

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	3688
Number of Logic Elements/Cells	33192
Total RAM Bits	663552
Number of I/O	304
Number of Gates	1600000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	400-BGA
Supplier Device Package	400-FBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3s1600e-4fg400i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XA Spartan-3E FPGAs support the following differential standards:

- LVDS
- Bus LVDS
- mini-LVDS
- RSDS

Table 2: Available User I/Os and Differential (Diff) I/O Pairs

Package	VQC	G100	CPG	G132	TQC	6144	PQC	208	FTG	256	FGG	3400	FGG	i484
Size (mm)	16 >	c 16	8	x 8	22 >	x 22	28 3	k 28	17 3	c 17	21 >	x 21	23 x	23
Device	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XA3S100E	66 (7)	30 (2)	83 (11)	35 (2)	108 (28)	40 (4)	-	-	-	-	-	-	-	-
XA3S250E	66 (7)	30 (2)	92 (7)	41 (2)	108 (28)	40 (4)	158 (32)	65 (5)	172 (40)	68 (8)	-	-	-	-
XA3S500E	-	-	92 (7)	41 (2)	-	-	158 (32)	65 (5)	190 (41)	77 (8)	-	-	-	-
XA3S1200E	-	-	-	-	-	-	-	-	190 (40)	77 (8)	304 (72)	124 (20)	-	-
XA3S1600E	-	-	-	-	-	-	-	-	-	-	304 (72)	124 (20)	376 (82)	156 (21)

•

٠

•

Differential HSTL (1.8V, Types I and III)

2.5V LVPECL inputs

Differential SSTL (2.5V and 1.8V, Type I)

Notes:

1. All XA Spartan-3E devices provided in the same package are pin-compatible as further described in Module 4: Pinout Descriptions of DS312.

2. The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (*italics*) indicates the number of input-only pins.

Package Marking

Figure 2 provides a top marking example for XA Spartan-3E FPGAs in the quad-flat packages. Figure 3 shows the top marking for XA Spartan-3E FPGAs in BGA packages except the 132-ball chip-scale package (CPG132). The markings for the BGA packages are nearly identical to those

for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Figure 4 shows the top marking for XA Spartan-3E FPGAs in the CPG132 package.

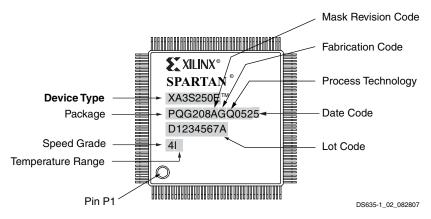


Figure 2: XA Spartan-3E FPGA QFP Package Marking Example

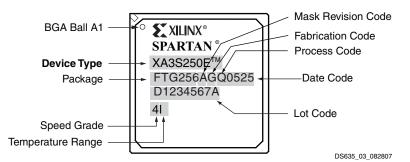
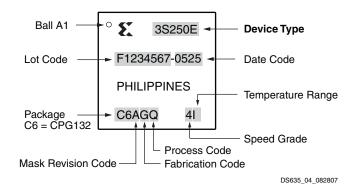
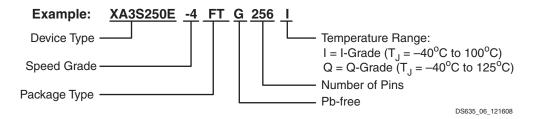


Figure 3: XA Spartan-3E FPGA BGA Package Marking Example




Figure 4: XA Spartan-3E FPGA CPG132 Package Marking Example

Ordering Information

XA Spartan-3E FPGAs are available in Pb-free packaging options for all device/package combinations. All devices are in Pb-free packages only, with a "G" character to the ordering code. All devices are available in either I-Grade or

Q-Grade temperature ranges. Only the -4 speed grade is available for the XA Spartan-3E family. See Table 2 for valid device/package combinations.

