

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product Status	Active	
Number of LABs/CLBs	3688	
Number of Logic Elements/Cells	33192	
Total RAM Bits	663552	
Number of I/O	376	
Number of Gates	1600000	
Voltage - Supply	1.14V ~ 1.26V	
Mounting Type	Surface Mount	
Operating Temperature	-40°C ~ 100°C (TJ)	
Package / Case	484-BBGA	
Supplier Device Package	484-FBGA (23x23)	
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3s1600e-4fgg484i	

Email: info@E-XFL.COM

- - --

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XA Spartan-3E FPGAs support the following differential standards:

- LVDS
- Bus LVDS
- mini-LVDS
- RSDS

Table 2: Available User I/Os and Differential (Diff) I/O Pairs

Package	VQC	G100	CPG	G132	TQC	6144	PQC	208	FTG	256	FGG	3400	FGG	i484
Size (mm)	16 >	c 16	8	x 8	22 >	x 22	28 3	k 28	17 3	c 17	21 >	x 21	23 x	23
Device	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XA3S100E	66 (7)	30 (2)	83 (11)	35 (2)	108 (28)	40 (4)	-	-	-	-	-	-	-	-
XA3S250E	66 (7)	30 (2)	92 (7)	41 (2)	108 (28)	40 (4)	158 (32)	65 (5)	172 (40)	68 (8)	-	-	-	-
XA3S500E	-	-	92 (7)	41 (2)	-	-	158 (32)	65 (5)	190 (41)	77 (8)	-	-	-	-
XA3S1200E	-	-	-	-	-	-	-	-	190 (40)	77 (8)	304 (72)	124 (20)	-	-
XA3S1600E	-	-	-	-	-	-	-	-	-	-	304 (72)	124 (20)	376 (82)	156 (21)

•

٠

•

Differential HSTL (1.8V, Types I and III)

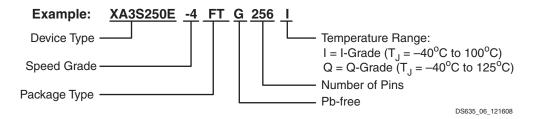
2.5V LVPECL inputs

Differential SSTL (2.5V and 1.8V, Type I)

Notes:

1. All XA Spartan-3E devices provided in the same package are pin-compatible as further described in Module 4: Pinout Descriptions of DS312.

2. The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (*italics*) indicates the number of input-only pins.



Ordering Information

XA Spartan-3E FPGAs are available in Pb-free packaging options for all device/package combinations. All devices are in Pb-free packages only, with a "G" character to the ordering code. All devices are available in either I-Grade or

Q-Grade temperature ranges. Only the -4 speed grade is available for the XA Spartan-3E family. See Table 2 for valid device/package combinations.

Pb-Free Packaging

Device		Speed Grade		Package Type / Number of Pins		Temperature Range (T _J)
XA3S100E	-4	Only	VQG100	100-pin Very Thin Quad Flat Pack (VQFP)	I	I-Grade (-40°C to 100°C)
XA3S250E		l	CPG132	132-ball Chip-Scale Package (CSP)	Q	Q-Grade (-40°C to 125°C)
XA3S500E			TQG144	144-pin Thin Quad Flat Pack (TQFP)	1	
XA3S1200E			PQG208	208-pin Plastic Quad Flat Pack (PQFP)		
XA3S1600E			FTG256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)		
			FGG400	400-ball Fine-Pitch Ball Grid Array (FBGA)		
			FGG484	484-ball Fine-Pitch Ball Grid Array (FBGA)		

Symbol	Description	Test Conditions	Min	Тур	Max	Units
I _{RPD} ⁽²⁾	Current through pull-down resistor at User I/O, Dual-Purpose, Input-only, and Dedicated pins	$V_{IN} = V_{CCO}$	0.10	_	0.75	mA
$R_{PD}^{(2)}$	Equivalent pull-down resistor value at	$V_{IN} = V_{CCO} = 3.0V$ to 3.45V	4.0	-	34.5	kΩ
	User I/O, Dual-Purpose, Input-only, and Dedicated pins (based on I _{RPD}	$V_{IN} = V_{CCO} = 2.3V$ to 2.7V	3.0	_	27.0	kΩ
	per Note 2)	$V_{IN} = V_{CCO} = 1.7V$ to 1.9V	2.3	_	19.0	kΩ
		$V_{IN} = V_{CCO} = 1.4V$ to 1.6V	1.8	_	16.0	kΩ
		$V_{IN} = V_{CCO} = 1.14V$ to 1.26V	1.5	-	12.6	kΩ
I _{REF}	V _{REF} current per pin	All V _{CCO} levels	-10	_	+10	μA
C _{IN}	Input capacitance	-	-	_	10	pF
R _{DT}	Resistance of optional differential termination circuit within a differential I/O pair. Not available on Input-only pairs.	$V_{OCM} Min \le V_{ICM} \le V_{OCM} Max$ $V_{OD} Min \le V_{ID} \le V_{OD} Max$ $V_{CCO} = 2.5V$	_	120	_	Ω

Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (Continued)

Notes:

1. The numbers in this table are based on the conditions set forth in Table 6.

2. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$.

