

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	612
Number of Logic Elements/Cells	5508
Total RAM Bits	221184
Number of I/O	172
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3s250e-4ftg256q

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Feature Differences from Commercial XC Devices

- AEC-Q100 device qualification and full production part approval process (PPAP) documentation support available in both extended temperature I- and Q-Grades
- Guaranteed to meet full electrical specification over the T_J = -40°C to +125°C temperature range (Q-Grade)
- XA Spartan-3E devices are available in the -4 speed grade only.
- PCI-66 is not supported in the XA Spartan-3E FPGA product line.
- The readback feature is not supported in the XA

Spartan-3E FPGA product line.

- XA Spartan-3E devices are available in Step 1 only.
- JTAG configuration frequency reduced from 30 MHz to 25 MHz.
- Platform Flash is not supported within the XA family.
- XA Spartan-3E devices are available in Pb-free packaging only.
- MultiBoot is not supported in XA versions of this product.
- The XA Spartan-3E device must be power cycled prior to reconfiguration.

Table 1: Summary of XA Spartan-3E FPGA Attributes

		Equivalent	(CLB a	•	es)		Block				Maximum
Device	System Gates	Logic Cells	Rows	Columns	Total CLBs	Total Slices	Distributed RAM bits ⁽¹⁾	RAM bits ⁽¹⁾	Dedicated Multipliers	DCMs	Maximum User I/O	Differential I/O Pairs
XA3S100E	100K	2,160	22	16	240	960	15K	72K	4	2	108	40
XA3S250E	250K	5,508	34	26	612	2,448	38K	216K	12	4	172	68
XA3S500E	500K	10,476	46	34	1,164	4,656	73K	360K	20	4	190	77
XA3S1200E	1200K	19,512	60	46	2,168	8,672	136K	504K	28	8	304	124
XA3S1600E	1600K	33,192	76	58	3,688	14,752	231K	648K	36	8	376	156

Notes:

Architectural Overview

The XA Spartan-3E family architecture consists of five fundamental programmable functional elements:

- Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical functions as well as store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Supports a variety of signal standards, including four high-performance differential standards. Double Data-Rate (DDR) registers are included.
- Block RAM provides data storage in the form of 18-Kbit dual-port blocks.
- Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate the product.

 Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. Each device has two columns of block RAM except for the XA3S100E, which has one column. Each RAM column consists of several 18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs are positioned in the center with two at the top and two at the bottom of the device. The XA3S100E has only one DCM at the top and bottom, while the XA3S1200E and XA3S1600E add two DCMs in the middle of the left and right sides.

The XA Spartan-3E family features a rich network of traces that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

^{1.} By convention, one Kb is equivalent to 1,024 bits.

XA Spartan-3E FPGAs support the following differential standards:

- LVDS
- Bus LVDS
- mini-LVDS
- RSDS

- Differential HSTL (1.8V, Types I and III)
- Differential SSTL (2.5V and 1.8V, Type I)
- 2.5V LVPECL inputs

Table 2: Available User I/Os and Differential (Diff) I/O Pairs

Package	VQG	100	CPG	132	TQG	i144	PQC	3208	FTG	i256	FGG	400	FGG	484
Size (mm)	16 >	c 16	8 :	x 8	22 >	c 22	28 2	x 28	17 3	c 17	21 >	c 21	23 x	23
Device	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XA3S100E	66 (7)	30 <i>(2)</i>	83 (11)	35 <i>(2)</i>	108 (28)	40 (4)	-	-	-	-	-	-	-	-
XA3S250E	66 (7)	30 (2)	92 (7)	41 (2)	108 (28)	40 (4)	158 (32)	65 (5)	172 (40)	68 (8)	-	-	-	-
XA3S500E	-	-	92 (7)	41 (2)	-	-	158 (32)	65 (5)	190 (41)	77 (8)	-	-	-	-
XA3S1200E	-	-	-	-	-	-	-	-	190 (40)	77 (8)	304 (72)	124 (20)	-	-
XA3S1600E	-	-	-	-	-	-	-	-	-	-	304 (72)	124 <i>(20)</i>	376 (82)	156 (21)

All XA Spartan-3E devices provided in the same package are pin-compatible as further described in Module 4: Pinout Descriptions of DS312.

^{2.} The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (*italics*) indicates the number of input-only pins.

