

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	612
Number of Logic Elements/Cells	5508
Total RAM Bits	221184
Number of I/O	108
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3s250e-4tqg144q

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Feature Differences from Commercial XC Devices

- AEC-Q100 device qualification and full production part approval process (PPAP) documentation support available in both extended temperature I- and Q-Grades
- Guaranteed to meet full electrical specification over the $T_J = -40^{\circ}$ C to +125°C temperature range (Q-Grade)
- XA Spartan-3E devices are available in the -4 speed grade only.
- PCI-66 is not supported in the XA Spartan-3E FPGA product line.
- The readback feature is not supported in the XA

Table 1: Summary of XA Spartan-3E FPGA Attributes

Spartan-3E FPGA product line.

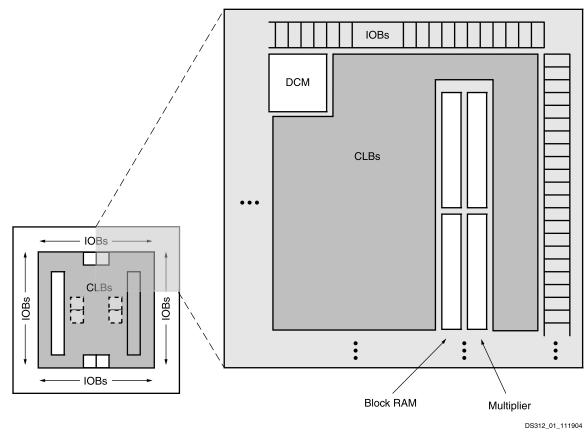
- XA Spartan-3E devices are available in Step 1 only.
- JTAG configuration frequency reduced from 30 MHz to 25 MHz.
- Platform Flash is not supported within the XA family.
- XA Spartan-3E devices are available in Pb-free packaging only.
- MultiBoot is not supported in XA versions of this product.
- The XA Spartan-3E device must be power cycled prior to reconfiguration.

		Equivalent	CLB Array (One CLB = Four Slices)				Block				Maximum	
Device	System Gates	Logic Cells	Rows	Columns	Total CLBs	Total Slices	Distributed RAM bits ⁽¹⁾	RAM bits ⁽¹⁾	Dedicated Multipliers	DCMs	Maximum User I/O	Differential I/O Pairs
XA3S100E	100K	2,160	22	16	240	960	15K	72K	4	2	108	40
XA3S250E	250K	5,508	34	26	612	2,448	38K	216K	12	4	172	68
XA3S500E	500K	10,476	46	34	1,164	4,656	73K	360K	20	4	190	77
XA3S1200E	1200K	19,512	60	46	2,168	8,672	136K	504K	28	8	304	124
XA3S1600E	1600K	33,192	76	58	3,688	14,752	231K	648K	36	8	376	156

Notes:

1. By convention, one Kb is equivalent to 1,024 bits.

Architectural Overview


The XA Spartan-3E family architecture consists of five fundamental programmable functional elements:

- Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical functions as well as store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Supports a variety of signal standards, including four high-performance differential standards. Double Data-Rate (DDR) registers are included.
- **Block RAM** provides data storage in the form of 18-Kbit dual-port blocks.
- **Multiplier Blocks** accept two 18-bit binary numbers as inputs and calculate the product.

 Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. Each device has two columns of block RAM except for the XA3S100E, which has one column. Each RAM column consists of several 18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs are positioned in the center with two at the top and two at the bottom of the device. The XA3S100E has only one DCM at the top and bottom, while the XA3S1200E and XA3S1600E add two DCMs in the middle of the left and right sides.

The XA Spartan-3E family features a rich network of traces that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

Notes:

1. The XA3S1200E and XA3S1600E have two additional DCMs on both the left and right sides as indicated by the dashed lines. The XA3S100E has only one DCM at the top and one at the bottom.

Figure 1: XA Spartan-3E Family Architecture

Configuration

XA Spartan-3E FPGAs are programmed by loading configuration data into robust, reprogrammable, static CMOS configuration latches (CCLs) that collectively control all functional elements and routing resources. The FPGA's configuration data is stored externally in a PROM or some other non-volatile medium, either on or off the board. After applying power, the configuration data is written to the FPGA using any of five different modes:

- Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash
- Byte Peripheral Interface (BPI) Up or Down from an industry-standard x8 or x8/x16 parallel NOR Flash
- Slave Serial, typically downloaded from a processor
- Slave Parallel, typically downloaded from a processor
- Boundary Scan (JTAG), typically downloaded from a processor or system tester.