Symbol	Description	Device	I-Grade Maximum	Q-Grade Maximum	Units
I _{CCINTQ}	Quiescent V _{CCINT}	XA3S100E	36	58	mA
	supply current	XA3S250E	104	158	mA
		XA3S500E	145	300	mA
		XA3S1200E	324	500	mA
		XA3S1600E	457	750	mA
I _{CCOQ}	Quiescent V _{CCO}	XA3S100E	1.5	2.0	mA
	supply current	XA3S250E	1.5	3.0	mA
		XA3S500E	1.5	3.0	mA
		XA3S1200E	2.5	4.0	mA
		XA3S1600E	2.5	4.0	mA

Single-Ended I/O Standards

Table O: Decommonded Operation	a Conditions for Lloor 1/0a	Lloing Single Ended Standarde
Table 9: Recommended Operatin	y contaitions for user i/us	S USING SINGLE-Ended Standards

IOSTANDARD	Vcc	_{CO} for Drive	rs ⁽²⁾	V _{REF}			V _{IL}	V _{IH}
Attribute	Min (V)	Nom (V)	Max (V)	Min (V)	Nom (V)	Max (V)	Max (V)	Min (V)
LVTTL	3.0	3.3	3.465				0.8	2.0
LVCMOS33 ⁽⁴⁾	3.0	3.3	3.465				0.8	2.0
LVCMOS25 ^(4,5)	2.3	2.5	2.7				0.7	1.7
LVCMOS18	1.65	1.8	1.95		_{EF} is not use se I/O stand		0.4	0.8
LVCMOS15	1.4	1.5	1.6				0.4	0.8
LVCMOS12	1.1	1.2	1.3				0.4	0.7
PCI33_3	3.0	3.3	3.465				0.3 * V _{CCO}	0.5 * V _{CCO}
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_III_18	1.7	1.8	1.9	-	1.1	-	V _{REF} - 0.1	V _{REF} + 0.1
SSTL18_I	1.7	1.8	1.9	0.833 0.900 0.969		V _{REF} - 0.125	V _{REF} + 0.125	
SSTL2_I	2.3	2.5	2.7	1.15	1.25	1.35	V _{REF} - 0.125	V _{REF} + 0.125

Notes:

- 1. Descriptions of the symbols used in this table are as follows:

 - $\label{eq:V_CCO} V_{CCO} \text{the supply voltage for output drivers} \\ V_{REF} \text{the reference voltage for setting the input switching threshold} \\ V_{IL} \text{the input voltage that indicates a Low logic level} \\ V_{IH} \text{the input voltage that indicates a High logic level} \\ \end{array}$
- 2. The V_{CCO} rails supply only output drivers, not input circuits.
- For device operation, the maximum signal voltage (V_{IH} max) may be as high as V_{IN} max. See Table 72 in DS312. З.
- There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 4.
- All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the V_{CCAUX} rail (2.5V). 5. The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V_{CCO} lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.
- For information on PCI IP solutions, see www.xilinx.com/pci. 6.

Differential I/O Standards

	V _{CCO} for Drivers ⁽¹⁾				V _{ID}		V _{ICM}			
IOSTANDARD Attribute	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)	
LVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20	
BLVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20	
MINI_LVDS_25	2.375	2.50	2.625	200	-	600	0.30	-	2.2	
LVPECL_25 ⁽²⁾		Inputs Only		100	800	1000	0.5	1.2	2.0	
RSDS_25	2.375	2.50	2.625	100	200	-	0.3	1.20	1.4	
DIFF_HSTL_I_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_HSTL_III_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_SSTL18_I	1.7	1.8	1.9	100	-	-	0.7	-	1.1	
DIFF_SSTL2_I	2.3	2.5	2.7	100	-	-	1.0	-	1.5	

Table 11: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

Notes:

1. The V_{CCO} rails supply only differential output drivers, not input circuits.

2. V_{REF} inputs are not used for any of the differential I/O standards.

Table 12: DC Characteristics of User I/Os Using Differential Signal Standards

		V _{OD}		ΔV	ОD		V _{OCM}		ΔV _C	ОСМ	V _{OH}	V _{OL}
IOSTANDARD Attribute	Min (mV)	Typ (mV)	Max (mV)	Min (mV)	Max (mV)	Min (V)	Тур (V)	Max (V)	Min (mV)	Max (mV)	Min (V)	Max (V)
LVDS_25	250	350	450	-	-	1.125	-	1.375	-	-	-	-
BLVDS_25	250	350	450	-	-	-	1.20	-	-	-	-	-
MINI_LVDS_25	300	-	600	-	50	1.0	-	1.4	-	50	-	-
RSDS_25	100	-	400	-	-	1.1	-	1.4	-	-	-	-
DIFF_HSTL_I_18	-	-	-	-	-	-	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_III_18	-	-	-	-	-	-	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_SSTL18_I	-	-	_	-	-	-	-	-	-	-	V _{TT} + 0.475	V _{TT} – 0.475
DIFF_SSTL2_I	-	-	-	-	-	_	-	-	_	_	V _{TT} + 0.61	V _{TT} – 0.61

Notes:

1. The numbers in this table are based on the conditions set forth in Table 6, and Table 11.

2. Output voltage measurements for all differential standards are made with a termination resistor (R_T) of 100Ω across the N and P pins of the differential signal pair. The exception is for BLVDS, shown in Figure 5 below.

3. At any given time, no more than two of the following differential output standards may be assigned to an I/O bank: LVDS_25, RSDS_25, MINI_LVDS_25

Table 16: Propagation Times for the IOB Input Path

			IFD_ DELAY		-4 Speed Grade	
Symbol	Description Conditions		VALUE	Device	Max	Units
Propagatio	on Times					
T _{IOPLI}	The time it takes for data to travel from the Input pin through the IFF latch to the I output with no input delay programmed	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	2.25	ns
T _{IOPLID}	The time it takes for data to	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	5.97	ns
	travel from the Input pin through the IFF latch to the I output with	IFD_DELAY_VALUE = default software setting	3	XA3S250E	6.33	ns
	the input delay programmed	dolaali oolimaro oolimg	2	XA3S500E	6.49	ns
			5	XA3S1200E	8.15	ns
			4	XA3S1600E	7.16	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, *add* the appropriate Input adjustment from Table 17.

Table 17: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the Following	Add the Adjustment Below	
Signal Standard (IOSTANDARD)	-4 Speed Grade	Units
Single-Ended Standards		
LVTTL	0.43	ns
LVCMOS33	0.43	ns
LVCMOS25	0	ns
LVCMOS18	0.98	ns
LVCMOS15	0.63	ns
LVCMOS12	0.27	ns
PCI33_3	0.42	ns
HSTL_I_18	0.12	ns
HSTL_III_18	0.17	ns
SSTL18_I	0.30	ns
SSTL2_I	0.15	ns

Table 17: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the Following	Add the Adjustment Below				
Signal Standard (IOSTANDARD)					
Differential Standards					
LVDS_25	0.49	ns			
BLVDS_25	0.39	ns			
MINI_LVDS_25	0.49	ns			
LVPECL_25	0.27	ns			
RSDS_25	0.49	ns			
DIFF_HSTL_I_18	0.49	ns			
DIFF_HSTL_III_18	0.49	ns			
DIFF_SSTL18_I	0.30	ns			
DIFF_SSTL2_I	0.32	ns			

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6, Table 9, and Table 11.
- 2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

Table 19: Test Methods for Ti	iming Measurement at I/Os
-------------------------------	---------------------------

Signal Standard (IOSTANDARD) V			Inputs		Out	puts	Inputs and Outputs
		V _{REF} (V)	V _L (V)	V _H (V)	R_T (Ω)	V _T (V)	V _M (V)
Single-End	ed		·	· · · · · · ·			
LVTTL		-	0	3.3	1M	0	1.4
LVCMOS33		-	0	3.3	1M	0	1.65
LVCMOS25		-	0	2.5	1M	0	1.25
LVCMOS18		-	0	1.8	1M	0	0.9
LVCMOS15		-	0	1.5	1M	0	0.75
LVCMOS12		-	0	1.2	1M	0	0.6
PCI33_3	Rising	-	Note 3	Note 3	25	0	0.94
	Falling				25	3.3	2.03
HSTL_I_18	L.	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
HSTL_III_18	8	1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}
SSTL18_I		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
SSTL2_I		1.25	V _{REF} – 0.75	V _{REF} + 0.75	50	1.25	V _{REF}
Differential			1			L	ll.
LVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
BLVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	1M	0	V _{ICM}
MINI_LVDS	_25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
LVPECL_25	5	-	V _{ICM} – 0.3	V _{ICM} + 0.3	1M	0	V _{ICM}
RSDS_25		-	V _{ICM} – 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}
DIFF_HSTL	_l_18	-	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{ICM}
DIFF_HSTL	III_18	-	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{ICM}
DIFF_SSTL	.18_I	-	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{ICM}
DIFF_SSTL	2_I	-	V _{REF} – 0.5	V _{REF} + 0.5	50	1.25	V _{ICM}