Package Marking

Figure 2 provides a top marking example for XA Spartan-3E FPGAs in the quad-flat packages. Figure 3 shows the top marking for XA Spartan-3E FPGAs in BGA packages except the 132-ball chip-scale package (CPG132). The markings for the BGA packages are nearly identical to those

for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Figure 4 shows the top marking for XA Spartan-3E FPGAs in the CPG132 package.

Note: No marking is shown for stepping.

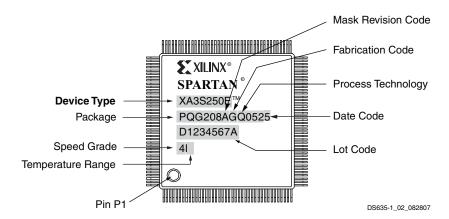


Figure 2: XA Spartan-3E FPGA QFP Package Marking Example

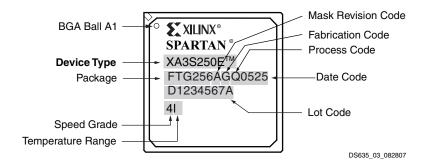


Figure 3: XA Spartan-3E FPGA BGA Package Marking Example

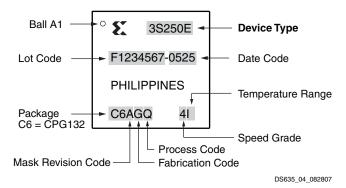


Figure 4: XA Spartan-3E FPGA CPG132 Package Marking Example

Power Supply Specifications

Table 3: Supply Voltage Thresholds for Power-On Reset

Symbol	Description	Min	Max	Units
V _{CCINTT}	Threshold for the V _{CCINT} supply	0.4	1.0	V
V _{CCAUXT}	Threshold for the V _{CCAUX} supply	0.8	2.0	V
V _{CCO2T}	Threshold for the V _{CCO} Bank 2 supply	0.4	1.0	V

Notes:

- V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.
- 2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 4: Supply Voltage Ramp Rate

Symbol	Description	Min	Max	Units
V _{CCINTR}	Ramp rate from GND to valid V _{CCINT} supply level	0.2	50	ms
V _{CCAUXR}	Ramp rate from GND to valid V _{CCAUX} supply level	0.2	50	ms
V _{CCO2R}	Ramp rate from GND to valid V_{CCO} Bank 2 supply level	0.2	50	ms

Notes:

- 1. V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.
- 2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 5: Supply Voltage Levels Necessary for Preserving RAM Contents

Symbol	Description	Min	Units
V _{DRINT}	V _{CCINT} level required to retain RAM data	1.0	V
V _{DRAUX}	V _{CCAUX} level required to retain RAM data	2.0	V

Notes:

RAM contents include configuration data.

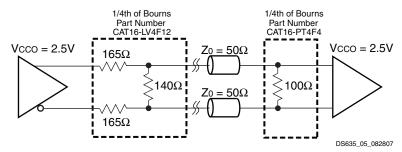


Figure 5: External Termination Resistors for BLVDS Transmitter and BLVDS Receiver

Switching Characteristics

I/O Timing

Table 13: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

				-4 Speed Grade	
Symbol	Description	Conditions	Device	Max	Units
Clock-to-Outpu	ut Times				
T _{ICKOFDCM}	When reading from the Output	LVCMOS25 ⁽²⁾ , 12mA	XA3S100E	2.79	ns
	Flip-Flop (OFF), the time from the active transition on the Global Clock pin to data appearing at the Output pin. The DCM is used.	output drive, Fast slew rate, with DCM ⁽³⁾	XA3S250E	3.45	ns
			XA3S500E	3.46	ns
			XA3S1200E	3.46	ns
			XA3S1600E	3.45	ns
T _{ICKOF}	When reading from OFF, the	LVCMOS25 ⁽²⁾ , 12mA	XA3S100E	5.92	ns
	time from the active transition on the Global Clock pin to data	output drive, Fast slew rate, without DCM	XA3S250E	5.43	ns
	appearing at the Output pin. The		XA3S500E	5.51	ns
	DCM is not used.		XA3S1200E	5.94	ns
			XA3S1600E	6.05	ns

- 1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.
- 2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate Input adjustment from Table 17. If the latter is true, add the appropriate Output adjustment from Table 18.
- 3. DCM output jitter is included in all measurements.
- 4. For minimums, use the values reported by the Xilinx timing analyzer.