I/O Capabilities

The XA Spartan-3E FPGA SelectIO interface supports many popular single-ended and differential standards. Table 2 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.

XA Spartan-3E FPGAs support the following single-ended standards:

- 3.3V low-voltage TTL (LVTTL)
- Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V
- 3V PCI at 33 MHz
- HSTL I and III at 1.8V, commonly used in memory applications
- SSTL I at 1.8V and 2.5V, commonly used for memory applications

XA Spartan-3E FPGAs support the following differential standards:

- LVDS
- Bus LVDS
- mini-LVDS
- RSDS

Table 2: Available User I/Os and Differential (Diff) I/O Pairs

Package	VQC	G100	CPG	G132	TQC	6144	PQC	208	FTG	256	FGG	3400	FGG	i484
Size (mm)	16 >	c 16	8	x 8	22 >	x 22	28 3	k 28	17 3	c 17	21 >	x 21	23 x 23	
Device	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XA3S100E	66 (7)	30 (2)	83 (11)	35 (2)	108 (28)	40 (4)	-	-	-	-	-	-	-	-
XA3S250E	66 (7)	30 (2)	92 (7)	41 (2)	108 (28)	40 (4)	158 (32)	65 (5)	172 (40)	68 (8)	-	-	-	-
XA3S500E	-	-	92 (7)	41 (2)	-	-	158 (32)	65 (5)	190 (41)	77 (8)	-	-	-	-
XA3S1200E	-	-	-	-	-	-	-	-	190 (40)	77 (8)	304 (72)	124 (20)	-	-
XA3S1600E	-	-	-	-	-	-	-	-	-	-	304 (72)	124 (20)	376 (82)	156 (21)

•

٠

•

Differential HSTL (1.8V, Types I and III)

2.5V LVPECL inputs

Differential SSTL (2.5V and 1.8V, Type I)

Notes:

1. All XA Spartan-3E devices provided in the same package are pin-compatible as further described in Module 4: Pinout Descriptions of DS312.

2. The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (*italics*) indicates the number of input-only pins.

Package Marking

Figure 2 provides a top marking example for XA Spartan-3E FPGAs in the quad-flat packages. Figure 3 shows the top marking for XA Spartan-3E FPGAs in BGA packages except the 132-ball chip-scale package (CPG132). The markings for the BGA packages are nearly identical to those

for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Figure 4 shows the top marking for XA Spartan-3E FPGAs in the CPG132 package.

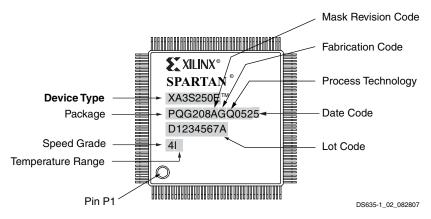


Figure 2: XA Spartan-3E FPGA QFP Package Marking Example

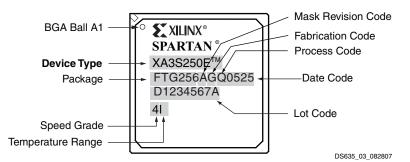
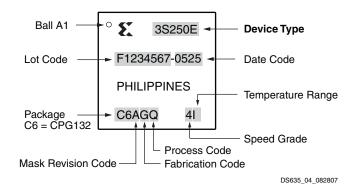
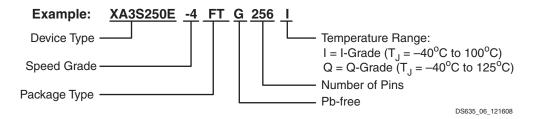


Figure 3: XA Spartan-3E FPGA BGA Package Marking Example




Figure 4: XA Spartan-3E FPGA CPG132 Package Marking Example

Ordering Information

XA Spartan-3E FPGAs are available in Pb-free packaging options for all device/package combinations. All devices are in Pb-free packages only, with a "G" character to the ordering code. All devices are available in either I-Grade or

Q-Grade temperature ranges. Only the -4 speed grade is available for the XA Spartan-3E family. See Table 2 for valid device/package combinations.