Notes:

1. Descriptions of the relevant symbols are as follows:

 $V_{\mbox{\scriptsize REF}}$ – The reference voltage for setting the input switching threshold

 V_{ICM} – The common mode input voltage V_M – Voltage of measurement point on signal transition V_L – Low-level test voltage at Input pin V_H – High-level test voltage at Input pin

 R_T – Effective termination resistance, which takes on a value of 1M Ω when no parallel termination is required

V_T – Termination voltage

The load capacitance (C_1) at the Output pin is 0 pF for all signal standards. 2.

З. According to the PCI specification.

Configurable Logic Block Timing

Table 20: CLB (SLICEM) Timing

		-4 Spee	ed Grade		
Symbol	Description	Min Max		Units	
Clock-to-Output	Times				
Т _{СКО}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.60	ns	
Setup Times	-		ļ.	Į	
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB	0.52	-	ns	
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB	1.81	-	ns	
Hold Times	1				
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the F or G input	0	-	ns	
T _{CKDI}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input	0	-	ns	
Clock Timing				I	
Т _{СН}	The High pulse width of the CLB's CLK signal	0.80	-	ns	
T _{CL}	The Low pulse width of the CLK signal	0.80	-	ns	
F _{TOG}	Toggle frequency (for export control)	0	572	MHz	
Propagation Tim	es		1	l	
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.76	ns	
Set/Reset Pulse	Width		L	1	
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	1.80	-	ns	

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

Table 21: CLB Distributed RAM Switching Characteristics

		-4			
Symbol	Description	Min	Max	Units	
Clock-to-Outpu	It Times				
Т _{SHCKO}	Time from the active edge at the CLK input to data appearing on the distributed RAM output	-	2.35	ns	
Setup Times		1	<u> </u>	1	
T _{DS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the distributed RAM	0.46	-	ns	
T _{AS}	Setup time of the F/G address inputs before the active transition at the CLK input of the distributed RAM	0.52	-	ns	
T _{WS}	Setup time of the write enable input before the active transition at the CLK input of the distributed RAM	0.40	-	ns	
Hold Times		1		1	
T _{DH}	Hold time of the BX, BY data inputs after the active transition at the CLK input of the distributed RAM	0.15	-	ns	
T_{AH},T_{WH}	Hold time of the F/G address inputs or the write enable input after the active transition at the CLK input of the distributed RAM	0	-	ns	
Clock Pulse Wi	dth	1	1	1	
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns	

Table 22: CLB Shift Register Switching Characteristics

		-4			
Symbol	Description	Min	Мах	Units	
Clock-to-Outpu	ock-to-Output Times				
T _{REG}	Time from the active edge at the CLK input to data appearing on the shift register output	-	4.16	ns	
Setup Times		1		1	
T _{SRLDS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the shift register	0.46	-	ns	
Hold Times		+	<u> </u>	1	
T _{SRLDH}	Hold time of the BX or BY data input after the active transition at the CLK input of the shift register	0.16	-	ns	
Clock Pulse W	idth	-1	1	1	
T_{WPH},T_{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns	

Clock Buffer/Multiplexer Switching Characteristics

Table 23: Clock Distribution Switching Characteristics

		Maximum	
Description	Symbol	-4 Speed Grade	Units
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay	T _{GIO}	1.46	ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input	T _{GSI}	0.63	ns
Frequency of signals distributed on global buffers (all sides)	F _{BUFG}	311	MHz