Table 14: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)

			IFD_ DELAY		-4 Speed Grade	
Symbol	Description	Conditions	VALUE=	Device	Min	Units
Setup Times	3					
T _{PSDCM}	When writing to the Input Flip-Flop	LVCMOS25 ⁽²⁾ ,	0	XA3S100E	2.98	ns
	(IFF), the time from the setup of data at the Input pin to the active	IFD_DELAY_VALUE = 0, with DCM ⁽⁴⁾		XA3S250E	2.59	ns
	transition at a Global Clock pin. The DCM is used. No Input Delay is programmed.	With DOWN		XA3S500E	2.59	ns
				XA3S1200E	2.58	ns
				XA3S1600E	2.59	ns
T _{PSFD}	When writing to IFF, the time from	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	3.58	ns
	the setup of data at the Input pin to an active transition at the Global Clock pin. The DCM is not used. The Input Delay is programmed.	IFD_DELAY_VALUE = default software setting	3	XA3S250E	3.91	ns
			2	XA3S500E	4.02	ns
			5	XA3S1200E	5.52	ns
			4	XA3S1600E	4.46	ns
Hold Times						
T _{PHDCM}	When writing to IFF, the time from	LVCMOS25 ⁽³⁾ ,	0	XA3S100E	-0.52	ns
	the active transition at the Global	IFD_DELAY_VALUE = 0, with DCM ⁽⁴⁾		XA3S250E	0.14	ns
	Clock pin to the point when data must be held at the Input pin. The	WILLI DCIVIC		XA3S500E	0.14	ns
	DCM is used. No Input Delay is			XA3S1200E	0.15	ns
	programmed.			XA3S1600E	0.14	ns
T _{PHFD}	When writing to IFF, the time from	LVCMOS25 ⁽³⁾ ,	2	XA3S100E	-0.24	ns
	the active transition at the Global Clock pin to the point when data	IFD_DELAY_VALUE = default software setting	3	XA3S250E	-0.32	ns
	must be held at the Input pin. The	delauit Soliware Setting	2	XA3S500E	-0.49	ns
	DCM is not used. The Input Delay		5	XA3S1200E	-0.63	ns
	is programmed.		4	XA3S1600E	-0.39	ns

- 1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.
- 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 17. If this is true of the data Input, add the appropriate Input adjustment from the same table.
- 3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 17. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.
- 4. DCM output jitter is included in all measurements.

Table 15: Setup and Hold Times for the IOB Input Path

			IFD_ DELAY_		-4 Speed Grade	
Symbol	Description	Conditions	VALUE	Device	Min	Units
Setup Tim	es					
T _{IOPICK}	Time from the setup of data at the Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). No Input Delay is programmed.	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	2.12	ns
T _{IOPICKD}	Time from the setup of data at the Input	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	6.49	ns
	pin to the active transition at the IFF's ICLK input. The Input Delay is programmed.	IFD_DELAY_VALUE = default software setting	3	XA3S250E	6.85	ns
			2	XA3S500E	7.01	ns
			5	XA3S1200E	8.67	ns
			4	XA3S1600E	7.69	ns
Hold Time	s			•	•	
T _{IOICKP}	Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. No Input Delay is programmed.	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	-0.76	ns
T _{IOICKPD}	Time from the active transition at the IFF's	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	-3.93	ns
	ICLK input to the point where data must be held at the Input pin. The Input Delay is	IFD_DELAY_VALUE = default software setting	3	XA3S250E	-3.51	ns
	programmed.	doladii doliwaro dolling	2	XA3S500E	-3.74	ns
			5	XA3S1200E	-4.30	ns
			4	XA3S1600E	-4.14	ns
Set/Reset	Pulse Width		_			•
T _{RPW_IOB}	Minimum pulse width to SR control input on IOB			All	1.80	ns

- 1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.
- 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 17.
- 3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 17. When the hold time is negative, it is possible to change the data before the clock's active edge.

Table 16: Propagation Times for the IOB Input Path

			IFD_ DELAY		-4 Speed Grade	
Symbol	Description	Conditions	VALUE	Device	Max	Units
Propagation	on Times					
T _{IOPLI}	The time it takes for data to travel from the Input pin through the IFF latch to the I output with no input delay programmed	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	2.25	ns
T _{IOPLID}	The time it takes for data to	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	5.97	ns
	travel from the Input pin through the IFF latch to the I output with	IFD_DELAY_VALUE = default software setting	3	XA3S250E	6.33	ns
	the input delay programmed		2	XA3S500E	6.49	ns
			5	XA3S1200E	8.15	ns
			4	XA3S1600E	7.16	ns

- 1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.
- 2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, *add* the appropriate Input adjustment from Table 17.