Pb-Free Packaging

Device		Speed Grade		Package Type / Number of Pins		Temperature Range (T _J)
XA3S100E	-4	Only	VQG100	100-pin Very Thin Quad Flat Pack (VQFP)	Ι	I-Grade (-40°C to 100°C)
XA3S250E		l	CPG132	132-ball Chip-Scale Package (CSP)	Q	Q-Grade (-40°C to 125°C)
XA3S500E			TQG144	144-pin Thin Quad Flat Pack (TQFP)	1	
XA3S1200E			PQG208	208-pin Plastic Quad Flat Pack (PQFP)		
XA3S1600E			FTG256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)		
			FGG400	400-ball Fine-Pitch Ball Grid Array (FBGA)		
			FGG484	484-ball Fine-Pitch Ball Grid Array (FBGA)		

Power Supply Specifications

Table 3: Supply Voltage Thresholds for Power-On Reset

Symbol	Description	Min	Max	Units
V _{CCINTT}	Threshold for the V _{CCINT} supply	0.4	1.0	V
V _{CCAUXT}	Threshold for the V _{CCAUX} supply	0.8	2.0	V
V _{CCO2T}	Threshold for the V _{CCO} Bank 2 supply	0.4	1.0	V

Notes:

1. V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.

2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 4: Supply Voltage Ramp Rate

Symbol	Description	Min	Max	Units
V _{CCINTR}	Ramp rate from GND to valid $V_{\mbox{CCINT}}$ supply level	0.2	50	ms
V _{CCAUXR}	Ramp rate from GND to valid $V_{\mbox{CCAUX}}$ supply level	0.2	50	ms
V _{CCO2R}	Ramp rate from GND to valid $\mathrm{V}_{\mathrm{CCO}}$ Bank 2 supply level	0.2	50	ms

Notes:

1. V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.

2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 5: Supply Voltage Levels Necessary for Preserving RAM Contents

Symbol	Description	Min	Units
V _{DRINT}	V _{CCINT} level required to retain RAM data	1.0	V
V _{DRAUX}	V _{CCAUX} level required to retain RAM data	2.0	V

Notes:

1. RAM contents include configuration data.

Symbol	Description	Test Conditions	Min	Тур	Max	Units
I _{RPD} ⁽²⁾	Current through pull-down resistor at User I/O, Dual-Purpose, Input-only, and Dedicated pins	$V_{IN} = V_{CCO}$	0.10	_	0.75	mA
$R_{PD}^{(2)}$	Equivalent pull-down resistor value at	$V_{IN} = V_{CCO} = 3.0V$ to 3.45V	4.0	-	34.5	kΩ
	User I/O, Dual-Purpose, Input-only, and Dedicated pins (based on I _{RPD} per Note 2)	$V_{IN} = V_{CCO} = 2.3V$ to 2.7V	3.0	_	27.0	kΩ
		$V_{IN} = V_{CCO} = 1.7V$ to 1.9V	2.3	_	19.0	kΩ
		$V_{IN} = V_{CCO} = 1.4V$ to 1.6V	1.8	_	16.0	kΩ
		$V_{IN} = V_{CCO} = 1.14V$ to 1.26V	1.5	-	12.6	kΩ
I _{REF}	V _{REF} current per pin	All V _{CCO} levels	-10	_	+10	μA
C _{IN}	Input capacitance	-	-	_	10	pF
R _{DT}	Resistance of optional differential termination circuit within a differential I/O pair. Not available on Input-only pairs.	$V_{OCM} Min \le V_{ICM} \le V_{OCM} Max$ $V_{OD} Min \le V_{ID} \le V_{OD} Max$ $V_{CCO} = 2.5V$	_	120	_	Ω

Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (Continued)

Notes:

1. The numbers in this table are based on the conditions set forth in Table 6.

2. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$.