Pb-Free Packaging

Device	Speed Grade			Package Type / Number of Pins		Temperature Range (T _J)
XA3S100E	-4	Only	VQG100	100-pin Very Thin Quad Flat Pack (VQFP)	I	I-Grade (-40°C to 100°C)
XA3S250E		l	CPG132	132-ball Chip-Scale Package (CSP)	Q	Q-Grade (-40°C to 125°C)
XA3S500E			TQG144	144-pin Thin Quad Flat Pack (TQFP)	1	
XA3S1200E			PQG208	208-pin Plastic Quad Flat Pack (PQFP)		
XA3S1600E			FTG256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)		
			FGG400	400-ball Fine-Pitch Ball Grid Array (FBGA)		
			FGG484	484-ball Fine-Pitch Ball Grid Array (FBGA)		

Power Supply Specifications

Table 3: Supply Voltage Thresholds for Power-On Reset

Symbol	Description	Min	Max	Units
V _{CCINTT}	Threshold for the V _{CCINT} supply	0.4	1.0	V
V _{CCAUXT}	Threshold for the V _{CCAUX} supply	0.8	2.0	V
V _{CCO2T}	Threshold for the V _{CCO} Bank 2 supply	0.4	1.0	V

Notes:

1. V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.

2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 4: Supply Voltage Ramp Rate

Symbol	Description	Min	Max	Units
V _{CCINTR}	Ramp rate from GND to valid $V_{\mbox{CCINT}}$ supply level	0.2	50	ms
V _{CCAUXR}	Ramp rate from GND to valid $V_{\mbox{CCAUX}}$ supply level	0.2	50	ms
V _{CCO2R}	Ramp rate from GND to valid $\mathrm{V}_{\mathrm{CCO}}$ Bank 2 supply level	0.2	50	ms

Notes:

1. V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.

2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 5: Supply Voltage Levels Necessary for Preserving RAM Contents

Symbol	Description	Min	Units
V _{DRINT}	V _{CCINT} level required to retain RAM data	1.0	V
V _{DRAUX}	V _{CCAUX} level required to retain RAM data	2.0	V

Notes:

1. RAM contents include configuration data.

DC Specifications

Table 6: General Recommended Operating Conditions

Symbol	Description		Min	Nominal	Max	Units
Т _Ј	Junction temperature I-Grade			25	100	°C
		Q-Grade	-40	25	125	°C
V _{CCINT}	Internal supply voltage			1.200	1.260	V
V _{CCO} ⁽¹⁾	Output driver supply voltage			-	3.465	V
V _{CCAUX}	Auxiliary supply voltage			2.500	2.625	V
$\Delta V_{CCAUX}^{(2)}$	Voltage variance on V_{CCAUX} whe	en using a DCM	-	-	10	mV/ms
V _{IN} ^(3,4,5,6)	Input voltage extremes to avoid turning on I/O protection diodes	I/O, Input-only, and Dual-Purpose pins ⁽³⁾	-0.5	-	V _{CCO} + 0.5	V
		Dedicated pins ⁽⁴⁾	-0.5	-	$V_{CCAUX} + 0.5$	V
T _{IN}	Input signal transition time ⁽⁷⁾		_	-	500	ns

Notes:

- 1. This V_{CCO} range spans the lowest and highest operating voltages for all supported I/O standards. Table 9 lists the recommended V_{CCO} range specific to each of the single-ended I/O standards, and Table 11 lists that specific to the differential standards.
- 2. Only during DCM operation is it recommended that the rate of change of V_{CCAUX} not exceed 10 mV/ms.
- Each of the User I/O and Dual-Purpose pins is associated with one of the four banks' V_{CCO} rails. Meeting the V_{IN} limit ensures that the internal diode junctions that exist between these pins and their associated V_{CCO} and GND rails do not turn on. See Absolute Maximum Ratings in <u>DS312</u>).
- 4. All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail (2.5V). Meeting the V_{IN} max limit ensures that the internal diode junctions that exist between each of these pins and the V_{CCAUX} and GND rails do not turn on.
- 5. Input voltages outside the recommended range is permissible provided that the I_{IK} input clamp diode rating is met and no more than 100 pins exceed the range simultaneously. See Absolute Maximum Ratings in <u>DS312</u>).
- 6. See XAPP459, "Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins."
- 7. Measured between 10% and 90% V_{CCO} . Follow Signal Integrity recommendations.

