _{OH} = -1.0 mA
		V _{OL}	-	-	0.5		I _{OL} = 1.0 mA
Input leakage current	RES	I _{in}	-	-	5.0	μA	V _{in} = 0 V V _{in} = 5.5 V
	Ports P000 to P007, P200		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Three-state leakage current (off state)	5V-tolerant ports	I _{TSI}	-	-	5.0	μA	V _{in} = 0 V V _{in} = 5.5 V
	Other ports (except for ports P000 to P007, P200)		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Input pull-up MOS current	Ports P0 to PB (except for ports P000 to P007)	Ι _ρ	-300	-	-10	μA	VCC = 2.7 to 3.6 V V _{in} = 0 V
Input capacitance	USB_DP, USB_DM, and ports P003, P007, P014, P015,P400, P415, P401, P511, P512	C _{in}	-	-	16	pF	Vbias = $0V$ Vamp = $20mV$ f = 1 MHz
	Other input pins		-	-	8		$T_a = 25^{\circ}C$

Table 2.6 I/O V_{OH}, V_{OL}, and other characteristics

Note 1. SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B, SCL2, SDA2 (total 8 pins).

Note 2. SCL0_A, SDA0_A (total 2 pins).

Note 3. This is the value when high driving ability is selected in the port drive capability bit in the PmnPFS register. Even when high driving ability is selected, I_{OH} and I_{OL} shift to middle driving ability during Deep Software Standby mode.

Figure 2.4 EXTAL external clock input timing

Figure 2.6 LOCO clock oscillation start timing

Note: Only operate the PLL is operated after main clock oscillation has stabilized.

Figure 2.17 External bus timing for page write cycle with bus clock synchronized

RENESAS

Figure 2.20 SDRAM single write timing

Figure 2.23 SDRAM multiple read line stride timing

Figure 2.28 GPT32 input capture timing

Figure 2.29 GPT32 output delay skew

Figure 2.30 GPT32 output delay skew for OPS

Figure 2.31 GPT32 (PWM Delay Generation Circuit) output delay skew

2.3.11 SPI Timing

Table 2.25 SPI timing

Conditions:

Middle drive output is selected with the port drive capability bit in the PmnPFS register.

(2) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the SPI interface, the AC portion of the electrical characteristics is measured for each group.

ltem			Symbol	Min	Max	Unit*1	Test conditions	
SPI	RSPCK clock cycle	Master	t _{SPcyc}	2 (PCLKA ≤ 60 MHz) 4 (PCLKA > 60 MHz)	4096	t _{Pcyc}	Figure 2.43 C = 30 pF	
		Slave		6	4096			
	RSPCK clock high	Master	t _{SPCKWH}	$(t_{SPcyc} - t_{SPCKR} - t_{SPCKF}) / 2 - 3$	-	ns		
	pulse width	Slave		3 × t _{Pcyc}	-			
	RSPCK clock low pulse	Master	t _{SPCKWL}	$(t_{SPcyc} - t_{SPCKR} - t_{SPCKF}) / 2 - 3$	-	ns		
	width	Slave		3 × t _{Pcyc}	-			
	RSPCK clock rise and	Master	t _{SPCKr} ,	-	5	ns		
	fall time	Slave	t _{SPCKf}	-	1	μs		
	Data input setup time	Master	t _{SU}	4	-	ns	Figure 2.44 to	
		Slave	-	5	-	-	Figure 2.49 C = 30 pF	
	Data input hold time	Master	t _{HF*} 4	0	-	ns	-	
		Master	t _H	t _{Pcyc}	-			
		Slave	t _H	20	-		-	
	SSL setup time	Master	t _{LEAD}	N × t _{SPcyc} - 10*2	N × t _{SPcyc} + 100 * ²	ns	-	
		Slave		6 x t _{Pcyc}	-	ns	-	
	SSL hold time	Master	t _{LAG}	N × t _{SPcyc} - 10 * ³	N × t _{SPcyc} + 100 * ³	ns	-	
		Slave		6 x t _{Pcyc}	-	ns	-	
	Data output delay	Master	t _{OD}	-	6.3	ns	Figure 2.44 to	
		Slave		-	20		Figure 2.49 $C = 30_{P}F$	
	Data output hold time	Master	t _{OH}	0	-	ns		
		Slave		0	-			
	Successive transmission delay	Master	t _{TD}	t_{SPcyc} + 2 × t_{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns		
		Slave		6 × t _{Pcyc}				
	MOSI and MISO rise	Output	t _{Dr,} t _{Df}	-	5	ns		
	and fall time	Input		-	1	μs		
	SSL rise and fall time	Output	t _{SSLr} ,	-	5	ns		
		Input	t _{SSLf}	-	1	μs		
	Slave access time		t _{SA}	-	2 x t _{Pcyc} + 28	ns	Figure 2.48 and Figure 2.49	
	Slave output release tim	e	t _{REL}	-	2 x t _{Pcyc} + 28		C = 30 _P F	