Symbol	Description	Device	I-Grade Maximum	Q-Grade Maximum	Units
I _{CCINTQ}	Quiescent V _{CCINT}	XA3S100E	36	58	mA
	supply current	XA3S250E	104	158	mA
		XA3S500E	145	300	mA
		XA3S1200E	324	500	mA
		XA3S1600E	457	750	mA
I _{CCOQ}	Quiescent V _{CCO}	XA3S100E	1.5	2.0	mA
	supply current	XA3S250E	1.5	3.0	mA
		XA3S500E	1.5	3.0	mA
		XA3S1200E	2.5	4.0	mA
		XA3S1600E	2.5	4.0	mA

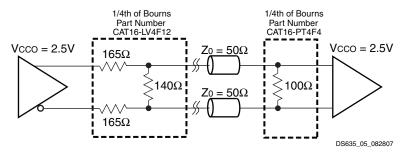


Figure 5: External Termination Resistors for BLVDS Transmitter and BLVDS Receiver

Switching Characteristics

I/O Timing

Table 13: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

				-4 Speed Grade	
Symbol	Description	Conditions	Device	Max	Units
Clock-to-Outpu	ut Times				
T _{ICKOFDCM}	When reading from the Output	LVCMOS25 ⁽²⁾ , 12mA	XA3S100E	2.79	ns
	Flip-Flop (OFF), the time from the active transition on the Global Clock pin to data appearing at the Output pin. The DCM is used.	output drive, Fast slew rate, with $DCM^{(3)}$	XA3S250E	3.45	ns
			XA3S500E	3.46	ns
			XA3S1200E	3.46	ns
			XA3S1600E	3.45	ns
T _{ICKOF}	When reading from OFF, the time from the active transition on the Global Clock pin to data	LVCMOS25 ⁽²⁾ , 12mA output drive, Fast slew rate, without DCM	XA3S100E	5.92	ns
			XA3S250E	5.43	ns
	appearing at the Output pin. The		XA3S500E	5.51	ns
	DCM is not used.		XA3S1200E	5.94	ns
			XA3S1600E	6.05	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

 This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, *add* the appropriate Input adjustment from Table 17. If the latter is true, *add* the appropriate Output adjustment from Table 18.

3. DCM output jitter is included in all measurements.

4. For minimums, use the values reported by the Xilinx timing analyzer.

Table 15: Setup and Hold Times for the IOB Input I	Path
--	------

Symbol	Description	Conditions	IFD_ DELAY_ VALUE	Device	-4 Speed Grade Min	Units
Setup Tim	es	ļ	<u> </u>		<u>.</u>	
T _{IOPICK}	Time from the setup of data at the Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). No Input Delay is programmed.	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	2.12	ns
T _{IOPICKD}	Time from the setup of data at the Input	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	6.49	ns
	pin to the active transition at the IFF's ICLKIFD_DELAY_VALUE =input. The Input Delay is programmed.default software setting	3	XA3S250E	6.85	ns	
		delault software setting	2	XA3S500E	7.01	ns
			5	XA3S1200E	8.67	ns
			4	XA3S1600E	7.69	ns
Hold Time	S			1		
T _{IOICKP}	Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. No Input Delay is programmed.	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	-0.76	ns
T _{IOICKPD}	Time from the active transition at the IFF's	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	-3.93	ns
	ICLK input to the point where data must be held at the Input pin. The Input Delay is	IFD_DELAY_VALUE = default software setting	3	XA3S250E	-3.51	ns
	programmed.	delault software setting	2	XA3S500E	-3.74	ns
			5	XA3S1200E	-4.30	ns
			4	XA3S1600E	-4.14	ns
Set/Reset	Pulse Width			1	•	
T _{RPW_IOB}	Minimum pulse width to SR control input on IOB			All	1.80	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 17.

3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 17. When the hold time is negative, it is possible to change the data before the clock's active edge.

Table 16: Propagation Times for the IOB Input Path

			IFD_ DELAY		-4 Speed Grade	
Symbol	Description	Conditions	VALUE	Device	Max	Units
Propagatio	on Times					
T _{IOPLI}	The time it takes for data to travel from the Input pin through the IFF latch to the I output with no input delay programmed	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 0	0	All	2.25	ns
T _{IOPLID}	The time it takes for data to	LVCMOS25 ⁽²⁾ ,	2	XA3S100E	5.97	ns
	travel from the Input pin through the IFF latch to the I output with	IFD_DELAY_VALUE = default software setting	3	XA3S250E	6.33	ns
	the input delay programmed	deladit software setting	2	XA3S500E	6.49	ns
			5	XA3S1200E	8.15	ns
			4	XA3S1600E	7.16	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, *add* the appropriate Input adjustment from Table 17.