General DC Characteristics for I/O Pins

Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

Symbol	Description	Test Conditions	Min	Тур	Max	Units
ΙL	Leakage current at User I/O, Input-only, Dual-Purpose, and Dedicated pins	Driver is in a high-impedance state, $V_{IN} = 0V$ or V_{CCO} max, sample-tested	-10	_	+10	μA
I _{RPU} ⁽²⁾	Current through pull-up resistor at	$V_{IN} = 0V, V_{CCO} = 3.3V$	-0.36	_	-1.24	mA
	User I/O, Dual-Purpose, Input-only, and Dedicated pins	$V_{IN} = 0V, V_{CCO} = 2.5V$	-0.22	_	-0.80	mA
		$V_{IN} = 0V, V_{CCO} = 1.8V$	-0.10	_	-0.42	mA
		$V_{IN} = 0V, V_{CCO} = 1.5V$	-0.06	-	-0.27	mA
		$V_{IN} = 0V, V_{CCO} = 1.2V$	-0.04	_	-0.22	mA
R _{PU} ⁽²⁾	Equivalent pull-up resistor value at	$V_{IN} = 0V, V_{CCO} = 3.0V \text{ to } 3.465V$	2.4	-	10.8	kΩ
	User I/O, Dual-Purpose, Input-only, and Dedicated pins (based on I _{BPU}	$V_{IN} = 0V, V_{CCO} = 2.3V \text{ to } 2.7V$	2.7	-	11.8	kΩ
	per Note 2)	$V_{IN} = 0V, V_{CCO} = 1.7V \text{ to } 1.9V$		_	20.2	kΩ
		$V_{IN} = 0V, V_{CCO} = 1.4V \text{ to } 1.6V$	5.0	-	25.9	kΩ
		$V_{IN} = 0V, V_{CCO} = 1.14V$ to 1.26V	5.5	-	32.0	kΩ

Symbol	Description	Test Conditions	Min	Тур	Max	Units
I _{RPD} ⁽²⁾	Current through pull-down resistor at User I/O, Dual-Purpose, Input-only, and Dedicated pins	$V_{IN} = V_{CCO}$	0.10	_	0.75	mA
$R_{PD}^{(2)}$	Equivalent pull-down resistor value at	$V_{IN} = V_{CCO} = 3.0V$ to 3.45V	4.0	-	34.5	kΩ
	User I/O, Dual-Purpose, Input-only, and Dedicated pins (based on I _{RPD} per Note 2)	$V_{IN} = V_{CCO} = 2.3V$ to 2.7V	3.0	_	27.0	kΩ
		$V_{IN} = V_{CCO} = 1.7V$ to 1.9V	2.3	_	19.0	kΩ
		$V_{IN} = V_{CCO} = 1.4V$ to 1.6V	1.8	_	16.0	kΩ
		$V_{IN} = V_{CCO} = 1.14V$ to 1.26V	1.5	-	12.6	kΩ
I _{REF}	V _{REF} current per pin	All V _{CCO} levels	-10	_	+10	μA
C _{IN}	Input capacitance	-	-	_	10	pF
R _{DT}	Resistance of optional differential termination circuit within a differential I/O pair. Not available on Input-only pairs.	$V_{OCM} Min \le V_{ICM} \le V_{OCM} Max$ $V_{OD} Min \le V_{ID} \le V_{OD} Max$ $V_{CCO} = 2.5V$	_	120	_	Ω

Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (Continued)

Notes:

1. The numbers in this table are based on the conditions set forth in Table 6.

2. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$.

Symbol	Description	Device	I-Grade Maximum	Q-Grade Maximum	Units
I _{CCINTQ}	Quiescent V _{CCINT}	XA3S100E	36	58	mA
	supply current	XA3S250E	104	158	mA
		XA3S500E	145	300	mA
		XA3S1200E	324	500	mA
		XA3S1600E	457	750	mA
I _{CCOQ}	Quiescent V _{CCO}	XA3S100E	1.5	2.0	mA
	supply current	XA3S250E	1.5	3.0	mA
		XA3S500E	1.5	3.0	mA
		XA3S1200E	2.5	4.0	mA
		XA3S1600E	2.5	4.0	mA

Single-Ended I/O Standards

Table O: Decommonded Operation	a Conditiona for Llaar 1/0a	Lloing Single Ended Standarde
Table 9: Recommended Operatin	y contaitions for user i/us	S USING SINGLE-Ended Standards

IOSTANDARD V _{CCO} for Drivers ⁽²		rs ⁽²⁾	V _{REF}			V _{IL}	V _{IH}	
Attribute	ibute Min (V) Nom (V) Max (V) Min (V) Nom (V) Max (V)		Max (V)	Max (V)	Min (V)			
LVTTL	3.0	3.3	3.465				0.8	2.0
LVCMOS33 ⁽⁴⁾	3.0	3.3	3.465				0.8	2.0
LVCMOS25 ^(4,5)	2.3	2.5	2.7				0.7	1.7
LVCMOS18	1.65	1.8	1.95		_{EF} is not use se I/O stand		0.4	0.8
LVCMOS15	1.4	1.5	1.6				0.4	0.8
LVCMOS12	1.1	1.2	1.3				0.4	0.7
PCI33_3	3.0	3.3	3.465				0.3 * V _{CCO}	0.5 * V _{CCO}
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_III_18	1.7	1.8	1.9	- 1.1 -		V _{REF} - 0.1	V _{REF} + 0.1	
SSTL18_I	1.7	1.8	1.9	0.833 0.900 0.969		V _{REF} - 0.125	V _{REF} + 0.125	
SSTL2_I	2.3	2.5	2.7	1.15	1.25	1.35	V _{REF} - 0.125	V _{REF} + 0.125

