

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	3688
Number of Logic Elements/Cells	33192
Total RAM Bits	663552
Number of I/O	304
Number of Gates	1600000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	400-BGA
Supplier Device Package	400-FBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3s1600e-4fgg400i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Feature Differences from Commercial XC Devices

- AEC-Q100 device qualification and full production part approval process (PPAP) documentation support available in both extended temperature I- and Q-Grades
- Guaranteed to meet full electrical specification over the $T_J = -40^{\circ}$ C to +125°C temperature range (Q-Grade)
- XA Spartan-3E devices are available in the -4 speed grade only.
- PCI-66 is not supported in the XA Spartan-3E FPGA product line.
- The readback feature is not supported in the XA

Table 1: Summary of XA Spartan-3E FPGA Attributes

Spartan-3E FPGA product line.

- XA Spartan-3E devices are available in Step 1 only.
- JTAG configuration frequency reduced from 30 MHz to 25 MHz.
- Platform Flash is not supported within the XA family.
- XA Spartan-3E devices are available in Pb-free packaging only.
- MultiBoot is not supported in XA versions of this product.
- The XA Spartan-3E device must be power cycled prior to reconfiguration.

		Equivalent	(CLB One CLB =	Array Four Slices)			Block				Maximum
Device	System Gates	Logic Cells	Rows	Columns	Total CLBs	Total Slices	Distributed RAM bits ⁽¹⁾	RAM bits ⁽¹⁾	Dedicated Multipliers	DCMs	Maximum User I/O	Differential I/O Pairs
XA3S100E	100K	2,160	22	16	240	960	15K	72K	4	2	108	40
XA3S250E	250K	5,508	34	26	612	2,448	38K	216K	12	4	172	68
XA3S500E	500K	10,476	46	34	1,164	4,656	73K	360K	20	4	190	77
XA3S1200E	1200K	19,512	60	46	2,168	8,672	136K	504K	28	8	304	124
XA3S1600E	1600K	33,192	76	58	3,688	14,752	231K	648K	36	8	376	156

Notes:

1. By convention, one Kb is equivalent to 1,024 bits.

Architectural Overview

The XA Spartan-3E family architecture consists of five fundamental programmable functional elements:

- Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical functions as well as store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Supports a variety of signal standards, including four high-performance differential standards. Double Data-Rate (DDR) registers are included.
- **Block RAM** provides data storage in the form of 18-Kbit dual-port blocks.
- **Multiplier Blocks** accept two 18-bit binary numbers as inputs and calculate the product.

 Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. Each device has two columns of block RAM except for the XA3S100E, which has one column. Each RAM column consists of several 18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs are positioned in the center with two at the top and two at the bottom of the device. The XA3S100E has only one DCM at the top and bottom, while the XA3S1200E and XA3S1600E add two DCMs in the middle of the left and right sides.

The XA Spartan-3E family features a rich network of traces that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

DC Specifications

Table 6: General Recommended Operating Conditions

Symbol	Descriptio	n	Min	Nominal	Мах	Units
TJ	Junction temperature	I-Grade	-40	25	100	°C
		Q-Grade	-40	25	125	°C
V _{CCINT}	Internal supply voltage		1.140	1.200	1.260	V
V _{CCO} ⁽¹⁾	Output driver supply voltage		1.100	-	3.465	V
V _{CCAUX}	Auxiliary supply voltage		2.375	2.500	2.625	V
$\Delta V_{CCAUX}^{(2)}$	Voltage variance on V_{CCAUX} whe	en using a DCM	-	-	10	mV/ms
V _{IN} ^(3,4,5,6)	Input voltage extremes to avoid turning on I/O protection diodes	I/O, Input-only, and Dual-Purpose pins ⁽³⁾	-0.5	-	V _{CCO} + 0.5	V
		Dedicated pins ⁽⁴⁾	-0.5	_	V _{CCAUX} + 0.5	V
T _{IN}	Input signal transition time ⁽⁷⁾	·	-	-	500	ns

Notes:

- 1. This V_{CCO} range spans the lowest and highest operating voltages for all supported I/O standards. Table 9 lists the recommended V_{CCO} range specific to each of the single-ended I/O standards, and Table 11 lists that specific to the differential standards.
- 2. Only during DCM operation is it recommended that the rate of change of V_{CCAUX} not exceed 10 mV/ms.
- Each of the User I/O and Dual-Purpose pins is associated with one of the four banks' V_{CCO} rails. Meeting the V_{IN} limit ensures that the internal diode junctions that exist between these pins and their associated V_{CCO} and GND rails do not turn on. See Absolute Maximum Ratings in <u>DS312</u>).
- 4. All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail (2.5V). Meeting the V_{IN} max limit ensures that the internal diode junctions that exist between each of these pins and the V_{CCAUX} and GND rails do not turn on.
- 5. Input voltages outside the recommended range is permissible provided that the I_{IK} input clamp diode rating is met and no more than 100 pins exceed the range simultaneously. See Absolute Maximum Ratings in <u>DS312</u>).
- 6. See XAPP459, "Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins."
- 7. Measured between 10% and 90% V_{CCO} . Follow Signal Integrity recommendations.