Table 17: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the Following	Add the Adjustment Below	
Signal Standard (IOSTANDARD)	-4 Speed Grade	Units
Single-Ended Standards		
LVTTL	0.43	ns
LVCMOS33	0.43	ns
LVCMOS25	0	ns
LVCMOS18	0.98	ns
LVCMOS15	0.63	ns
LVCMOS12	0.27	ns
PCl33_3	0.42	ns
HSTL_I_18	0.12	ns
HSTL_III_18	0.17	ns
SSTL18_I	0.30	ns
SSTL2_I	0.15	ns

Table 17: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the Following	Add the Adjustment Below	
Signal Standard (IOSTANDARD)	-4 Speed Grade	Units
Differential Standards		
LVDS_25	0.49	ns
BLVDS_25	0.39	ns
MINI_LVDS_25	0.49	ns
LVPECL_25	0.27	ns
RSDS_25	0.49	ns
DIFF_HSTL_I_18	0.49	ns
DIFF_HSTL_III_18	0.49	ns
DIFF_SSTL18_I	0.30	ns
DIFF_SSTL2_I	0.32	ns

- The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6, Table 9, and Table 11.
- These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

Table 18: Output Timing Adjustments for IOB

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard (IOSTANDARD)		Add the Adjustment Below -4 Speed Grade	Units	
Single-Ended S	Standards			
LVTTL	Slow	2 mA	5.41	ns
		4 mA	2.41	ns
		6 mA	1.90	ns
		8 mA	0.67	ns
		12 mA	0.70	ns
		16 mA	0.43	ns
	Fast	2 mA	5.00	ns
		4 mA	1.96	ns
		6 mA	1.45	ns
		8 mA	0.34	ns
		12 mA	0.30	ns
		16 mA	0.30	ns
LVCMOS33	Slow	2 mA	5.29	ns
		4 mA	1.89	ns
		6 mA	1.04	ns
		8 mA	0.69	ns
		12 mA	0.42	ns
		16 mA	0.43	ns
	Fast	2 mA	4.87	ns
		4 mA	1.52	ns
		6 mA	0.39	ns
		8 mA	0.34	ns
		12 mA	0.30	ns
		16 mA	0.30	ns
LVCMOS25	Slow	2 mA	4.21	ns
		4 mA	2.26	ns
		6 mA	1.52	ns
		8 mA	1.08	ns
		12 mA	0.68	ns
	Fast	2 mA	3.67	ns
		4 mA	1.72	ns
		6 mA	0.46	ns
		8 mA	0.21	ns
		12 mA	0	ns

Table 18: Output Timing Adjustments for IOB (Continued)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard (IOSTANDARD)		Add the Adjustment Below -4 Speed		
	-		Grade	Units
LVCMOS18	Slow	2 mA	5.24	ns
		4 mA	3.21	ns
		6 mA	2.49	ns
		8 mA	1.90	ns
	Fast	2 mA	4.15	ns
		4 mA	2.13	ns
		6 mA	1.14	ns
		8 mA	0.75	ns
LVCMOS15	Slow	2 mA	4.68	ns
		4 mA	3.97	ns
		6 mA	3.11	ns
	Fast	2 mA	3.38	ns
		4 mA	2.70	ns
		6 mA	1.53	ns
LVCMOS12	Slow	2 mA	6.63	ns
	Fast	2 mA	4.44	ns
HSTL_I_18			0.34	ns
HSTL_III_18			0.55	ns
PCl33_3			0.46	ns
SSTL18_I			0.25	ns
SSTL2_I			-0.20	ns
Differential Sta	ndards			
LVDS_25			-0.55	ns
BLVDS_25			0.04	ns
MINI_LVDS_25			-0.56	ns
LVPECL_25			Input Only	ns
RSDS_25			-0.48	ns
DIFF_HSTL_I_18			0.42	ns
DIFF_HSTL_III_18			0.55	ns
DIFF_SSTL18_I			0.40	ns
DIFF_SSTL2_I			0.44	ns

- The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6, Table 9, and Table 11.
- These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

Clock Buffer/Multiplexer Switching Characteristics

Table 23: Clock Distribution Switching Characteristics

		Maximum	
Description	Symbol	-4 Speed Grade	Units
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay	T _{GIO}	1.46	ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input	T _{GSI}	0.63	ns
Frequency of signals distributed on global buffers (all sides)	F _{BUFG}	311	MHz