Notes:

- 1. Descriptions of the symbols used in this table are as follows:

 - $\label{eq:V_CCO} V_{CCO} \text{the supply voltage for output drivers} \\ V_{REF} \text{the reference voltage for setting the input switching threshold} \\ V_{IL} \text{the input voltage that indicates a Low logic level} \\ V_{IH} \text{the input voltage that indicates a High logic level} \\ \end{array}$
- 2. The V_{CCO} rails supply only output drivers, not input circuits.
- For device operation, the maximum signal voltage (V_{IH} max) may be as high as V_{IN} max. See Table 72 in DS312. З.
- There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 4.
- All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the V_{CCAUX} rail (2.5V). 5. The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V_{CCO} lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.
- For information on PCI IP solutions, see www.xilinx.com/pci. 6.

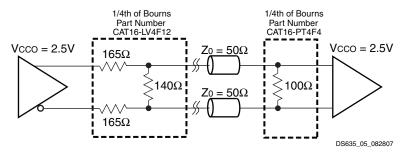


Figure 5: External Termination Resistors for BLVDS Transmitter and BLVDS Receiver

Switching Characteristics

I/O Timing

Table 13: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

				-4 Speed Grade	
Symbol	Description	Conditions	Device	Max	Units
Clock-to-Outpu	ut Times				
T _{ICKOFDCM}	When reading from the Output	LVCMOS25 ⁽²⁾ , 12mA	XA3S100E	2.79	ns
Flip-Flop (OFF), the time from the active transition on the Global Clock pin to data		output drive, Fast slew rate, with $DCM^{(3)}$	XA3S250E	3.45	ns
	Global Clock pin to data		XA3S500E	3.46	ns
	appearing at the Output pin. The DCM is used.		XA3S1200E	3.46	ns
			XA3S1600E	3.45	ns
T _{ICKOF}	When reading from OFF, the time from the active transition on the Global Clock pin to data	LVCMOS25 ⁽²⁾ , 12mA output drive, Fast slew rate, without DCM	XA3S100E	5.92	ns
			XA3S250E	5.43	ns
ar	appearing at the Output pin. The		XA3S500E	5.51	ns
	DCM is not used.		XA3S1200E	5.94	ns
			XA3S1600E	6.05	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

 This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, *add* the appropriate Input adjustment from Table 17. If the latter is true, *add* the appropriate Output adjustment from Table 18.

3. DCM output jitter is included in all measurements.

4. For minimums, use the values reported by the Xilinx timing analyzer.

XILINX[®]

			IFD_ DELAY_		-4 Speed Grade	
Symbol	Description	Conditions	VALUE=	Device	Min	Units
Setup Time	s		<u>.</u>			
T _{PSDCM}	When writing to the Input Flip-Flop	LVCMOS25 ⁽²⁾ ,	0	XA3S100E	2.98	ns
	(IFF), the time from the setup of data at the Input pin to the active	IFD_DELAY_VALUE = 0, with $DCM^{(4)}$		XA3S250E	2.59	ns
	transition at a Global Clock pin.			XA3S500E	2.59	ns
	The DCM is used. No Input Delay			XA3S1200E	2.58	ns
	is programmed.			XA3S1600E	2.59	ns
T _{PSFD}	When writing to IFF, the time from	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	3.58	ns
the setup of data at the Input pin to an active transition at the Global	IFD_DELAY_VALUE = default software setting	3	XA3S250E	3.91	ns	
	Clock pin. The DCM is not used.	dolaul contraio colling	2	XA3S500E	4.02	ns
	The Input Delay is programmed.		5	XA3S1200E	5.52	ns
			4	XA3S1600E	4.46	ns
Hold Times						
T _{PHDCM}	When writing to IFF, the time from the active transition at the Global Clock pin to the point when data	LVCMOS25 ⁽³⁾ , IFD_DELAY_VALUE = 0, with DCM ⁽⁴⁾	0	XA3S100E	-0.52	ns
				XA3S250E	0.14	ns
	must be held at the Input pin. The			XA3S500E	0.14	ns
	DCM is used. No Input Delay is			XA3S1200E	0.15	ns
	programmed.			XA3S1600E	0.14	ns
T _{PHFD}	When writing to IFF, the time from	LVCMOS25 ⁽³⁾ ,	2	XA3S100E	-0.24	ns
	the active transition at the Global Clock pin to the point when data	IFD_DELAY_VALUE =	3	XA3S250E	-0.32	ns
	must be held at the Input pin. The	default software setting	2	XA3S500E	-0.49	ns
	DCM is not used. The Input Delay		5	XA3S1200E	-0.63	ns
	is programmed.		4	XA3S1600E	-0.39	ns