18 x 18 Embedded Multiplier Timing

Table 24: 18 x 18 Embedded Multiplier Timing

		-4 Spee	ed Grade	
Symbol	Description	Min	Max	Units
Combinatoria	l Delay			
T _{MULT}	Combinatorial multiplier propagation delay from the A and B inputs to the P outputs, assuming 18-bit inputs and a 36-bit product (AREG, BREG, and PREG registers unused)	-	4.88 ⁽¹⁾	ns
Clock-to-Outp	out Times	L	1	
T _{MSCKP_P}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using the PREG register ⁽²⁾	-	1.10	ns
T _{MSCKP_A} T _{MSCKP_B}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using either the AREG or BREG register ⁽³⁾	-	4.97	ns
Setup Times		L	1	
T _{MSDCK_P}	Data setup time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽²⁾	3.98	-	ns
T _{MSDCK_A}	Data setup time at the A input before the active transition at the CLK when using the AREG input register $^{\rm (3)}$	0.23	-	ns
T _{MSDCK_B}	Data setup time at the B input before the active transition at the CLK when using the BREG input register $^{\rm (3)}$	0.39	-	ns
Hold Times		L		
T _{MSCKD_P}	Data hold time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽²⁾	-0.97		
T _{MSCKD_A}	Data hold time at the A input before the active transition at the CLK when using the AREG input register $^{\rm (3)}$	0.04		
T _{MSCKD_B}	Data hold time at the B input before the active transition at the CLK when using the BREG input register ^{(3)}	0.05		

Table 24: 18 x 18 Embedded Multiplier Timing (Continued)

		-4 Speed Grade					
Symbol	Description	Min	Max	Units			
Clock Frequen	Clock Frequency						
F _{MULT}	Internal operating frequency for a two-stage 18x18 multiplier using the AREG and BREG input registers and the PREG output register ⁽¹⁾	0	240	MHz			

Notes:

1. Combinatorial delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.

2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.

3. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.

Block RAM Timing

Table 25: Block RAM Timing

		-4 Spee	-4 Speed Grade		
Symbol	Description	Min Max		Units	
Clock-to-Ou	tput Times		1	_	
Т _{ВСКО}	When reading from block RAM, the delay from the active transition at the CLK input to data appearing at the DOUT output	-	2.82	ns	
Setup Times	s				
T _{BACK}	Setup time for the ADDR inputs before the active transition at the CLK input of the block RAM	0.38	-	ns	
T _{BDCK}	Setup time for data at the DIN inputs before the active transition at the CLK input of the block RAM	0.23	-	ns	
T _{BECK}	Setup time for the EN input before the active transition at the CLK input of the block RAM	0.77	-	ns	
T _{BWCK}	Setup time for the WE input before the active transition at the CLK input of the block RAM	1.26	-	ns	
Hold Times					
T _{BCKA}	Hold time on the ADDR inputs after the active transition at the CLK input	0.14	-	ns	
T _{BCKD}	Hold time on the DIN inputs after the active transition at the CLK input	0.13	-	ns	
T _{BCKE}	Hold time on the EN input after the active transition at the CLK input	0	-	ns	
Т _{ВСКW}	Hold time on the WE input after the active transition at the CLK input	0	-	ns	

Delay-Locked Loop

Table 26: Recommended Operating Conditions for the DLL

				-4 Spee	ed Grade	
	Symbol	Des	cription	Min	Max	Units
Input Fr	equency Ranges					
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN clock in	nput	5(2)	240 ⁽³⁾	MHz
Input Pu	ulse Requirements				•	
CLKIN_I	PULSE	CLKIN pulse width as a	F _{CLKIN} ≤ 150 MHz	40%	60%	-
		percentage of the CLKIN period	F _{CLKIN} > 150 MHz	45%	55%	-
Input Cl	ock Jitter Tolerance and	d Delay Path Variation ⁽⁴⁾				
CLKIN_0	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the	F _{CLKIN} ≤ 150 MHz	-	±300	ps
CLKIN_0	CYC_JITT_DLL_HF	CLKIN input	F _{CLKIN} > 150 MHz	-	±150	ps
CLKIN_I	CLKIN_PER_JITT_DLL Period jitter at the CLKIN input		-	±1	ns	
CLKFB_	DELAY_VAR_EXT	Allowable variation of off-chip fee the CLKFB input	edback delay from the DCM output to	-	±1	ns

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 28.