Note 1. t_{Pcyc}: PCLKA cycle.

Note 2. N is set to an integer from 1 to 8 by the SPCKD register.

Note 3. N is set to an integer from 1 to 8 by the SSLND register.

Note 4. PCLKA division ratio set to 1/2.

Figure 2.45 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2

Figure 2.46 SPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2

Figure 2.48 SPI timing for slave when CPHA = 0

Figure 2.70 PDC AC timing

2.3.18 Graphics LCD Controller Timing

Table 2.33 Graphics LCD Controller timing

Conditions:

S7G2

LCD_CLK: High drive output is selected in the port drive capability bit in the PmnPFS register. LCD_DATA: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

ltem		Symbol	Min	Тур	Мах	Unit	Test conditions
LCD_EXTCLK input clock free	luency	t _{Ecyc}	-	-	60* ¹	MHz	Figure 2.71
LCD_EXTCLK input clock low	t _{WL}	0.45	-	0.55	t _{Ecyc}		
LCD_EXTCLK input clock high	t _{WH}	0.45	-	0.55			
LCD_CLK output clock freque	ncy	t _{Lcyc}	-	-	60* ¹	MHz	Figure 2.72
LCD_CLK output clock low pu	lse width	t _{LOL}	0.4	-	0.6	t _{Lcyc}	Figure 2.72
LCD_CLK output clock high pu	ulse width	t _{LOH}	0.4	-	0.6	t _{Lcyc}	Figure 2.72
LCD data output delay timing	_A or _B combinations*2	t _{DD}	-3.5	-	4	ns	Figure 2.73
	_A and _B combinations*3		-5.0	-	5.5		
LCD data output rise time (0.8	t _{Dr}	-	-	2		Figure 2.74	
LCD data output fall time (2.0	t _{Df}	-	-	2			

Note 1. Parallel RGB888, 666,565: Maximum 54 MHz Serial RGB888: Maximum 60 MHz (4x speed)

Note 2. Use pins that have a letter appended to their names, for instance, "_A" or "_B", to indicate

Note 3. Pins of group"_A" and "_B" combinations are used.

2.4.2 **USBFS** Timing

Table 2.38	USBFS low-speed	characteristics for h	ost only (USB_	DP and USB	DM pin char	acteristics)
Conditions: VCC	= AVCC0 = VCC_USB	= VBATT = 3.0 to 3.6V, 2	2.7 ≤ VRĚĖH0/VĒ	REFH ≤ AVCC0,	VCC_USBHS =	= AVCC_USBHS = 3.0
to 3.6 V, USBA_F	RREF = 2.2 kΩ ±1%, US	SBMCLK = 20/24 MHz, L	JCLK = 48 MHz			