18 x 18 Embedded Multiplier Timing

Table 24: 18 x 18 Embedded Multiplier Timing

			-4 Speed Grade	
Symbol	Description	Min	Max	Units
Combinatoria	al Delay		1	
T _{MULT}	Combinatorial multiplier propagation delay from the A and B inputs to the P outputs, assuming 18-bit inputs and a 36-bit product (AREG, BREG, and PREG registers unused)	-	4.88 ⁽¹⁾	ns
Clock-to-Out	put Times			II.
T _{MSCKP_P}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using the PREG register ⁽²⁾	-	1.10	ns
T _{MSCKP_A} T _{MSCKP_B}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using either the AREG or BREG register ⁽³⁾	-	4.97	ns
Setup Times	'		1	
T _{MSDCK_P}	Data setup time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽²⁾	3.98	-	ns
T _{MSDCK_A}	Data setup time at the A input before the active transition at the CLK when using the AREG input register ⁽³⁾	0.23	-	ns
T _{MSDCK_B}	Data setup time at the B input before the active transition at the CLK when using the BREG input register ⁽³⁾	0.39	-	ns
Hold Times				1
T _{MSCKD_P}	Data hold time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽²⁾	-0.97		
T _{MSCKD_A}	Data hold time at the A input before the active transition at the CLK when using the AREG input register ⁽³⁾	0.04		
T _{MSCKD_B}	Data hold time at the B input before the active transition at the CLK when using the BREG input register ⁽³⁾	0.05		

Table 24: 18 x 18 Embedded Multiplier Timing (Continued)

		-4 Speed Grade				
Symbol	Description	Min	Max	Units		
Clock Frequen	Clock Frequency					
F _{MULT}	Internal operating frequency for a two-stage 18x18 multiplier using the AREG and BREG input registers and the PREG output register ⁽¹⁾	0	240	MHz		

- 1. Combinatorial delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.
- 2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.
- 3. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.

Block RAM Timing

Table 25: Block RAM Timing

		-4 Spee	d Grade	
Symbol	Description	Min	Max	Units
Clock-to-Out	put Times			
T _{BCKO}	When reading from block RAM, the delay from the active transition at the CLK input to data appearing at the DOUT output	-	2.82	ns
Setup Times			l	l
T _{BACK}	Setup time for the ADDR inputs before the active transition at the CLK input of the block RAM	0.38	-	ns
T _{BDCK}	Setup time for data at the DIN inputs before the active transition at the CLK input of the block RAM	0.23	-	ns
T _{BECK}	Setup time for the EN input before the active transition at the CLK input of the block RAM	0.77	-	ns
T _{BWCK}	Setup time for the WE input before the active transition at the CLK input of the block RAM	1.26	-	ns
Hold Times				1
T _{BCKA}	Hold time on the ADDR inputs after the active transition at the CLK input	0.14	-	ns
T _{BCKD}	Hold time on the DIN inputs after the active transition at the CLK input	0.13	-	ns
T _{BCKE}	Hold time on the EN input after the active transition at the CLK input	0	-	ns
T _{BCKW}	Hold time on the WE input after the active transition at the CLK input	0	-	ns

Delay-Locked Loop

Table 26: Recommended Operating Conditions for the DLL

					ed Grade	
	Symbol	Description		Min	Max	Units
Input Fr	equency Ranges			:	:	
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN clock in	nput	5(2)	240 ⁽³⁾	MHz
Input Pu	ulse Requirements					
CLKIN_I		CLKIN pulse width as a	F _{CLKIN} ≤ 150 MHz	40%	60%	-
	percentage of the CLKIN period	F _{CLKIN} > 150 MHz	45%	55%	_	
Input CI	lock Jitter Tolerance and	d Delay Path Variation ⁽⁴⁾		1	1	
CLKIN_0	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the	F _{CLKIN} ≤ 150 MHz	-	±300	ps
CLKIN_0	CYC_JITT_DLL_HF	CLKIN input	F _{CLKIN} > 150 MHz	-	±150	ps
CLKIN_I	PER_JITT_DLL	Period jitter at the CLKIN input		-	±1	ns
CLKFB_	DELAY_VAR_EXT	Allowable variation of off-chip fee the CLKFB input	edback delay from the DCM output to	-	±1	ns

- 1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
- 2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 28.
- To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.
- 4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

Table 27: Switching Characteristics for the DLL

		-4 Spe	ed Grade	
Symbol	Description	Min	Max	Units
Output Frequency Ranges				
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK180 outputs	5	240	MHz
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK270 outputs	5	200	MHz
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2X180 outputs	10	311	MHz
CLKOUT_FREQ_DV	Frequency for the CLKDV output	0.3125	160	MHz
Output Clock Jitter(2,3,4)		I		
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output	-	±100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output	-	±150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output	-	±150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output	-	±150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2X180 outputs	-	±[1% of CLKIN period + 150]	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division	-	±150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division	-	±[1% of CLKIN period + 200]	ps