3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

Table 27: Switching Characteristics for the DLL

		-4 Spe	ed Grade		
Symbol	Description	Min	Max	Units	
Output Frequency Ranges					
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK180 outputs	5	240	MHz	
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK270 outputs	5	200	MHz	
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2X180 outputs	10	311	MHz	
CLKOUT_FREQ_DV	Frequency for the CLKDV output	0.3125	160	MHz	
Output Clock Jitter ^(2,3,4)					
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output	-	±100	ps	
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output	-	±150	ps	
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output	-	±150	ps	
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output	-	±150	ps	
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2X180 outputs	-	±[1% of CLKIN period + 150]	ps	
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division	-	±150	ps	
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division	-	±[1% of CLKIN period + 200]	ps	

Table 27: Switching Characteristics for the DLL (Continued)

			-4 Spe	eed Grade	
Symbol	Description		Min	Max	Units
Duty Cycle ⁽⁴⁾					
CLKOUT_DUTY_CYCLE_DLL	Duty cycle variation for the CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV outputs, including the BUFGMUX and clock tree duty-cycle distortion		-	±[1% of CLKIN period + 400]	ps
Phase Alignment ⁽⁴⁾					
CLKIN_CLKFB_PHASE	Phase offset between the CLKIN and	I CLKFB inputs	-	±200	ps
CLKOUT_PHASE_DLL	Phase offset between DLL outputs	CLK0 to CLK2X (not CLK2X180)	-	±[1% of CLKIN period + 100]	ps
		All others	-	±[1% of CLKIN period + 200]	ps
Lock Time	-	l		-	
LOCK_DLL ⁽³⁾	When using the DLL alone: The time from deassertion at the DCM's Reset	$5 \text{ MHz} \leq \text{F}_{\text{CLKIN}} \leq 15 \text{ MHz}$	-	5	ms
	input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase	F _{CLKIN} > 15 MHz	-	600	μs
Delay Lines		1			
DCM_DELAY_STEP	Finest delay resolution		20	40	ps

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 26.

- 2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
- 3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. *Example:* The data sheet specifies a maximum jitter of "±[1% of CLKIN period + 150]". Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250ps.

Digital Frequency Synthesizer

Table 28: Recommended Operating Conditions for the DFS

				-4 Speed Grad		
	Symbol	Description		Min	Max	Units
Input Freq	uency Ranges ⁽²⁾					
F _{CLKIN}	CLKIN_FREQ_FX	Frequency for the CLKIN input	Frequency for the CLKIN input		333 ⁽⁴⁾	MHz
Input Cloc	k Jitter Tolerance ⁽³⁾	- I			1	1
CLKIN_CY	C_JITT_FX_LF	Cycle-to-cycle jitter at the CLKIN	F _{CLKFX} ≤ 150 MHz	-	±300	ps
CLKIN_CY	C_JITT_FX_HF	input, based on CLKFX output frequency	F _{CLKFX} > 150 MHz	-	±150	ps
CLKIN_PE	R_JITT_FX	Period jitter at the CLKIN input		-	±1	ns

Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.

2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 26.

3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.

 To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM.

Table 31: Switching Characteristics for the PS in Variable Phase Mode

Symbol	Description			Units
Phase Shifting Range				
MAX_STEPS ⁽²⁾	Maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN	CLKIN < 60 MHz	±[INTEGER(10 ● (T _{CLKIN} – 3 ns))]	steps
	clock period in ns. If using CLKIN_DIVIDE_BY_2 = TRUE, double the clock effective clock period.	CLKIN <u>></u> 60 MHz	±[INTEGER(15 ● (T _{CLKIN} – 3 ns))]	steps
FINE_SHIFT_RANGE_MIN	Minimum guaranteed delay for variable phase shifting	±[MAX_STEPS ● DCM_DELAY_STEP_MIN]		ns
FINE_SHIFT_RANGE_MAX	Maximum guaranteed delay for variable phase shifting	±MAX_3 DCM_DELAY	STEPS • _STEP_MAX]	ns

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 30.
- 2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, i.e., the PHASE_SHIFT attribute is set to 0.
- 3. The DCM_DELAY_STEP values are provided at the bottom of Table 27.

Miscellaneous DCM Timing

Table 32: Miscellaneous DCM Timing

Symbol	Description	Min	Max	Units
DCM_RST_PW_MIN ⁽¹⁾	Minimum duration of a RST pulse width	3	-	CLKIN cycles
DCM_RST_PW_MAX ⁽²⁾	Maximum duration of a RST pulse width	N/A	N/A	seconds
		N/A	N/A	seconds
DCM_CONFIG_LAG_TIME ⁽³⁾			N/A	minutes
	configuration successfully completed (DONE pin goes High) and clocks applied to DCM DLL	N/A	N/A	minutes

Notes:

1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.

- 2. This specification is equivalent to the Virtex-4 DCM_RESET specification. This specification does not apply for Spartan-3E FPGAs.
- 3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3E FPGAs.