General DC Characteristics for I/O Pins

Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

Symbol	Description	Test Conditions	Min	Тур	Мах	Units
ι _L	Leakage current at User I/O, Input-only, Dual-Purpose, and Dedicated pins	Driver is in a high-impedance state, $V_{IN} = 0V$ or V_{CCO} max, sample-tested	-10	_	+10	μA
I _{RPU} ⁽²⁾	Current through pull-up resistor at	$V_{IN} = 0V, V_{CCO} = 3.3V$	-0.36	-	-1.24	mA
User I/O, Dual-Purpose, Input-only, and Dedicated pins	User I/O, Dual-Purpose, Input-only, and Dedicated pins	$V_{IN} = 0V, V_{CCO} = 2.5V$	-0.22	-	-0.80	mA
		$V_{IN} = 0V, V_{CCO} = 1.8V$	-0.10	-	-0.42	mA
		$V_{IN} = 0V, V_{CCO} = 1.5V$	-0.06	-	-0.27	mA
		$V_{IN} = 0V, V_{CCO} = 1.2V$	-0.04	-	-0.22	mA
R _{PU} ⁽²⁾	Equivalent pull-up resistor value at	$V_{IN} = 0V, V_{CCO} = 3.0V \text{ to } 3.465V$	2.4	-	10.8	kΩ
	and Dedicated pins (based on I _{BPU}	$V_{IN} = 0V, V_{CCO} = 2.3V \text{ to } 2.7V$	2.7	_	11.8	kΩ
	per Note 2)	$V_{IN} = 0V, V_{CCO} = 1.7V \text{ to } 1.9V$	4.3	-	20.2	kΩ
		$V_{IN} = 0V, V_{CCO} = 1.4V$ to 1.6V		_	25.9	kΩ
		$V_{IN} = 0V, V_{CCO} = 1.14V$ to 1.26V	5.5	_	32.0	kΩ

Symbol	Description	Test Conditions	Min	Тур	Max	Units
I _{RPD} ⁽²⁾	Current through pull-down resistor at User I/O, Dual-Purpose, Input-only, and Dedicated pins	$V_{IN} = V_{CCO}$	0.10	_	0.75	mA
R _{PD} ⁽²⁾	Equivalent pull-down resistor value at	$V_{IN} = V_{CCO} = 3.0V$ to 3.45V	4.0	-	34.5	kΩ
	and Dedicated pins (based on I _{BPD}	$V_{IN} = V_{CCO} = 2.3V$ to 2.7V	3.0	-	27.0	kΩ
	per Note 2)	$V_{IN} = V_{CCO} = 1.7V$ to 1.9V	2.3	-	19.0	kΩ
		$V_{IN} = V_{CCO} = 1.4V$ to 1.6V	1.8	-	16.0	kΩ
		$V_{IN} = V_{CCO} = 1.14V$ to 1.26V	1.5	-	12.6	kΩ
I _{REF}	V _{REF} current per pin	All V_{CCO} levels	-10	-	+10	μA
C _{IN}	Input capacitance	-	_	-	10	pF
R _{DT}	Resistance of optional differential termination circuit within a differential I/O pair. Not available on Input-only pairs.	$V_{OCM} Min \le V_{ICM} \le V_{OCM} Max$ $V_{OD} Min \le V_{ID} \le V_{OD} Max$ $V_{CCO} = 2.5V$	-	120	_	Ω

Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (Continued)

Notes:

1. The numbers in this table are based on the conditions set forth in Table 6.

2. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$.

|--|

Symbol	Description	Device	I-Grade Maximum	Q-Grade Maximum	Units
I _{CCINTQ}	Quiescent V _{CCINT}	XA3S100E	36	58	mA
	supply current	XA3S250E	104	158	mA
		XA3S500E	145	300	mA
		XA3S1200E	324	500	mA
	XA3S1600E	457	750	mA	
I _{CCOQ}	I _{CCOQ} Quiescent V _{CCO} supply current	XA3S100E	1.5	2.0	mA
		XA3S250E	1.5	3.0	mA
		XA3S500E	1.5	3.0	mA
		XA3S1200E	2.5	4.0	mA
		XA3S1600E	2.5	4.0	mA

Single-Ended I/O Standards

Table	<u>9</u> :	Recommended O	perating	Conditions for	or User I/Os	Usina Sin	ale-Ended	Standards
iubio	υ.		porading	oonantiono it			gio Ellava	oturraurao