Table 14: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 17. If this is true of the data Input, add the appropriate Input adjustment from the same table.

3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 17. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.

4. DCM output jitter is included in all measurements.

Table 15: Setup and Hold Times for the IOB Input I	Path
--	------

Symbol	Description	Conditions	IFD_ DELAY_ VALUE	Device	-4 Speed Grade Min	Units
Setup Tim	es	ļ	<u> </u>		<u>.</u>	
T _{IOPICK}	Time from the setup of data at the Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). No Input Delay is programmed.	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	2.12	ns
T _{IOPICKD}	Time from the setup of data at the Input	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	6.49	ns
	pin to the active transition at the IFF's ICLK input. The Input Delay is programmed.	IFD_DELAY_VALUE = default software setting	3	XA3S250E	6.85	ns
	input. The input Delay is programmed.	delaur serware sering	2	XA3S500E	7.01	ns
			5	XA3S1200E	8.67	ns
			4	XA3S1600E	7.69	ns
Hold Time	S			1		
T _{IOICKP}	Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. No Input Delay is programmed.	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	-0.76	ns
T _{IOICKPD}	Time from the active transition at the IFF's	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	-3.93	ns
	ICLK input to the point where data must be held at the Input pin. The Input Delay is	IFD_DELAY_VALUE = default software setting	3	XA3S250E	-3.51	ns
	programmed.	delault software setting	2	XA3S500E	-3.74	ns
			5	XA3S1200E	-4.30	ns
			4	XA3S1600E	-4.14	ns
Set/Reset	Pulse Width			1	•	
T _{RPW_IOB}	Minimum pulse width to SR control input on IOB			All	1.80	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 17.

3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 17. When the hold time is negative, it is possible to change the data before the clock's active edge.

Table 19: Test Methods for Ti	iming Measurement at I/Os
-------------------------------	---------------------------

Signal Standard		Inputs			Out	puts	Inputs and Outputs	
-	ANDARD)	V _{REF} (V)	V _L (V)	V _H (V)	R_T (Ω)	V _T (V)	V _M (V)	
Single-End	ed		·	· · · · · · ·				
LVTTL		-	0	3.3	1M	0	1.4	
LVCMOS33		-	0	3.3	1M	0	1.65	
LVCMOS25		-	0	2.5	1M	0	1.25	
LVCMOS18		-	0	1.8	1M	0	0.9	
LVCMOS15		-	0	1.5	1M	0	0.75	
LVCMOS12		-	0	1.2	1M	0	0.6	
PCI33_3	Rising	-	Note 3	Note 3	25	0	0.94	
	Falling				25	3.3	2.03	
HSTL_I_18	L.	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
HSTL_III_18	8	1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}	
SSTL18_I		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
SSTL2_I		1.25	V _{REF} – 0.75	V _{REF} + 0.75	50	1.25	V _{REF}	
Differential			1			L	ll.	
LVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}	
BLVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	1M	0	V _{ICM}	
MINI_LVDS	_25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}	
LVPECL_25	5	-	V _{ICM} – 0.3	V _{ICM} + 0.3	1M	0	V _{ICM}	
RSDS_25		-	V _{ICM} – 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}	
DIFF_HSTL	_l_18	-	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{ICM}	
DIFF_HSTL	III_18	-	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{ICM}	
DIFF_SSTL	.18_I	-	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{ICM}	
DIFF_SSTL	2_I	-	V _{REF} – 0.5	V _{REF} + 0.5	50	1.25	V _{ICM}	

Notes:

1. Descriptions of the relevant symbols are as follows:

 $V_{\mbox{\scriptsize REF}}$ – The reference voltage for setting the input switching threshold

 V_{ICM} – The common mode input voltage V_M – Voltage of measurement point on signal transition V_L – Low-level test voltage at Input pin V_H – High-level test voltage at Input pin

 R_T – Effective termination resistance, which takes on a value of 1M Ω when no parallel termination is required

V_T – Termination voltage

The load capacitance (C_1) at the Output pin is 0 pF for all signal standards. 2.