Configuration and JTAG Timing

Table 33: Power-On Timing and the Beginning of Configuration

			-4 Spee	d Grade	
Symbol	Description	Device	Min	Max	Units
T _{POR} ⁽²⁾	The time from the application of V_{CCINT} , V_{CCAUX} , and V_{CCO}	XA3S100E	-	5	ms
	Bank 2 supply voltage ramps (whichever occurs last) to the rising transition of the INIT_B pin	XA3S250E	-	5	ms
	rising transition of the INTLB pin	XA3S500E	-	5	ms
		XA3S1200E	-	5	ms
		XA3S1600E	-	7	ms
T _{PROG}	The width of the low-going pulse on the PROG_B pin	All	0.5	-	μs
T _{PL} ⁽²⁾	The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin	XA3S100E	-	0.5	ms
		XA3S250E	-	0.5	ms
		XA3S500E	-	1	ms
		XA3S1200E	-	2	ms
		XA3S1600E	-	2	ms
T _{INIT}	Minimum Low pulse width on INIT_B output	All	250	-	ns
T _{ICCK} ⁽³⁾	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4.0	μs

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6. This means power must be applied to all V_{CCINT} , V_{CCO} , and V_{CCAUX} lines.

2. Power-on reset and the clearing of configuration memory occurs during this period.

3. This specification applies only to the Master Serial, SPI, BPI-Up, and BPI-Down modes.

Configuration Clock (CCLK) Characteristics

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
T _{CCLK1}	CCLK clock period by <i>ConfigRate</i> setting	1 (power-on value and default value)	I-Grade Q-Grade	485	1,250	ns
T _{CCLK3}		3	I-Grade Q-Grade	242	625	ns
T _{CCLK6}		6	I-Grade Q-Grade	121	313	ns
T _{CCLK12}		12	I-Grade Q-Grade	60.6	157	ns
T _{CCLK25}		25	I-Grade Q-Grade	30.3	78.2	ns
T _{CCLK50}		50	I-Grade Q-Grade	15.1	39.1	ns

Table 34: Master Mode CCLK Output Period by ConfigRate Option Setting

Notes:

1. Set the *ConfigRate* option value when generating a configuration bitstream. See Bitstream Generator (BitGen) Options in <u>DS312</u>, Module 2.

Table 35: N	aster Mode CCLK Output Free	quency by <i>Config</i> F	ate Option Set	ting

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
F _{CCLK1}	Equivalent CCLK clock frequency by <i>ConfigRate</i> setting	1 (power-on value and default value)	I-Grade Q-Grade	0.8	2.1	MHz
F _{CCLK3}		3	I-Grade Q-Grade	1.6	4.2	MHz
F _{CCLK6}		6	I-Grade Q-Grade	3.2	8.3	MHz
F _{CCLK12}		12	I-Grade Q-Grade	6.4	16.5	MHz
F _{CCLK25}		25	I-Grade Q-Grade	12.8	33.0	MHz
F _{CCLK50}		50	I-Grade Q-Grade	25.6	66.0	MHz

Table 36: Master Mode CCLK Output Minimum Low and High Time

Symbol	vmbol Description				ConfigR	<i>ate</i> Settin	g		Units
Symbol	Description		1	3	6	12	25	50	Units
T _{MCCL,} T _{MCCH}	Master mode CCLK minimum Low and High time	I-Grade Q-Grade	235	117	58	29.3	14.5	7.3	ns

Table 37: Slave Mode CCLK Input Low and High Time

Symbol	Description	Min	Max	Units
T _{SCCL,} T _{SCCH}	CCLK Low and High time	5	∞	ns

Serial Peripheral Interface Configuration Timing

Table 40: Timing for SPI Configuration Mod
--

Symbol	Description	Minimum	Maximum	Units
T _{CCLK1}	Initial CCLK clock period	(see Table 34)		
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting	(see Table 34)		
T _{MINIT}	AINIT Setup time on VS[2:0] and M[2:0] mode pins before the rising edge of INIT_B		-	ns
T _{INITM}	Hold time on VS[2:0] and M[2:0]mode pins after the rising edge of INIT_B	0 -		ns
T _{CCO}	MOSI output valid after CCLK edge	See Table 38		
T _{DCC}	Setup time on DIN data input before CCLK edge	See Table 38		
T _{CCD}	Hold time on DIN data input after CCLK edge	See Table 38		

Table 41: Configuration Timing Requirements for Attached SPI Serial Flash

Symbol	Description	Requirement	Units
T _{CCS}	SPI serial Flash PROM chip-select time	$T_{CCS} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DSU}	SPI serial Flash PROM data input setup time	$T_{DSU} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DH}	SPI serial Flash PROM data input hold time	T _{DH} ≤T _{MCCH1}	ns
T _V	SPI serial Flash PROM data clock-to-output time	$T_V \leq T_{MCCLn} - T_{DCC}$	ns
f _C or f _R	Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used)	$f_{C} \ge \frac{1}{T_{CCLKn(min)}}$	MHz

Notes:

1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.