IOSTANDARD	V _{CC}	_{CO} for Drive	rs ⁽²⁾	V _{REF}			V _{IL}	V _{IH}
Attribute	Min (V)	Nom (V)	Max (V)	Min (V)	Nom (V)	Max (V)	Max (V)	Min (V)
LVTTL	3.0	3.3	3.465				0.8	2.0
LVCMOS33 ⁽⁴⁾	3.0	3.3	3.465				0.8	2.0
LVCMOS25 ^(4,5)	2.3	2.5	2.7				0.7	1.7
LVCMOS18	1.65	1.8	1.95	V _{RE} the	_{EF} is not use se I/O stand	d for ards	0.4	0.8
LVCMOS15	1.4	1.5	1.6				0.4	0.8
LVCMOS12	1.1	1.2	1.3				0.4	0.7
PCI33_3	3.0	3.3	3.465				0.3 * V _{CCO}	0.5 * V _{CCO}
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_III_18	1.7	1.8	1.9	- 1.1 -		V _{REF} - 0.1	V _{REF} + 0.1	
SSTL18_I	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} - 0.125	V _{REF} + 0.125
SSTL2_I	2.3	2.5	2.7	1.15	1.25	1.35	V _{REF} - 0.125	V _{REF} + 0.125

Notes:

- 1. Descriptions of the symbols used in this table are as follows:

 - $\label{eq:V_CCO} V_{CCO} \text{the supply voltage for output drivers} \\ V_{REF} \text{the reference voltage for setting the input switching threshold} \\ V_{IL} \text{the input voltage that indicates a Low logic level} \\ V_{IH} \text{the input voltage that indicates a High logic level} \\ \end{array}$
- 2. The V_{CCO} rails supply only output drivers, not input circuits.
- For device operation, the maximum signal voltage (V_{IH} max) may be as high as V_{IN} max. See Table 72 in DS312. З.
- There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 4.
- All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the V_{CCAUX} rail (2.5V). 5. The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V_{CCO} lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.
- For information on PCI IP solutions, see www.xilinx.com/pci. 6.

Differential I/O Standards

	Vcc	_{CO} for Drive	rs ⁽¹⁾		V _{ID}		V _{ICM}		
IOSTANDARD Attribute	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)
LVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20
BLVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20
MINI_LVDS_25	2.375	2.50	2.625	200	-	600	0.30	-	2.2
LVPECL_25 ⁽²⁾		Inputs Only			800	1000	0.5	1.2	2.0
RSDS_25	2.375	2.50	2.625	100	200	-	0.3	1.20	1.4
DIFF_HSTL_I_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_HSTL_III_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_SSTL18_I	1.7	1.8	1.9	100	-	-	0.7	-	1.1
DIFF_SSTL2_I	2.3	2.5	2.7	100	-	-	1.0	-	1.5

Table 11: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

Notes:

1. The V_{CCO} rails supply only differential output drivers, not input circuits.

2. V_{REF} inputs are not used for any of the differential I/O standards.

Table 12: DC Characteristics of User I/Os Using Differential Signal Standards

	V _{OD} ΔV _{OD} V _{OCM}			ΔV_{OCM}		V _{OH}	V _{OL}					
IOSTANDARD Attribute	Min (mV)	Typ (mV)	Max (mV)	Min (mV)	Max (mV)	Min (V)	Тур (V)	Max (V)	Min (mV)	Max (mV)	Min (V)	Max (V)
LVDS_25	250	350	450	-	-	1.125	-	1.375	-	-	-	-
BLVDS_25	250	350	450	-	-	-	1.20	-	-	-	_	-
MINI_LVDS_25	300	-	600	-	50	1.0	-	1.4	-	50	-	-
RSDS_25	100	-	400	-	-	1.1	-	1.4	-	-	-	-
DIFF_HSTL_I_18	-	-	-	-	-	-	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_III_18	-	-	-	-	-	-	-	-	-	-	V _{CCO} -0.4	0.4
DIFF_SSTL18_I	-	-	-	-	-	-	-	-	-	-	V _{TT} + 0.475	V _{TT} – 0.475
DIFF_SSTL2_I	-	-	_	-	-	-	-	-	-	-	V _{TT} + 0.61	V _{TT} – 0.61

Notes:

1. The numbers in this table are based on the conditions set forth in Table 6, and Table 11.

2. Output voltage measurements for all differential standards are made with a termination resistor (R_T) of 100Ω across the N and P pins of the differential signal pair. The exception is for BLVDS, shown in Figure 5 below.

3. At any given time, no more than two of the following differential output standards may be assigned to an I/O bank: LVDS_25, RSDS_25, MINI_LVDS_25

Table	15:	Setup and H	Hold Times	for the	IOB Input	Path
-------	-----	-------------	------------	---------	------------------	------

			IFD_ DELAY		-4 Speed Grade	
Symbol	Description	Conditions	VALUE	Device	Min	Units
Setup Tim	es					
T _{IOPICK}	Time from the setup of data at the Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). No Input Delay is programmed.	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	2.12	ns
T _{IOPICKD}	Time from the setup of data at the Input	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	6.49	ns
	input. The Input Delay is programmed.	IFD_DELAY_VALUE =	3	XA3S250E	6.85	ns
			2	XA3S500E	7.01	ns
			5	XA3S1200E	8.67	ns
			4	XA3S1600E	7.69	ns
Hold Time	S					
T _{IOICKP}	Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. No Input Delay is programmed.	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	-0.76	ns
T _{IOICKPD}	Time from the active transition at the IFF's	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	-3.93	ns
	ICLK input to the point where data must be held at the Input pin. The Input Delay is	IFD_DELAY_VALUE =	3	XA3S250E	-3.51	ns
	programmed.	doladit ootware ootting	2	XA3S500E	-3.74	ns
			5	XA3S1200E	-4.30	ns
			4	XA3S1600E	-4.14	ns
Set/Reset	Pulse Width				•	•
T _{RPW_IOB}	Minimum pulse width to SR control input on IOB			All	1.80	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 17.