Table 29: Switching Characteristics for the DFS

				-4 Spec	ed Grade	
Symbol	Description		Device	Min	Max	Units
Output Frequency Ranges				<u> </u>	Į.	
CLKOUT_FREQ_FX	Frequency for the CLKFX and CLKFX180 or	utputs	All	5	311	MHz
Output Clock Jitter(2,3)						1
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180		All	Тур	Max	
	outputs	CLKIN <20 MHz		See	Note 4	ps
		CLKIN > 20 MHz		±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	ps
Duty Cycle ^(5,6)						
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLk including the BUFGMUX and clock tree duty	All	-	±[1% of CLKFX period + 400]	ps	
Phase Alignment ⁽⁶⁾					<u>I</u>	1
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX output output when both the DFS and DLL are use		All	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX180 output and the DLL CLK0 output when both the DFS and DLL are used		All	-	±[1% of CLKFX period + 300]	ps
Lock Time						
LOCK_FX ⁽²⁾	The time from deassertion at the DCM's Reset input to the rising transition at its	5 MHz ≤ F _{CLKIN} ≤ 15 MHz	All	-	5	ms
	LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.	F _{CLKIN} > 15 MHz		-	450	μѕ

- The numbers in this table are based on the operating conditions set forth in Table 6 and Table 28.
- For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute. 2.
- Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching). Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.

 Use the Spartan-3A Jitter Calculator (www.xilinx.com/support/documentation/data_sheets/s3a_jitter_calc.zip) to estimate DFS output jitter. Use the
- Clocking Wizard to determine jitter for a specific design.
 The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
- Some duty-cycle and alignment specifications include 1% of the CLKFX output period or 0.01 UI. **Example:** The data sheet specifies a maximum jitter of " \pm [1% of CLKFX period + 300]". Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is \pm [100 ps + 300 ps] = \pm 400 ps.

Phase Shifter

Table 30: Recommended Operating Conditions for the PS in Variable Phase Mode

		-4 Speed Grade			
Symbol	Description	Min	Max	Units	
Operating Frequence	Operating Frequency Ranges				
PSCLK_FREQ (F _{PSCLK})	Frequency for the PSCLK input	1	167	MHz	
Input Pulse Requirements					
PSCLK_PULSE	PSCLK pulse width as a percentage of the PSCLK period	40%	60%	-	

Table 31: Switching Characteristics for the PS in Variable Phase Mode

Symbol	Description			Units
Phase Shifting Range				
MAX_STEPS ⁽²⁾	Maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN	CLKIN < 60 MHz	±[INTEGER(10 • (T _{CLKIN} − 3 ns))]	steps
	clock period in ns. If using CLKIN_DIVIDE_BY_2 = TRUE, double the clock effective clock period.	CLKIN <u>></u> 60 MHz	±[INTEGER(15 • (T _{CLKIN} − 3 ns))]	steps
FINE_SHIFT_RANGE_MIN	Minimum guaranteed delay for variable phase shifting	±[MAX_STEPS ◆ DCM_DELAY_STEP_MIN]		ns
FINE_SHIFT_RANGE_MAX	Maximum guaranteed delay for variable phase shifting	±[MAX_STEPS ● DCM_DELAY_STEP_MAX]		ns

- 1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 30.
- 2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, i.e., the PHASE_SHIFT attribute is set to 0.
- 3. The DCM_DELAY_STEP values are provided at the bottom of Table 27.

Miscellaneous DCM Timing

Table 32: Miscellaneous DCM Timing

Symbol	Description	Min	Max	Units
DCM_RST_PW_MIN ⁽¹⁾	Minimum duration of a RST pulse width	3	-	CLKIN cycles
DCM_RST_PW_MAX ⁽²⁾	Maximum duration of a RST pulse width	N/A	N/A	seconds
		N/A	N/A	seconds
DCM_CONFIG_LAG_TIME ⁽³⁾	Maximum duration from V _{CCINT} applied to FPGA	N/A	N/A	minutes
	configuration successfully completed (DONE pin goes High) and clocks applied to DCM DLL	N/A	N/A	minutes

- This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.
- 2. This specification is equivalent to the Virtex-4 DCM_RESET specification. This specification does not apply for Spartan-3E FPGAs.
- 3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3E FPGAs.