Table 17: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the Following	Add the Adjustment Below	
Signal Standard (IOSTANDARD)	-4 Speed Grade	Units
Single-Ended Standards		
LVTTL	0.43	ns
LVCMOS33	0.43	ns
LVCMOS25	0	ns
LVCMOS18	0.98	ns
LVCMOS15	0.63	ns
LVCMOS12	0.27	ns
PCI33_3	0.42	ns
HSTL_I_18	0.12	ns
HSTL_III_18	0.17	ns
SSTL18_I	0.30	ns
SSTL2_I	0.15	ns

Table 17: Input Timing Adjustments by IOSTANDARD

Convert Input Time from LVCMOS25 to the Following	Add the Adjustment Below	
Signal Standard (IOSTANDARD)		
Differential Standards		
LVDS_25	0.49	ns
BLVDS_25	0.39	ns
MINI_LVDS_25	0.49	ns
LVPECL_25	0.27	ns
RSDS_25	0.49	ns
DIFF_HSTL_I_18	0.49	ns
DIFF_HSTL_III_18	0.49	ns
DIFF_SSTL18_I	0.30	ns
DIFF_SSTL2_I	0.32	ns

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6, Table 9, and Table 11.
- 2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

Convert C LVCMOS25 w Fast Slew Ra Signal Stand	ate to the F	Drive and ollowing	Add the Adjustment Below -4 Speed Grade	Units
Single-Ended	=	,		
	Slow	2 mA	5.41	ns
		4 mA	2.41	ns
		6 mA	1.90	ns
		8 mA	0.67	ns
		12 mA	0.70	ns
		16 mA	0.43	ns
	Fast	2 mA	5.00	ns
		4 mA	1.96	ns
		6 mA	1.45	ns
		8 mA	0.34	ns
		12 mA	0.30	ns
		16 mA	0.30	ns
LVCMOS33	Slow	2 mA	5.29	ns
		4 mA	1.89	ns
		6 mA	1.04	ns
		8 mA	0.69	ns
		12 mA	0.42	ns
		16 mA	0.43	ns
	Fast	2 mA	4.87	ns
		4 mA	1.52	ns
		6 mA	0.39	ns
		8 mA	0.34	ns
		12 mA	0.30	ns
		16 mA	0.30	ns
LVCMOS25	Slow	2 mA	4.21	ns
		4 mA	2.26	ns
		6 mA	1.52	ns
		8 mA	1.08	ns
		12 mA	0.68	ns
	Fast	2 mA	3.67	ns
		4 mA	1.72	ns
		6 mA	0.46	ns
		8 mA	0.21	ns
		12 mA	0	ns

Table 18: Output Timing Adjustments for IOB

Table 18: Output Timing Adjustments for IOB (Continued)

Convert Ou LVCMOS25 wit Fast Slew Rat	Itput Time th 12mA E e to the Fe	from Prive and ollowing	Add the Adjustment Below -4 Speed	-
Signal Standa	-	-	Grade	Units
LVCMOS18	Slow	2 mA	5.24	ns
		4 mA	3.21	ns
		6 mA	2.49	ns
		8 mA	1.90	ns
	Fast	2 mA	4.15	ns
		4 mA	2.13	ns
		6 mA	1.14	ns
		8 mA	0.75	ns
LVCMOS15	Slow	2 mA	4.68	ns
		4 mA	3.97	ns
		6 mA	3.11	ns
	Fast	2 mA	3.38	ns
		4 mA	2.70	ns
		6 mA	1.53	ns
LVCMOS12	Slow	2 mA	6.63	ns
	Fast	2 mA	4.44	ns
HSTL_I_18			0.34	ns
HSTL_III_18			0.55	ns
PCI33_3			0.46	ns
SSTL18_I			0.25	ns
SSTL2_I			–0.20 ns	
Differential Sta	ndards		!	
LVDS_25			-0.55	ns
BLVDS_25			0.04	ns
MINI_LVDS_25			-0.56	ns
LVPECL_25			Input Only	ns
RSDS_25			-0.48	ns
DIFF_HSTL_I_18			0.42	ns
DIFF_HSTL_III_18			0.55	ns
DIFF_SSTL18_I			0.40	ns
DIFF_SSTL2_I			0.44	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6, Table 9, and Table 11.