3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 17. When the hold time is negative, it is possible to change the data before the clock's active edge.

Table 16: Propagation Times for the IOB Input Path

			IFD_ DELAY		-4 Speed Grade	
Symbol	Description	Conditions	VALUE	Device	Max	Units
Propagatio	on Times					
T _{IOPLI}	The time it takes for data to travel from the Input pin through the IFF latch to the I output with no input delay programmed	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	2.25	ns
T _{IOPLID}	The time it takes for data to	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	5.97	ns
	travel from the Input pin through IFD_DELAY_VALUE = the IFF latch to the I output with the input delay programmed	3	XA3S250E	6.33	ns	
		the input delay programmed	2	XA3S500E	6.49	ns
		5	XA3S1200E	8.15	ns	
			4	XA3S1600E	7.16	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, *add* the appropriate Input adjustment from Table 17.

Table 17: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the Following	Add the Adjustment Below	
(IOSTANDARD)	-4 Speed Grade	Units
Single-Ended Standards		
LVTTL	0.43	ns
LVCMOS33	0.43	ns
LVCMOS25	0	ns
LVCMOS18	0.98	ns
LVCMOS15	0.63	ns
LVCMOS12	0.27	ns
PCI33_3	0.42	ns
HSTL_I_18	0.12	ns
HSTL_III_18	0.17	ns
SSTL18_I	0.30	ns
SSTL2_I	0.15	ns

Table 17: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the Following Signal Standard	Add the Adjustment Below	
(IOSTANDARD) -4 Speed Grade		Units
Differential Standards		
LVDS_25	0.49	ns
BLVDS_25	0.39	ns
MINI_LVDS_25	0.49	ns
LVPECL_25	0.27	ns
RSDS_25	0.49	ns
DIFF_HSTL_I_18	0.49	ns
DIFF_HSTL_III_18	0.49	ns
DIFF_SSTL18_I	0.30	ns
DIFF_SSTL2_I	0.32	ns

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6, Table 9, and Table 11.
- 2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

Convert C LVCMOS25 w	Putput Time vith 12mA [e from Drive and	Add the Adjustment Below	-
Signal Stand	ard (IOSTA	NDARD)	-4 Speed Grade	Units
Single-Ended	Standards		I	
LVTTL	Slow	2 mA	5.41	ns
		4 mA	2.41	ns
		6 mA	1.90	ns
		8 mA	0.67	ns
		12 mA	0.70	ns
		16 mA	0.43	ns
	Fast	2 mA	5.00	ns
		4 mA	1.96	ns
		6 mA	1.45	ns
		8 mA	0.34	ns
		12 mA	0.30	ns
		16 mA	0.30	ns
LVCMOS33	Slow	2 mA	5.29	ns
		4 mA	1.89	ns
		6 mA	1.04	ns
		8 mA	0.69	ns
		12 mA	0.42	ns
		16 mA	0.43	ns
	Fast	2 mA	4.87	ns
		4 mA	1.52	ns
		6 mA	0.39	ns
		8 mA	0.34	ns
		12 mA	0.30	ns
		16 mA	0.30	ns
LVCMOS25	Slow	2 mA	4.21	ns
		4 mA	2.26	ns
		6 mA	1.52	ns
		8 mA	1.08	ns
		12 mA	0.68	ns
	Fast	2 mA	3.67	ns
		4 mA	1.72	ns
		6 mA	0.46	ns
		8 mA	0.21	ns
		12 mA	0	ns

Table 18: Output Timing Adjustments for IOB

Table 18: Output Timing Adjustments for IOB (Continued)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following		Add the Adjustment Below		
Signal Standa	rd (IOSTA	NDARD)	Grade	Units
LVCMOS18	Slow	2 mA	5.24	ns
		4 mA	3.21	ns
		6 mA	2.49	ns
		8 mA	1.90	ns
	Fast	2 mA	4.15	ns
		4 mA	2.13	ns
		6 mA	1.14	ns
		8 mA	0.75	ns
LVCMOS15	Slow	2 mA	4.68	ns
		4 mA	3.97	ns
		6 mA	3.11	ns
	Fast	2 mA	3.38	ns
		4 mA	2.70	ns
		6 mA	1.53	ns
LVCMOS12	Slow	2 mA	6.63	ns
	Fast	2 mA	4.44	ns
HSTL_I_18			0.34	ns
HSTL_III_18			0.55	ns
PCI33_3			0.46 ns	
SSTL18_I			0.25 ns	
SSTL2_I			-0.20	ns
Differential Star	ndards			
LVDS_25			-0.55	ns
BLVDS_25			0.04	ns
MINI_LVDS_25		-0.56	ns	
LVPECL_25		Input Only	ns	
RSDS_25		-0.48	ns	
DIFF_HSTL_I_1	8		0.42	ns
DIFF_HSTL_III_	18		0.55	ns
DIFF_SSTL18_I			0.40	ns
DIFF_SSTL2_I			0.44	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6, Table 9, and Table 11.