З. According to the PCI specification.

Configurable Logic Block Timing

Table 20: CLB (SLICEM) Timing

			ed Grade	
Symbol	Description	Min	Max	Units
Clock-to-Output	Times			
Т _{СКО}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.60	ns
Setup Times	-		ļ.	Į
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB	0.52	-	ns
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB	1.81	-	ns
Hold Times	1			
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the F or G input	0	-	ns
T _{CKDI}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input	0	-	ns
Clock Timing				I
Т _{СН}	The High pulse width of the CLB's CLK signal	0.80	-	ns
T _{CL}	The Low pulse width of the CLK signal	0.80	-	ns
F _{TOG}	Toggle frequency (for export control)	0	572	MHz
Propagation Tim	es		1	l
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.76	ns
Set/Reset Pulse	Width		L	1
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	1.80	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

Clock Buffer/Multiplexer Switching Characteristics

Table 23: Clock Distribution Switching Characteristics

		Maximum	
Description	Symbol	-4 Speed Grade	Units
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay	T _{GIO}	1.46	ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input	T _{GSI}	0.63	ns
Frequency of signals distributed on global buffers (all sides)	F _{BUFG}	311	MHz

18 x 18 Embedded Multiplier Timing

Table 24: 18 x 18 Embedded Multiplier Timing

		-4 Spee		
Symbol	Description	Min	Max	Units
Combinatoria	l Delay			
T _{MULT}	Combinatorial multiplier propagation delay from the A and B inputs to the P outputs, assuming 18-bit inputs and a 36-bit product (AREG, BREG, and PREG registers unused)	-	4.88 ⁽¹⁾	ns
Clock-to-Outp	out Times	L	1	
T _{MSCKP_P}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using the PREG register ⁽²⁾	-	1.10	ns
T _{MSCKP_A} T _{MSCKP_B}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using either the AREG or BREG register ⁽³⁾	-	4.97	ns
Setup Times		L	1	
T _{MSDCK_P}	Data setup time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽²⁾	3.98	-	ns
T _{MSDCK_A}	Data setup time at the A input before the active transition at the CLK when using the AREG input register $^{\rm (3)}$	0.23	-	ns
T _{MSDCK_B}	Data setup time at the B input before the active transition at the CLK when using the BREG input register $^{\rm (3)}$	0.39	-	ns
Hold Times		L		
T _{MSCKD_P}	Data hold time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽²⁾	-0.97		
T _{MSCKD_A}	Data hold time at the A input before the active transition at the CLK when using the AREG input register $^{\rm (3)}$	0.04		
T _{MSCKD_B}	Data hold time at the B input before the active transition at the CLK when using the BREG input register ^{(3)}	0.05		

Table 25: Block RAM Timing (Continued)

		-4 Speed Grade		
Symbol	Description	Min	Max	Units
Clock Timing	•			
T _{BPWH}	High pulse width of the CLK signal	1.59	-	ns
T _{BPWL}	Low pulse width of the CLK signal	1.59	-	ns
Clock Freque	ncy			
F _{BRAM}	Block RAM clock frequency. RAM read output value written back into RAM, for shift registers and circular buffers. Write-only or read-only performance is faster.	0	230	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

Digital Clock Manager Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 26 and Table 27) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 28 through Table 31) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 26 and Table 27.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value.

Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>, *Spread-Spectrum Clocking Reception for Displays* for details.

Table 27: Switching Characteristics for the DLL (Continued)