 These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

Configurable Logic Block Timing

Table 20: CLB (SLICEM) Timing

		-4 Spee	ed Grade	
Symbol	Description	Min	Max	Units
Clock-to-Output	Times			
Т _{СКО}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.60	ns
Setup Times	-		ļ.	Į
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB	0.52	-	ns
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB	1.81	-	ns
Hold Times	1			
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the F or G input	0	-	ns
T _{CKDI}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input	0	-	ns
Clock Timing				I
Т _{СН}	The High pulse width of the CLB's CLK signal	0.80	-	ns
T _{CL}	The Low pulse width of the CLK signal	0.80	-	ns
F _{TOG}	Toggle frequency (for export control)	0	572	MHz
Propagation Tim	es		1	l
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.76	ns
Set/Reset Pulse	Width		L	1
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	1.80	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

Clock Buffer/Multiplexer Switching Characteristics

Table 23: Clock Distribution Switching Characteristics

		Maximum	
Description	Symbol	-4 Speed Grade	Units
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay	T _{GIO}	1.46	ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input	T _{GSI}	0.63	ns
Frequency of signals distributed on global buffers (all sides)	F _{BUFG}	311	MHz

18 x 18 Embedded Multiplier Timing

Table 24: 18 x 18 Embedded Multiplier Timing

		-4 Spee	ed Grade	
Symbol	Description	Min	Max	Units
Combinatoria	l Delay			
T _{MULT}	Combinatorial multiplier propagation delay from the A and B inputs to the P outputs, assuming 18-bit inputs and a 36-bit product (AREG, BREG, and PREG registers unused)	-	4.88 ⁽¹⁾	ns
Clock-to-Outp	out Times	L	1	
T _{MSCKP_P}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using the PREG register ⁽²⁾	-	1.10	ns
T _{MSCKP_A} T _{MSCKP_B}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using either the AREG or BREG register ⁽³⁾	-	4.97	ns
Setup Times		L	1	
T _{MSDCK_P}	Data setup time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽²⁾	3.98	-	ns
T _{MSDCK_A}	Data setup time at the A input before the active transition at the CLK when using the AREG input register $^{\rm (3)}$	0.23	-	ns
T _{MSDCK_B}	Data setup time at the B input before the active transition at the CLK when using the BREG input register $^{\rm (3)}$	0.39	-	ns
Hold Times		L		
T _{MSCKD_P}	Data hold time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽²⁾	-0.97		
T _{MSCKD_A}	Data hold time at the A input before the active transition at the CLK when using the AREG input register $^{\rm (3)}$	0.04		
T _{MSCKD_B}	Data hold time at the B input before the active transition at the CLK when using the BREG input register ^{(3)}	0.05		

Table 25: Block RAM Timing (Continued)

		-4 Spee	d Grade	
Symbol	Description	Min	Max	Units
Clock Timing	•			
T _{BPWH}	High pulse width of the CLK signal	1.59	-	ns
T _{BPWL}	Low pulse width of the CLK signal	1.59	-	ns
Clock Freque	ncy			
F _{BRAM}	Block RAM clock frequency. RAM read output value written back into RAM, for shift registers and circular buffers. Write-only or read-only performance is faster.	0	230	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

Digital Clock Manager Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 26 and Table 27) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 28 through Table 31) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 26 and Table 27.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value.

Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>, *Spread-Spectrum Clocking Reception for Displays* for details.

Delay-Locked Loop

Table 26: Recommended Operating Conditions for the DLL

				-4 Spee	ed Grade	
	Symbol	Des	cription	Min	Max	Units
Input Fr	equency Ranges					
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN clock in	nput	5(2)	240 ⁽³⁾	MHz
Input Pu	ulse Requirements				•	
CLKIN_I	CLKIN_PULSE CLKIN pulse width as a $F_{CLKIN} \le 150 \text{ MHz}$		F _{CLKIN} ≤ 150 MHz	40%	60%	-
		percentage of the CLKIN F _{CLKIN}	F _{CLKIN} > 150 MHz	45%	55%	-
Input Cl	ock Jitter Tolerance and	d Delay Path Variation ⁽⁴⁾				
CLKIN_0	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the	F _{CLKIN} ≤ 150 MHz	-	±300	ps
CLKIN_0	CYC_JITT_DLL_HF	CLKIN input	F _{CLKIN} > 150 MHz	-	±150	ps
CLKIN_I	CLKIN_PER_JITT_DLL Period jitter at the CLKIN input		-	±1	ns	
CLKFB_	DELAY_VAR_EXT	Allowable variation of off-chip fee the CLKFB input	edback delay from the DCM output to	-	±1	ns

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 28.