Configuration and JTAG Timing

Table 33: Power-On Timing and the Beginning of Configuration

			-4 Speed Grade		
Symbol	Description	Device	Min	Max	Units
T _{POR} ⁽²⁾	The time from the application of V_{CCINT} , V_{CCAUX} , and V_{CCO}	XA3S100E	-	5	ms
	Bank 2 supply voltage ramps (whichever occurs last) to the	XA3S250E	-	5	ms
	rising transition of the INIT_B pin	XA3S500E	-	5	ms
		XA3S1200E	-	5	ms
		XA3S1600E	-	7	ms
T _{PROG}	The width of the low-going pulse on the PROG_B pin	All	0.5	-	μs
T _{PL} ⁽²⁾	The time from the rising edge of the PROG_B pin to the	XA3S100E	-	0.5	ms
	rising transition on the INIT_B pin	XA3S250E	-	0.5	ms
		XA3S500E	-	1	ms
		XA3S1200E	-	2	ms
		XA3S1600E	-	2	ms
T _{INIT}	Minimum Low pulse width on INIT_B output	All	250	-	ns
T _{ICCK} ⁽³⁾	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4.0	μs

The numbers in this table are based on the operating conditions set forth in Table 6. This means power must be applied to all V_{CCINT}, V_{CCO}, and V_{CCAUX} lines.

^{2.} Power-on reset and the clearing of configuration memory occurs during this period.

^{3.} This specification applies only to the Master Serial, SPI, BPI-Up, and BPI-Down modes.

Configuration Clock (CCLK) Characteristics

Table 34: Master Mode CCLK Output Period by ConfigRate Option Setting

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
T _{CCLK1}	CCLK clock period by ConfigRate setting	1 (power-on value and default value)	I-Grade Q-Grade	485	1,250	ns
T _{CCLK3}		3	I-Grade Q-Grade	242	625	ns
T _{CCLK6}		6	I-Grade Q-Grade	121	313	ns
T _{CCLK12}		12	I-Grade Q-Grade	60.6	157	ns
T _{CCLK25}		25	I-Grade Q-Grade	30.3	78.2	ns
T _{CCLK50}		50	I-Grade Q-Grade	15.1	39.1	ns

Notes:

Table 35: Master Mode CCLK Output Frequency by ConfigRate Option Setting

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
F _{CCLK1}	Equivalent CCLK clock frequency by ConfigRate setting	1 (power-on value and default value)	I-Grade Q-Grade	0.8	2.1	MHz
F _{CCLK3}		3	I-Grade Q-Grade	1.6	4.2	MHz
F _{CCLK6}		6	I-Grade Q-Grade	3.2	8.3	MHz
F _{CCLK12}		12	I-Grade Q-Grade	6.4	16.5	MHz
F _{CCLK25}		25	I-Grade Q-Grade	12.8	33.0	MHz
F _{CCLK50}		50	I-Grade Q-Grade	25.6	66.0	MHz

Table 36: Master Mode CCLK Output Minimum Low and High Time

Symbol	Description		ConfigRate Setting					Units	
Syllibol	Description		1	3	6	12	25	50	Ullits
T _{MCCL} , T _{MCCH}	Master mode CCLK minimum Low and High time	I-Grade Q-Grade	235	117	58	29.3	14.5	7.3	ns

Table 37: Slave Mode CCLK Input Low and High Time

Symbol	Description	Min	Max	Units
T _{SCCL,} T _{SCCH}	CCLK Low and High time	5	∞	ns

^{1.} Set the *ConfigRate* option value when generating a configuration bitstream. See Bitstream Generator (BitGen) Options in DS312, Module 2.

Master Serial and Slave Serial Mode Timing

Table 38: Timing for the Master Serial and Slave Serial Configuration Modes

			Slave/	-4 Spee	d Grade	
Symbol	Descri	ption	Master	Min	Max	Units
Clock-to-0	Output Times					
T _{CCO}	The time from the falling transition appearing at the DOUT pin	on the CCLK pin to data	Both	1.5	10.0	ns
Setup Tim	es					
T _{DCC}	The time from the setup of data at the DIN pin to the active edge of the CCLK pin		Both	11.0	-	ns
Hold Time	es		1			
T _{CCD}	The time from the active edge of the CCLK pin to the point when data is last held at the DIN pin		Both	0	-	ns
Clock Tim	ing					
T _{CCH}	High pulse width at the CCLK input pin		Master	Master See Table 36		}
			Slave	Se	e Table 37	,
T _{CCL}	Low pulse width at the CCLK input pin		Master	er See Table 36		,
			Slave See Table 37		,	
F _{CCSER}	Frequency of the clock signal at	No bitstream compression	Slave	0	66 ⁽²⁾	MHz
	the CCLK input pin	With bitstream compression		0	20	MHz

^{1.} The numbers in this table are based on the operating conditions set forth in Table 6.