			-4 Spe	eed Grade	
Symbol	Description		Min	beed Grade Max Max #[1% of CLKIN period + 400] # ±200 # # ±1% of CLKIN period + 100] # # ±1% of CLKIN period + 100] # # ±1% of CLKIN period + 200] # # ±1% of CLKIN period + 200] # # ±1% of CLKIN period + 200] # #	Units
Duty Cycle ⁽⁴⁾					
CLKOUT_DUTY_CYCLE_DLL	Duty cycle variation for the CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV outputs, including the BUFGMUX and clock tree duty-cycle distortion		-	CLKIN period	ps
Phase Alignment ⁽⁴⁾					
CLKIN_CLKFB_PHASE	Phase offset between the CLKIN and	I CLKFB inputs	-	±200	ps
CLKOUT_PHASE_DLL	Phase offset between DLL outputs	CLK0 to CLK2X (not CLK2X180)	-	CLKIN period	ps
		All others	-	CLKIN period	ps
Lock Time	-	l		-	
LOCK_DLL ⁽³⁾	When using the DLL alone: The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase	$5 \text{ MHz} \leq \text{F}_{\text{CLKIN}} \leq 15 \text{ MHz}$	-	5	ms
		F _{CLKIN} > 15 MHz	-	600	μs
Delay Lines		1			
DCM_DELAY_STEP	Finest delay resolution		20	40	ps

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 26.

- 2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
- 3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. *Example:* The data sheet specifies a maximum jitter of "±[1% of CLKIN period + 150]". Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250ps.

Digital Frequency Synthesizer

Table 28: Recommended Operating Conditions for the DFS

				-4 Speed Grade		
Symbol		Descriptio	n	Min	Max	Units
Input Freq	uency Ranges ⁽²⁾					
F _{CLKIN}	CLKIN_FREQ_FX	Frequency for the CLKIN input	Frequency for the CLKIN input		333 ⁽⁴⁾	MHz
Input Cloc	k Jitter Tolerance ⁽³⁾	- I			1	1
CLKIN_CYC_JITT_FX_LF CLKIN_CYC_JITT_FX_HF		Cycle-to-cycle jitter at the CLKIN	F _{CLKFX} ≤ 150 MHz	-	±300	ps
		input, based on CLKFX output frequency	F _{CLKFX} > 150 MHz	-	±150	ps
CLKIN_PE	R_JITT_FX	Period jitter at the CLKIN input		-	±1	ns

Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.

2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 26.

3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.

 To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM.

Table 29: Switching Characteristics for the DFS

				-4 Spee	ed Grade	
Symbol	Description		Device	Min	Max	Units
Output Frequency Ranges						I
CLKOUT_FREQ_FX	Frequency for the CLKFX and CLKFX180 or	utputs	All	5	311	MHz
Output Clock Jitter ^(2,3)					I	I
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180		All	Тур	Max	
	outputs	CLKIN <u><</u> 20 MHz		See	Note 4	ps
		CLKIN > 20 MHz		±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	ps
Duty Cycle ^(5,6)						
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLK including the BUFGMUX and clock tree duty	All	-	±[1% of CLKFX period + 400]	ps	
Phase Alignment ⁽⁶⁾					1	1
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX outpu output when both the DFS and DLL are use		All	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX180 c CLK0 output when both the DFS and DLL a	All	-	±[1% of CLKFX period + 300]	ps	
Lock Time		Ĺ				
LOCK_FX ⁽²⁾	The time from deassertion at the DCM's Reset input to the rising transition at its	5 MHz ≤ F _{CLKIN} ≤ 15 MHz	All	-	5	ms
	LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.	F _{CLKIN} > 15 MHz		-	450	μs

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 28.

For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute. 2.

Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching). Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application. Use the Spartan-3A Jitter Calculator (www.xilinx.com/support/documentation/data_sheets/s3a_jitter_calc.zip) to estimate DFS output jitter. Use the З.

4. Clocking Wizard to determine jitter for a specific design. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.

5.

Some duty-cycle and alignment specifications include 1% of the CLKFX output period or 0.01 UI. *Example:* The data sheet specifies a maximum jitter of " \pm [1% of CLKFX period + 300]". Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is \pm [100 ps + 300 ps] = \pm 400 ps. 6.

Phase Shifter

Table 30: Recommended Operating Conditions for the PS in Variable Phase Mode

		-4 Speed	-4 Speed Grade					
Symbol	Description	Min	Max	Units				
Operating Frequence	Operating Frequency Ranges							
PSCLK_FREQ (F _{PSCLK})	Frequency for the PSCLK input	1	167	MHz				
Input Pulse Require	Input Pulse Requirements							
PSCLK_PULSE	PSCLK pulse width as a percentage of the PSCLK period	40%	60%	-				