3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

Table 27: Switching Characteristics for the DLL

		-4 Spe	ed Grade	
Symbol	Description	Min	Max	Units
Output Frequency Ranges				
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK180 outputs	5	240	MHz
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK270 outputs	5	200	MHz
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2X180 outputs	10	311	MHz
CLKOUT_FREQ_DV	Frequency for the CLKDV output	0.3125	160	MHz
Output Clock Jitter ^(2,3,4)				
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output	-	±100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output	-	±150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output	-	±150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output	-	±150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2X180 outputs	-	±[1% of CLKIN period + 150]	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division	-	±150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division	-	±[1% of CLKIN period + 200]	ps

Table 31: Switching Characteristics for the PS in Variable Phase Mode

Symbol	Description			Units			
Phase Shifting Range							
MAX_STEPS ⁽²⁾	Maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN clock period in ns. If using CLKIN_DIVIDE_BY_2 = TRUE, double the clock effective clock period.	CLKIN < 60 MHz	±[INTEGER(10 ● (T _{CLKIN} – 3 ns))]	steps			
		CLKIN <u>></u> 60 MHz	±[INTEGER(15 ● (T _{CLKIN} – 3 ns))]	steps			
FINE_SHIFT_RANGE_MIN	Minimum guaranteed delay for variable phase shifting	±(MAX_STEPS ● DCM_DELAY_STEP_MIN]		ns			
FINE_SHIFT_RANGE_MAX	Maximum guaranteed delay for variable phase shifting	±[MAX_STEPS ● DCM_DELAY_STEP_MAX]		ns			

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 30.
- 2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, i.e., the PHASE_SHIFT attribute is set to 0.
- 3. The DCM_DELAY_STEP values are provided at the bottom of Table 27.

Miscellaneous DCM Timing

Table 32: Miscellaneous DCM Timing

Symbol	Description	Min	Max	Units
DCM_RST_PW_MIN ⁽¹⁾	Minimum duration of a RST pulse width	3	-	CLKIN cycles
DCM_RST_PW_MAX ⁽²⁾	Maximum duration of a RST pulse width	N/A	N/A	seconds
		N/A	N/A	seconds
DCM_CONFIG_LAG_TIME ⁽³⁾	Maximum duration from V _{CCINT} applied to FPGA	N/A	N/A	minutes
	configuration successfully completed (DONE pin goes High) and clocks applied to DCM DLL	N/A	N/A	minutes

Notes:

1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.

- 2. This specification is equivalent to the Virtex-4 DCM_RESET specification. This specification does not apply for Spartan-3E FPGAs.
- 3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3E FPGAs.

Slave Parallel Mode Timing

Table 39: Timing for the Slave Parallel Configuration Mode

	Description			-4 Speed Grade		
Symbol				Min	Max	Units
Clock-to-Ou	tput Times					
T _{SMCKBY}	The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin			-	12.0	ns
Setup Times	5					- <u> </u>
T _{SMDCC}	The time from the setup of pin	data at the D0-D7	pins to the active edge the CCLK	11.0	-	ns
T _{SMCSCC}	Setup time on the CSI_B p	oin before the activ	ve edge of the CCLK pin	10.0	-	ns
T _{SMCCW} ⁽²⁾	Setup time on the RDWR_	Setup time on the RDWR_B pin before active edge of the CCLK pin			-	ns
Hold Times					1	
T _{SMCCD}	The time from the active edge of the CCLK pin to the point when data is last held at the D0-D7 pins			1.0	-	ns
T _{SMCCCS}	The time from the active edge of the CCLK pin to the point when a logic level is last held at the CSO_B pin			0	-	ns
T _{SMWCC}	The time from the active edge of the CCLK pin to the point when a logic level is last held at the RDWR_B pin			0	-	ns
Clock Timin	g					
T _{CCH}	The High pulse width at the CCLK input pin		5	-	ns	
T _{CCL}	The Low pulse width at the CCLK input pin			5	-	ns
F _{CCPAR}	Frequency of the clock signal at the CCLK input pin	No bitstream compression	Not using the BUSY pin ⁽²⁾	0	50	MHz
			Using the BUSY pin	0	66	MHz
	With bitstream compression		0	20	MHz	

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

2. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.