Item		Symbol	Min	Тур	Max	Unit	Test conditions	
Input characteristics	Input high voltage	V _{IH}	2.0	-	-	V	-	
	Input low voltage	V _{IL}	-	-	0.8	V	-	
	Differential input sensitivity	V _{DI}	0.2	-	-	V	USB_DP - USB_DM	
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	-	
Output characteristics	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = -200 μA	
	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA	
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.83	
	Rise time	t _{LR}	75	-	300	ns		
	Fall time	t _{LF}	75	-	300	ns		
	Rise/fall time ratio	t _{LR} / t _{LF}	80	-	125	%	t _{LR} / t _{LF}	
Pull-up and pull- down characteristics	USB_DP and USB_DM pull- down resistance in host controller mode	R _{pd}	14.25	-	24.80	kΩ	-	

Figure 2.83 USB_DP and USB_DM output timing in low-speed mode

Figure 2.84 Test circuit in low-speed mode

Item		Symbol	Min	Тур	Max	Unit	Test conditions	
Input characteristics	Input high voltage	V _{IH}	2.0	-	-	V	-	
	Input low voltage	V _{IL}	-	-	0.8	V	-	
	Differential input sensitivity	V _{DI}	0.2	-	-	V	USB_DP - USB_DM	
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	-	

Table 2.39USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics) (1/2)Conditions: VCC = AVCC0 = VCC_USB = VBATT = $3.0 \text{ to } 3.6 \text{ V}, 2.7 \leq \text{VREFH0/VREFH} \leq \text{AVCC0}, \text{VCC_USBHS} = \text{AVCC_USBHS} = 3.0 \text{ to } 3.6 \text{ V}, USBA_RREF = <math>2.2 \text{ k}\Omega \pm 1\%$, USBMCLK = 20/24 MHz, UCLK = 48 MHz

2.9 POR and LVD Characteristics

Item			Symbol	Min	Тур	Мах	Unit	Test conditions
Voltage detection level	Power-on reset (POR)	Module-stop function disabled*1	V _{POR}	2.5	2.6	2.7	V	Figure 2.89
		Module-stop function enabled* ²		2.0	2.35	2.7		
	Voltage detection circuit (LVD0)		V _{det0_1}	2.84	2.94	3.04	-	Figure 2.90
			V _{det0_2}	2.77	2.87	2.97		
			V _{det0_3}	2.70	2.80	2.90		
	Voltage detection circuit (LVD1)		V _{det1_1}	2.89	2.99	3.09		Figure 2.91
			V _{det1_2}	2.82	2.92	3.02		
		V _{det1_3}	2.75	2.85	2.95			
Voltage detection circuit (LVD2)		V _{det2_1}	2.89	2.99	3.09		Figure 2.92	
		V _{det2_2}	2.82	2.92	3.02			
			V _{det2_3}	2.75	2.85	2.95		
Internal reset time	Power-on reset time LVD0 reset time		t _{POR}	-	4.6	-	ms	Figure 2.89
			t _{LVD0}	-	0.70	-		Figure 2.90
	LVD1 reset time		t _{LVD1}	-	0.57	-		Figure 2.91
	LVD2 reset time		t _{LVD2}	-	0.57	-		Figure 2.92
Minimum VCC down time		t _{VOFF}	200	-	-	μs	Figure 2.89, Figure 2.90	
Response delay		t _{det}	-	-	200	μs	Figure 2.89 to Figure 2.92	
LVD operation stabilization time (after LVD is enabled)		T _{d(E-A)}	-	-	10	μs	Figure 2.91,	
Hysteresis width (LVD1 and LVD2)			V _{LVH}	-	80	-	mV	Figure 2.92

 Table 2.46
 Power-on reset circuit and voltage detection circuit characteristics

Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR}, V_{det1}, and V_{det2} for POR and LVD.

Note 2. The low-power function is disabled and DEEPCUT[1:0] = 00b or 01b.

Note 3. The low-power function is enabled and DEEPCUT[1:0] = 11b.

Figure 1.6 100-pin LQFP

RENESAS