 These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

Configurable Logic Block Timing

Table 20: CLB (SLICEM) Timing

		-4 Speed Grade		
Symbol	Description	Min	Max	Units
Clock-to-Output	Times			
Тско	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.60	ns
Setup Times				
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB	0.52	-	ns
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB	1.81	-	ns
Hold Times	•			•
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the F or G input	0	-	ns
Т _{СКОІ}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input	0	-	ns
Clock Timing				
T _{CH}	The High pulse width of the CLB's CLK signal	0.80	-	ns
T _{CL}	The Low pulse width of the CLK signal	0.80	-	ns
F _{TOG}	Toggle frequency (for export control)	0	572	MHz
Propagation Time	es			
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.76	ns
Set/Reset Pulse	Width			
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	1.80	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

Table 21: CLB Distributed RAM Switching Characteristics

		-	4	
Symbol	Description	Min	Max	Units
Clock-to-Outpu	t Times			
Т _{SHCKO}	Time from the active edge at the CLK input to data appearing on the distributed RAM output	-	2.35	ns
Setup Times				
T _{DS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the distributed RAM	0.46	-	ns
T _{AS}	Setup time of the F/G address inputs before the active transition at the CLK input of the distributed RAM	0.52	-	ns
T _{WS}	Setup time of the write enable input before the active transition at the CLK input of the distributed RAM	0.40	-	ns
Hold Times				
T _{DH}	Hold time of the BX, BY data inputs after the active transition at the CLK input of the distributed RAM	0.15	-	ns
T _{AH,} T _{WH}	Hold time of the F/G address inputs or the write enable input after the active transition at the CLK input of the distributed RAM	0	-	ns
Clock Pulse Wie	dth			
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns

Table 22: CLB Shift Register Switching Characteristics

		-	4		
Symbol	Description	Min	Мах	Units	
Clock-to-Outpu	t Times				
T _{REG}	Time from the active edge at the CLK input to data appearing on the shift register output	-	4.16	ns	
Setup Times					
T _{SRLDS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the shift register	0.46	-	ns	
Hold Times		•	•		
T _{SRLDH}	Hold time of the BX or BY data input after the active transition at the CLK input of the shift register	0.16	-	ns	
Clock Pulse Wi	Clock Pulse Width				
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns	

Table 24: 18 x 18 Embedded Multiplier Timing (Continued)

		-4 Speed Grade			
Symbol	Description	Min	Мах	Units	
Clock Frequency					
F _{MULT}	Internal operating frequency for a two-stage 18x18 multiplier using the AREG and BREG input registers and the PREG output register ⁽¹⁾	0	240	MHz	

Notes:

1. Combinatorial delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.

2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.

3. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.

Block RAM Timing

Table 25: Block RAM Timing

		-4 Speed Grade		
Symbol	Description	Min	Max	Units
Clock-to-Out	put Times			
Т _{ВСКО}	When reading from block RAM, the delay from the active transition at the CLK input to data appearing at the DOUT output	-	2.82	ns
Setup Times			I	I
T _{BACK}	Setup time for the ADDR inputs before the active transition at the CLK input of the block RAM	0.38	-	ns
T _{BDCK}	Setup time for data at the DIN inputs before the active transition at the CLK input of the block RAM	0.23	-	ns
T _{BECK}	Setup time for the EN input before the active transition at the CLK input of the block RAM	0.77	-	ns
T _{BWCK}	Setup time for the WE input before the active transition at the CLK input of the block RAM	1.26	-	ns
Hold Times				1
Т _{ВСКА}	Hold time on the ADDR inputs after the active transition at the CLK input	0.14	-	ns
T _{BCKD}	Hold time on the DIN inputs after the active transition at the CLK input	0.13	-	ns
T _{BCKE}	Hold time on the EN input after the active transition at the CLK input	0	-	ns
T _{BCKW}	Hold time on the WE input after the active transition at the CLK input	0	-	ns

Table 25: Block RAM Timing (Continued)

		-4 Spee	d Grade		
Symbol	Description	Min	Max	Units	
Clock Timing		,	,	,	
T _{BPWH}	High pulse width of the CLK signal	1.59	-	ns	
T _{BPWL}	Low pulse width of the CLK signal	1.59	-	ns	
Clock Frequency					
F _{BRAM}	Block RAM clock frequency. RAM read output value written back into RAM, for shift registers and circular buffers. Write-only or read-only performance is faster.	0	230	MHz	

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

Digital Clock Manager Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 26 and Table 27) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 28 through Table 31) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 26 and Table 27.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value.

Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>, *Spread-Spectrum Clocking Reception for Displays* for details.

Delay-Locked Loop

Table 26: Recommended Operating Conditions for the DLL

				-4 Spee	d Grade	
	Symbol	Des	scription	Min	Max	Units
Input Fr	equency Ranges					
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN clock in	nput	5(2)	240 ⁽³⁾	MHz
Input Pu	Ise Requirements	-			•	
$\begin{tabular}{ c c c c } \hline CLKIN pulse width as a & $F_{CLKIN} \leq 150 $ MHz$ \\ \hline percentage of the CLKIN & $F_{CLKIN} > 150 $ MHz$ \\ \hline \end{tabular}$		40%	60%	-		
		percentage of the CLKIN period	F _{CLKIN} > 150 MHz	45%	55%	-
Input Cl	ock Jitter Tolerance and	I Delay Path Variation ⁽⁴⁾				
CLKIN_C	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the	F _{CLKIN} ≤ 150 MHz	-	±300	ps
CLKIN_C	CYC_JITT_DLL_HF	CLKIN input	F _{CLKIN} > 150 MHz	-	±150	ps
CLKIN_F	PER_JITT_DLL	Period jitter at the CLKIN input		-	±1	ns
CLKFB_	DELAY_VAR_EXT	Allowable variation of off-chip fee the CLKFB input	edback delay from the DCM output to	-	±1	ns

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 28.

3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

Table 27: Switching Characteristics for the DLL

		-4 Spe	ed Grade	
Symbol	Description	Min	Max	Units
Output Frequency Ranges	•			
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK180 outputs	5	240	MHz
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK270 outputs	5	200	MHz
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2X180 outputs	10	311	MHz
CLKOUT_FREQ_DV	Frequency for the CLKDV output	0.3125	160	MHz
Output Clock Jitter ^(2,3,4)	1	L	I	
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output	-	±100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output	-	±150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output	-	±150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output	-	±150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2X180 outputs	-	±[1% of CLKIN period + 150]	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division	-	±150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division	-	±[1% of CLKIN period + 200]	ps

Table 29: Switching Characteristics for the DFS

				-4 Spee	ed Grade	
Symbol	Description		Device	Min	Max	Units
Output Frequency Ranges	·					
CLKOUT_FREQ_FX	Frequency for the CLKFX and CLKFX180 or	utputs	All	5	311	MHz
Output Clock Jitter ^(2,3)						r.
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180		All	Тур	Max	
	Outputs CLKIN <20 MHz CLKIN > 20 MHz			See	Note 4	ps
		CLKIN > 20 MHz		±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	ps
Duty Cycle ^(5,6)						
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLK including the BUFGMUX and clock tree duty	All	-	±[1% of CLKFX period + 400]	ps	
Phase Alignment ⁽⁶⁾						
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX output output when both the DFS and DLL are used	t and the DLL CLK0 d	All	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX180 output and the DLL CLK0 output when both the DFS and DLL are used		All	-	±[1% of CLKFX period + 300]	ps
Lock Time						
LOCK_FX ⁽²⁾	The time from deassertion at the DCM's Reset input to the rising transition at its	5 MHz <u><</u> F _{CLKIN} ≤ 15 MHz	All	-	5	ms
	LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.	F _{CLKIN} > 15 MHz		-	450	μs

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 28.

For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute. 2.

Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching). Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application. Use the Spartan-3A Jitter Calculator (www.xilinx.com/support/documentation/data_sheets/s3a_jitter_calc.zip) to estimate DFS output jitter. Use the З.

4. Clocking Wizard to determine jitter for a specific design. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.

5.

Some duty-cycle and alignment specifications include 1% of the CLKFX output period or 0.01 UI. *Example:* The data sheet specifies a maximum jitter of " \pm [1% of CLKFX period + 300]". Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is \pm [100 ps + 300 ps] = \pm 400 ps. 6.

Phase Shifter

Table 30: Recommended Operating Conditions for the PS in Variable Phase Mode

		-4 Spee		
Symbol	Description	Min	Units	
Operating Frequence	y Ranges			
PSCLK_FREQ (F _{PSCLK})	Frequency for the PSCLK input	1	167	MHz
Input Pulse Require	ments			
PSCLK_PULSE	PSCLK pulse width as a percentage of the PSCLK period	40%	60%	-

Table 31: Switching Characteristics for the PS in Variable Phase Mode

Symbol	Description			Units
Phase Shifting Range				
MAX_STEPS ⁽²⁾	Maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN	CLKIN < 60 MHz	±[INTEGER(10 ● (T _{CLKIN} – 3 ns))]	steps
	Clock period in ns. If using CLKIN_DIVIDE_BY_2 = TRUE, double the clock effective clock period.	CLKIN <u>></u> 60 MHz	±[INTEGER(15 ● (T _{CLKIN} – 3 ns))]	steps
FINE_SHIFT_RANGE_MIN	Minimum guaranteed delay for variable phase shifting	±[MAX_STEPS ● DCM_DELAY_STEP_MIN]		ns
FINE_SHIFT_RANGE_MAX	Maximum guaranteed delay for variable phase shifting	±[MAX_STEPS ● DCM_DELAY_STEP_MAX]		ns

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 30.
- 2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, i.e., the PHASE_SHIFT attribute is set to 0.
- 3. The DCM_DELAY_STEP values are provided at the bottom of Table 27.