^{2.} For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.

Slave Parallel Mode Timing

Table 39: Timing for the Slave Parallel Configuration Mode

				-4 Speed Grade		
Symbol		Description		Min	Max	Units
Clock-to-Ou	tput Times					
T _{SMCKBY}	The time from the rising tra BUSY pin	nsition on the CCL	K pin to a signal transition at the	-	12.0	ns
Setup Times	S					
T _{SMDCC}	The time from the setup of opin	data at the D0-D7 ا	oins to the active edge the CCLK	11.0	-	ns
T _{SMCSCC}	Setup time on the CSI_B p	in before the activ	e edge of the CCLK pin	10.0	-	ns
T _{SMCCW} ⁽²⁾	Setup time on the RDWR_	Setup time on the RDWR_B pin before active edge of the CCLK pin				ns
Hold Times				I		-
T _{SMCCD}	The time from the active ed held at the D0-D7 pins	dge of the CCLK p	in to the point when data is last	1.0	-	ns
T _{SMCCCS}	The time from the active ed is last held at the CSO_B p	•	e of the CCLK pin to the point when a logic level			ns
T _{SMWCC}	The time from the active ed is last held at the RDWR_E	•	ge of the CCLK pin to the point when a logic level			ns
Clock Timin	ıg			l	1	
T _{CCH}	The High pulse width at the	e CCLK input pin		5	-	ns
T _{CCL}	The Low pulse width at the	CCLK input pin		5	-	ns
F _{CCPAR}	Frequency of the clock	No bitstream	Not using the BUSY pin ⁽²⁾	0	50	MHz
	signal at the CCLK input pin	compression	Using the BUSY pin	0	66	MHz
	,	With bitstream co	ompression	0	20	MHz

- 1. The numbers in this table are based on the operating conditions set forth in Table 6.
- 2. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.
- 3. Some Xilinx documents refer to Parallel modes as "SelectMAP" modes.

Byte Peripheral Interface Configuration Timing

Table 42: Timing for BPI Configuration Mode

Symbol	Description		Minimum	Maximum	Units
T _{CCLK1}	Initial CCLK clock period		(s	ee Table 34)	
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate sett	(see Table 34)			
T _{MINIT}	Setup time on CSI_B, RDWR_B, and M[2:0] mode pir edge of INIT_B	50	-	ns	
T _{INITM}	Hold time on CSI_B, RDWR_B, and M[2:0] mode pine edge of INIT_B	0	-	ns	
T _{INITADDR}	Minimum period of initial A[23:0] address cycle; LDC[2:0] and HDC are asserted and valid BPI-UP: (M[2:0]=<0:1:0>)		5	5	T _{CCLK1} cycles
		BPI-DN: (M[2:0]=<0:1:1>)	2	2	
T _{CCO}	Address A[23:0] outputs valid after CCLK falling edge	S	ee Table 38		
T _{DCC}	Setup time on D[7:0] data inputs before CCLK rising edge		See Table 38		
T _{CCD}	Hold time on D[7:0] data inputs after CCLK rising edg	je	S	ee Table 38	

Table 43: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol	Description	Requirement	
T _{CE} (t _{ELQV})	Parallel NOR Flash PROM chip-select time	T _{CE} ≤ T _{INITADDR}	ns
T _{OE} (t _{GLQV})	Parallel NOR Flash PROM output-enable time	T _{OE} ≤ T _{INITADDR}	ns
T _{ACC} (t _{AVQV})	Parallel NOR Flash PROM read access time	$T_{ACC} \le 0.5T_{CCLKn(min)} - T_{CCO} - T_{DCC} - PCB$	ns
T _{BYTE} (t _{FLQV,} t _{FHQV})	For x8/x16 PROMs only: BYTE# to output valid time ⁽³⁾	T _{BYTE} ≤ T _{INITADDR}	ns

- 1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.
- 2. Subtract additional printed circuit board routing delay as required by the application.
- 3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA's LDC2 pin. The resistor value also depends on whether the FPGA's HSWAP pin is High or Low.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.