Configuration and JTAG Timing

Table 33: Power-On Timing and the Beginning of Configuration

			-4 Speed Grade		
Symbol	Description	Device	Min	Max	Units
T _{POR} ⁽²⁾	The time from the application of V_{CCINT} , V_{CCAUX} , and V_{CCO} Bank 2 supply voltage ramps (whichever occurs last) to the rising transition of the INIT_B pin	XA3S100E	-	5	ms
		XA3S250E	-	5	ms
		XA3S500E	-	5	ms
		XA3S1200E	-	5	ms
		XA3S1600E	-	7	ms
T _{PROG}	The width of the low-going pulse on the PROG_B pin	All	0.5	-	μs
T _{PL} ⁽²⁾	The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin	XA3S100E	-	0.5	ms
		XA3S250E	-	0.5	ms
		XA3S500E	-	1	ms
		XA3S1200E	-	2	ms
		XA3S1600E	-	2	ms
T _{INIT}	Minimum Low pulse width on INIT_B output	All	250	-	ns
T _{ICCK} ⁽³⁾	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4.0	μs

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6. This means power must be applied to all V_{CCINT} , V_{CCO} , and V_{CCAUX} lines.

2. Power-on reset and the clearing of configuration memory occurs during this period.

3. This specification applies only to the Master Serial, SPI, BPI-Up, and BPI-Down modes.

Configuration Clock (CCLK) Characteristics

Symbol	Description	<i>ConfigRate</i> Setting	Temperature Range	Minimum	Maximum	Units
T _{CCLK1}	CCLK clock period by ConfigRate setting	1 (power-on value and default value)	I-Grade Q-Grade	485	1,250	ns
T _{CCLK3}		3	I-Grade Q-Grade	242	625	ns
T _{CCLK6}	-	6	I-Grade Q-Grade	121	313	ns
T _{CCLK12}	-	12	I-Grade Q-Grade	60.6	157	ns
T _{CCLK25}		25	I-Grade Q-Grade	30.3	78.2	ns
T _{CCLK50}		50	I-Grade Q-Grade	15.1	39.1	ns

Table 34: Master Mode CCLK Output Period by ConfigRate Option Setting

Notes:

1. Set the *ConfigRate* option value when generating a configuration bitstream. See Bitstream Generator (BitGen) Options in <u>DS312</u>, Module 2.

7	Table 35: M	aster Mode CCLK Output Free	quency by <i>Config</i> R	ate Option Sett	ing

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
F _{CCLK1}	Equivalent CCLK clock frequency by <i>ConfigRate</i> setting	1 (power-on value and default value)	I-Grade Q-Grade	0.8	2.1	MHz
F _{CCLK3}		3	I-Grade Q-Grade	1.6	4.2	MHz
F _{CCLK6}		6	I-Grade Q-Grade	3.2	8.3	MHz
F _{CCLK12}		12	I-Grade Q-Grade	6.4	16.5	MHz
F _{CCLK25}		25	I-Grade Q-Grade	12.8	33.0	MHz
F _{CCLK50}		50	I-Grade Q-Grade	25.6	66.0	MHz

Table 36: Master Mode CCLK Output Minimum Low and High Time

Symbol	Description		ConfigRate Setting						Units
			1	3	6	12	25	50	Units
T _{MCCL,} T _{MCCH}	Master mode CCLK minimum Low and High time	I-Grade Q-Grade	235	117	58	29.3	14.5	7.3	ns

Table 37: Slave Mode CCLK Input Low and High Time

Symbol	Description	Min	Max	Units
T _{SCCL,} T _{SCCH}	CCLK Low and High time	5	∞	ns

Master Serial and Slave Serial Mode Timing

Table 38: Timing for the Master Serial and Slave	Serial Configuration Modes
--	----------------------------

			Slave/	-4 Speed Grade			
Symbol	I Description		Master	Min	Max	Units	
Clock-to-	Dutput Times						
T _{CCO}	The time from the falling transition on the CCLK pin to data appearing at the DOUT pin			1.5	10.0	ns	
Setup Tim	nes					4	
T _{DCC}	The time from the setup of data at the DIN pin to the active edge of the CCLK pin		Both	11.0	-	ns	
Hold Time	es la			L			
T _{CCD}	The time from the active edge of the CCLK pin to the point when data is last held at the DIN pin		Both	0	-	ns	
Clock Tim	ling			L			
Т _{ССН}	High pulse width at the CCLK input	ut pin	Master	See Table 36			
			Slave	See Table 37			
T _{CCL}	Low pulse width at the CCLK input	t pin	Master	Master See Table 36			
			Slave	See Table 37		7	
F _{CCSER}	Frequency of the clock signal at	No bitstream compression	Slave	0	66 ⁽²⁾	MHz	
	the CCLK input pin	With bitstream compression		0	20	MHz	

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