3. Some Xilinx documents refer to Parallel modes as "SelectMAP" modes.

Byte Peripheral Interface Configuration Timing

Table 42: Timing for BPI Configuration Mode

Symbol	Description	Minimum	Maximum	Units		
T _{CCLK1}	Initial CCLK clock period			(see Table 34)		
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting			(see Table 34)		
T _{MINIT}	Setup time on CSI_B, RDWR_B, and M[2:0] mode pins before the rising edge of INIT_B			-	ns	
T _{INITM}	Hold time on CSI_B, RDWR_B, and M[2:0] mode pins after the rising edge of INIT_B			-	ns	
T _{INITADDR}	Minimum period of initial A[23:0] address cycle; LDC[2:0] and HDC are asserted and validBPI-UP: (M[2:0]=<0:1:0>)		5	5	T _{CCLK1} cycles	
		BPI-DN: (M[2:0]=<0:1:1>)	2	2	-	
T _{CCO}	Address A[23:0] outputs valid after CCLK falling edge		See Table 38			
T _{DCC}	Setup time on D[7:0] data inputs before CCLK rising edge		See Table 38			
T _{CCD}	Hold time on D[7:0] data inputs after CCLK rising edg	See Table 38				

Table 43: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol	Description	Requirement	
T _{CE} (t _{ELQV})	Parallel NOR Flash PROM chip-select time	T _{CE} ≤T _{INITADDR}	ns
T _{OE} (t _{GLQV})	Parallel NOR Flash PROM output-enable time	T _{OE} ≤ T _{INITADDR}	ns
T _{ACC} (t _{AVQV})	Parallel NOR Flash PROM read access time	$T_{ACC} \leq 0.5T_{CCLKn(min)} - T_{CCO} - T_{DCC} - PCB$	ns
T _{BYTE} (t _{FLQV,} t _{FHQV})	For x8/x16 PROMs only: BYTE# to output valid time ⁽³⁾	T _{byte} ≤T _{initaddr}	ns

Notes:

1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.

2. Subtract additional printed circuit board routing delay as required by the application.

3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA's LDC2 pin. The resistor value also depends on whether the FPGA's HSWAP pin is High or Low.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
08/31/07	1.0	Initial Xilinx release.
01/20/09	1.1	 Updated "Key Feature Differences from Commercial XC Devices." Updated T_{ACC} requirement in Table 43. Updated description of T_{DCC} and T_{CCD} in Table 42. Removed Table 45: MultiBoot Trigger Timing.
09/09/09	2.0	 Added package sizes to Table 2, page 4. Removed Genealogy Viewer Link from "Package Marking," page 5. Updated data and notes for Table 6, page 8. Updated test conditions for R_{PU} and maximum value for C_{IN} in Table 7, page 8. Updated notes for Table 8, page 9. Updated Max V_{CCO} for LVTTL and LVCMOS33, removed PCIX data, updated V_{IL} Max for LVCMOS18, LVCMOS15, and LVCMOS12, updated V_{IH} Min for LVCMOS12, and added note 6 in Table 9, page 11. Removed PCIX data, revised note 2, and added note 4 in Table 10, page 12. Updated figure description of Figure 5, page 14. Added note 4 to Table 13, page 14. Removed PC166_3 and PCIX adjustment values from Table 17, page 17. Deleted Table 18 (duplicate of Table 17, page 17). Subsequent tables renumbered. Removed PCIX data and removed V_{REF} values for DIFF_HSTL_1_18, DIFF_HSTL_III_18, DIFF_SSTL18_1, and DIFF_SSTL2_1 from Table 19, page 19. Updated notes, references to notes, and revised the maximum clock-to-output times for T_{MSCKP_P} Table 24, page 22. Added note 3 in Table 26, page 25. Added note 4 table 28, page 26. Updated notes, references to notes, and CLKOUT_PER_JITT_FX data in Table 29, page 27. Updated MAX_STEPS data in Table 31, page 28. Updated ConfigRate Setting for T_{CCLK1} to indicate 1 is the default value in Table 34, page 30.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