2. Subtract additional printed circuit board routing delay as required by the application.

Byte Peripheral Interface Configuration Timing

Table 42: Timing for BPI Configuration Mode

Symbol	Description	Minimum	Maximum	Units		
T _{CCLK1}	Initial CCLK clock period	(see Table 34)				
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting			(see Table 34)		
T _{MINIT}	Setup time on CSI_B, RDWR_B, and M[2:0] mode pins before the rising edge of INIT_B			-	ns	
T _{INITM}	Hold time on CSI_B, RDWR_B, and M[2:0] mode pins after the rising edge of INIT_B			-	ns	
T _{INITADDR}	Minimum period of initial A[23:0] address cycle; LDC[2:0] and HDC are asserted and valid	BPI-UP: (M[2:0]=<0:1:0>)	5	5	T _{CCLK1} cycles	
		BPI-DN: (M[2:0]=<0:1:1>)	2	2	-	
T _{CCO}	Address A[23:0] outputs valid after CCLK falling edge		See Table 38			
T _{DCC}	Setup time on D[7:0] data inputs before CCLK rising edge		See Table 38			
T _{CCD}	Hold time on D[7:0] data inputs after CCLK rising edge		See Table 38			

Table 43: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol	Description	Requirement	Units
T _{CE} (t _{ELQV})	Parallel NOR Flash PROM chip-select time	T _{CE} ≤T _{INITADDR}	ns
T _{OE} (t _{GLQV})	Parallel NOR Flash PROM output-enable time	T _{OE} ≤ T _{INITADDR}	
T _{ACC} (t _{AVQV})	Parallel NOR Flash PROM read access time	$T_{ACC} \leq 0.5T_{CCLKn(min)} - T_{CCO} - T_{DCC} - PCB$	
T _{BYTE} (t _{FLQV,} t _{FHQV})	For x8/x16 PROMs only: BYTE# to output valid time ⁽³⁾	T _{byte} ≤ T _{initaddr}	

Notes:

1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.

2. Subtract additional printed circuit board routing delay as required by the application.

3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA's LDC2 pin. The resistor value also depends on whether the FPGA's HSWAP pin is High or Low.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
08/31/07	1.0	Initial Xilinx release.
01/20/09	1.1	 Updated "Key Feature Differences from Commercial XC Devices." Updated T_{ACC} requirement in Table 43. Updated description of T_{DCC} and T_{CCD} in Table 42. Removed Table 45: MultiBoot Trigger Timing.
09/09/09	2.0	 Added package sizes to Table 2, page 4. Removed Genealogy Viewer Link from "Package Marking," page 5. Updated data and notes for Table 6, page 8. Updated test conditions for R_{PU} and maximum value for C_{IN} in Table 7, page 8. Updated notes for Table 8, page 9. Updated Max V_{CCO} for LVTTL and LVCMOS33, removed PCIX data, updated V_{IL} Max for LVCMOS18, LVCMOS15, and LVCMOS12, updated V_{IH} Min for LVCMOS12, and added note 6 in Table 9, page 11. Removed PCIX data, revised note 2, and added note 4 in Table 10, page 12. Updated figure description of Figure 5, page 14. Added note 4 to Table 13, page 14. Removed PC166_3 and PCIX adjustment values from Table 17, page 17. Deleted Table 18 (duplicate of Table 17, page 17). Subsequent tables renumbered. Removed PCIX data and removed V_{REF} values for DIFF_HSTL_1_18, DIFF_HSTL_III_18, DIFF_SSTL18_1, and DIFF_SSTL2_1 from Table 19, page 19. Updated notes, references to notes, and revised the maximum clock-to-output times for T_{MSCKP_P} Table 24, page 22. Added note 3 in Table 26, page 25. Added note 4 table 28, page 26. Updated notes, references to notes, and CLKOUT_PER_JITT_FX data in Table 29, page 27. Updated MAX_STEPS data in Table 31, page 28. Updated ConfigRate Setting for T_{CCLK1} to indicate 1 is the default value in Table 34, page 30.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