Miscellaneous DCM Timing

Table 32: Miscellaneous DCM Timing

Symbol	Description	Min	Max	Units
DCM_RST_PW_MIN ⁽¹⁾	Minimum duration of a RST pulse width	3	-	CLKIN cycles
DCM_RST_PW_MAX ⁽²⁾	Maximum duration of a RST pulse width	N/A	N/A	seconds
		N/A	N/A	seconds
DCM_CONFIG_LAG_TIME ⁽³⁾ Maximum duration from V _{CCINT} applied to FPGA		N/A	N/A	minutes
	High) and clocks applied to DCM DLL	N/A	N/A	minutes

Notes:

1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.

- 2. This specification is equivalent to the Virtex-4 DCM_RESET specification. This specification does not apply for Spartan-3E FPGAs.
- 3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3E FPGAs.

Configuration and JTAG Timing

Table 33: Power-On Timing and the Beginning of Configuration

		-4 Spee		d Grade	
Symbol	Description	Device	Min	Max	Units
T _{POR} ⁽²⁾	The time from the application of $V_{CCINT}\!, V_{CCAUX}\!,$ and V_{CCO}	XA3S100E	-	5	ms
E	Bank 2 supply voltage ramps (whichever occurs last) to the	XA3S250E	-	5	ms
		XA3S500E	-	5	ms
		XA3S1200E	-	5	ms
		XA3S1600E	-	7	ms
T _{PROG}	The width of the low-going pulse on the PROG_B pin	All	0.5	-	μs
T _{PL} ⁽²⁾	The time from the rising edge of the PROG_B pin to the	XA3S100E	-	0.5	ms
	rising transition on the INIT_B pin	XA3S250E	-	0.5	ms
		XA3S500E	-	1	ms
		XA3S1200E	-	2	ms
		XA3S1600E	-	2	ms
T _{INIT}	Minimum Low pulse width on INIT_B output	All	250	-	ns
T _{ICCK} ⁽³⁾	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4.0	μs

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6. This means power must be applied to all V_{CCINT} , V_{CCO} , and V_{CCAUX} lines.

2. Power-on reset and the clearing of configuration memory occurs during this period.

3. This specification applies only to the Master Serial, SPI, BPI-Up, and BPI-Down modes.

Configuration Clock (CCLK) Characteristics

Symbol	Description	<i>ConfigRate</i> Setting	Temperature Range	Minimum	Maximum	Units
T _{CCLK1}	CCLK clock period by <i>ConfigRate</i> setting	1 (power-on value and default value)	I-Grade Q-Grade	485	1,250	ns
T _{CCLK3}		3	I-Grade Q-Grade	242	625	ns
T _{CCLK6}		6	I-Grade Q-Grade	121	313	ns
T _{CCLK12}		12	I-Grade Q-Grade	60.6	157	ns
T _{CCLK25}		25	I-Grade Q-Grade	30.3	78.2	ns
T _{CCLK50}		50	I-Grade Q-Grade	15.1	39.1	ns

Table 34: Master Mode CCLK Output Period by ConfigRate Option Setting

Notes:

1. Set the *ConfigRate* option value when generating a configuration bitstream. See Bitstream Generator (BitGen) Options in <u>DS312</u>, Module 2.

Table	35:	Master	Mode CCLK C	Output Free	quency by	ConfigR	ate Option Sett	ing

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
F _{CCLK1}	Equivalent CCLK clock frequency by <i>ConfigRate</i> setting	1 (power-on value and default value)	I-Grade Q-Grade	0.8	2.1	MHz
F _{CCLK3}		3	I-Grade Q-Grade	1.6	4.2	MHz
F _{CCLK6}		6	I-Grade Q-Grade	3.2	8.3	MHz
F _{CCLK12}		12	I-Grade Q-Grade	6.4	16.5	MHz
F _{CCLK25}		25	I-Grade Q-Grade	12.8	33.0	MHz
F _{CCLK50}		50	I-Grade Q-Grade	25.6	66.0	MHz

Table 36: Master Mode CCLK Output Minimum Low and High Time

Symbol	Description			(ConfigR	<i>ate</i> Settin	g					
	Description		1	3	6	12	25	50	Units			
T _{MCCL,} T _{MCCH}	Master mode CCLK minimum Low and High time	I-Grade Q-Grade	235	117	58	29.3	14.5	7.3	ns			

Table 37: Slave Mode CCLK Input Low and High Time

Symbol	Description	Min	Max	Units
T _{SCCL,} T _{SCCH}	CCLK Low and High time	5	∞	ns

Byte Peripheral Interface Configuration Timing

Table 42: Timing for BPI Configuration Mode

Symbol	Description	Minimum	Maximum	Units		
T _{CCLK1}	Initial CCLK clock period			(see Table 34)		
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting			(see Table 34)		
T _{MINIT}	Setup time on CSI_B, RDWR_B, and M[2:0] mode pins before the rising edge of INIT_B			-	ns	
T _{INITM}	Hold time on CSI_B, RDWR_B, and M[2:0] mode pins after the rising edge of INIT_B			-	ns	
T _{INITADDR}	Minimum period of initial A[23:0] address cycle; LDC[2:0] and HDC are asserted and validBPI-UP: (M[2:0]=<0:1:0>)		5	5	T _{CCLK1} cycles	
		BPI-DN: (M[2:0]=<0:1:1>)	2	2		
T _{CCO}	Address A[23:0] outputs valid after CCLK falling edge		See Table 38			
T _{DCC}	Setup time on D[7:0] data inputs before CCLK rising edge		See Table 38			
T _{CCD}	Hold time on D[7:0] data inputs after CCLK rising edge		See Table 38			

Table 43: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol	Description	Requirement	
T _{CE} (t _{ELQV})	Parallel NOR Flash PROM chip-select time	T _{CE} ≤ T _{INITADDR}	ns
T _{OE} (t _{GLQV})	Parallel NOR Flash PROM output-enable time	T _{OE} ≤ T _{INITADDR}	
T _{ACC} (t _{AVQV})	Parallel NOR Flash PROM read access time	$T_{ACC} \le 0.5T_{CCLKn(min)} - T_{CCO} - T_{DCC} - PCB$	
T _{BYTE} (t _{FLQV,} t _{FHQV})	For x8/x16 PROMs only: BYTE# to output valid time ⁽³⁾	T _{byte} ≤T _{initaddr}	ns

Notes:

1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.

2. Subtract additional printed circuit board routing delay as required by the application.

3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA's LDC2 pin. The resistor value also depends on whether the FPGA's HSWAP pin is High or Low.

IEEE 1149.1/1553 JTAG Test Access Port Timing

Table 44: Timing for the JTAG Test Access Port

		-4 Speed Grade		
Symbol	Description	Min	Мах	Units
Clock-to-Output	Times			
Т _{ТСКТDO}	The time from the falling transition on the TCK pin1.011.0to data appearing at the TDO pin11.011.0		11.0	ns
Setup Times				
Т _{тотск}	The time from the setup of data at the TDI pin to the rising transition at the TCK pin	7.0	-	ns
Т _{тмsтск}	The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin	7.0	-	ns
Hold Times	•		+	•
Т _{ТСКТОІ}	The time from the rising transition at the TCK pin to the point when data is last held at the TDI pin	0	-	ns
T _{TCKTMS}	The time from the rising transition at the TCK pin to the point when a logic level is last held at the TMS pin	0	-	ns
Clock Timing				
T _{CCH}	The High pulse width at the TCK pin	5	-	ns
T _{CCL}	The Low pulse width at the TCK pin	5	-	ns
F _{TCK}	Frequency of the TCK signal	-	25	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
08/31/07	1.0	Initial Xilinx release.
01/20/09	1.1	 Updated "Key Feature Differences from Commercial XC Devices." Updated T_{ACC} requirement in Table 43. Updated description of T_{DCC} and T_{CCD} in Table 42. Removed Table 45: MultiBoot Trigger Timing.
09/09/09	2.0	 Added package sizes to Table 2, page 4. Removed Genealogy Viewer Link from "Package Marking," page 5. Updated data and notes for Table 6, page 8. Updated test conditions for R_{PU} and maximum value for C_{IN} in Table 7, page 8. Updated notes for Table 8, page 9. Updated Max V_{CCO} for LVTTL and LVCMOS33, removed PCIX data, updated V_{IL} Max for LVCMOS18, LVCMOS15, and LVCMOS12, updated V_{IH} Min for LVCMOS12, and added note 6 in Table 9, page 11. Removed PCIX data, revised note 2, and added note 4 in Table 10, page 12. Updated figure description of Figure 5, page 14. Added note 4 to Table 13, page 14. Removed PCI66_3 and PCIX adjustment values from Table 17, page 17. Deleted Table 18 (duplicate of Table 17, page 17). Subsequent tables renumbered. Removed PCIX data Table 18, page 18. Removed PCIX data and removed V_{REF} values for DIFF_HSTL_I_18, DIFF_HSTL_III_18, DIFF_SSTL18_I, and DIFF_SSTL2_I from Table 19, page 19. Updated notes, references to notes, and revised the maximum clock-to-output times for T_{MSCKP_P} Table 24, page 22. Added note 4 Table 28, page 26. Updated notes, references to notes, and CLKOUT_PER_JITT_FX data in Table 29, page 27. Updated MAX_STEPS data in Table 31, page 28. Updated ConfigRate Setting for T_{CCLK1} to indicate 1 is the default value in Table 34, page 30.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.